
A Survey of 
Crystalline Defects
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Outline – Defects

• 0D Defects
• Vacancies & Interstitials

• 1D Defects (Dislocations)

• 2D Defects
• Grain & twin boundaries

• 3D Defects
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Crystalline Solids

• Periodic, long-range ordered structures

Single crystals of calcium metal 
under kerosene

Face centered cubic calcium 
crystal structure

http://www.webelements.com/calcium/crystal_structure.html
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Form Follows Structure
http://www.zkg.de/en/artikel/bildpopup_en_1698578.html?image=5

Image courtesy of Materialscientist on Wikimedia. © Bauverlag.de. All rights reserved. This content is
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Gold (Au), face centered reserved.
Pyrite (FeS2), simple 

cubic (FCC) Gypsum, monocliniccubic (SC) http://www.palaminerals.com http://www.galleries.com/minerals/
Wikimedia Commons /news_2007_v2.php symmetry/monoclin.htm
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Grain vs. Crystal Structure

• Why do grains look more spherical, when crystal 
structures are cubic?

https://www.nde-
ed.org/EducationResources/CommunityCollege/

Materials/Graphics/CrystalStructure/BCC.jpg

Body centered cubic (BCC) iron 
crystal structure (left), micrograph 

of Fe-12Cr-2Si (right)

22.14: Nuclear Materials Defects, Slide 5

© Iowa State University. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

https://www.nde-ed.org/EducationResources/CommunityCollege/Materials/Graphics/CrystalStructure/BCC.jpg
https://www.nde-ed.org/EducationResources/CommunityCollege/Materials/Graphics/CrystalStructure/BCC.jpg
https://www.nde-ed.org/EducationResources/CommunityCollege/Materials/Graphics/CrystalStructure/BCC.jpg
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/


Grain vs. Crystal Structure

• Wulff crystals describe 
lowest energy surfaces

• Exposing close packed 
planes lowers surface 
energy

http://www.ctcms.nist.gov/wulffman/examples.html

{001}

{111}
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Grain vs. Crystal Structure

• We see 2D slices of Wulff crystals as grains!

http://www.ctcms.nist.gov/wulffman/examples.html
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Point Defects (0D) –
Vacancies Was, p. 163
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[Was, Gary S. Fundamentals of Radiation Materials Science, p. 163.
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Point Defects (0D) – Multiple 
Vacancies Was, p. 163
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Point Defects (0D) –
Interstitials Was, p. 157

• Extra atoms shoved into the crystal lattice

Tetrahedron
Octahedron

Octahedral interstitial in BCC Tetrahedral interstitial in BCC 
lattice lattice

© Springer. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Point Defects (0D) – Split 
Interstitials Was, p. 159

• Dumbbells are often lower energy configurations

• Also much easier to diffuse
• One interstitial can “knock” the

other in their common direction

• Lower distance to movement

© Springer. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Point Defect Energies
Was, p. 160

Harder to make, easier to move

Easier to make, harder to move

© Springer. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Point Defect Energetics

• How much energy to 
make a vacancy?

Remove an atom by 
breaking bonds (+)

Let other atoms 
relax inward (-)
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Point Defect Energetics

• How much energy to make a 
vacancy?

• Fe-Fe bond dissociation energy: 

118 𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

= 1.22𝑒𝑒𝑒𝑒 [1]

• Fe-Fe cluster calculations give 
0.64eV [2]

• Z=8 in BCC Fe: 5.12 − 9.76𝑒𝑒𝑒𝑒

Remove an atom by 
breaking bonds (+)

[1] Y-R Luo. “Bond Dissociation Energies.” CRC Handbook (2009)
[2] T. Nakazawa, T. Igarashi, T. Tsuru, Y. Kaji, Comp. Mater. Sci., 46(2):367-375 (2009)
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Point Defect Energetics

• Z=8 in BCC Fe:
5.12 2 − 9.76 1 𝑒𝑒𝑒𝑒

• Molecular dynamics (MD) 
calculations [3] show:

𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 1.83𝑒𝑒𝑒𝑒

• Difference due to crystal 
relaxation

[1] Y-R Luo. “Bond Dissociation Energies.” CRC Handbook (2009)
[2] T. Nakazawa, T. Igarashi, T. Tsuru, Y. Kaji, Comp. Mater. Sci., 46(2):367-375 (2009)

Let other atoms 
relax inward (-)

[3] B. D. Wirth et al. J. Nucl. Mater., 244:185:194 (1997)
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Point Defect Energetics
• Which interstitial is most stable?

Interstitial

Dumbbell

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Wirth, B. D., et al. "Energetics of Formation and Migration of Self-interstitials
and Self-interstitial Clusters in α-iron." Journal of Nuclear Materials 244, no. 3 (1997):
185-94.

B. D. Wirth et al. J. Nucl. Mater., 244:185:194 (1997)
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Point Defect Energetics

• Which interstitial is most stable?
Interstitial

Dumbbell
Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Wirth, B. D., et al. "Energetics of Formation and Migration of Self-interstitials
and Self-interstitial Clusters in α-iron." Journal of Nuclear Materials 244, no. 3 (1997):
185-94.

• Does it matter? B. D. Wirth et al. J. Nucl. Mater., 244:185:194 (1997)
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Direct Measurement of 
Mehrer, p. 78

• Positron annihilation 
spectroscopy (PAS)
• Shoot positrons into 

material, they annihilate 
very quickly with local 
electrons

• Positrons can bind to 
vacancy, which has a 
reduced electron cloud

Mean positron lifetime in aluminum
• Lasts longer! © Springer. All rights reserved. This content is excluded

from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.
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Direct Measurement of 𝑪𝑪𝟏𝟏𝟏𝟏
𝒆𝒆𝒆𝒆

• Quenching resistance 
measurements

• Heat material to high 
temperature, quench, 
measure resistivity

• Resistivity directly 
proportional to vacancy 
concentration

• Measured at liquid-He 
temperature Resistivity of aluminum vs. quenching 

temperature

A. Khellaf et al., Mater. Trans. 43(2):186 (2002)
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Dislocations (1D)

• Extra half-plane of atoms shoved into the lattice

• Two types: Edge & Screw

Was, p. 268
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Dislocations (1D)

• Extra half-plane of atoms shoved into the lattice

• Two types: Edge & Screw

Was, p. 268
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[Fig. 7.3 in p. 268 from Was, Gary S. Fundamentals of Radiation Materials
Science, ISBN: 9783540494713] removed due to copyright restrictions.



Edge vs. Screw Dislocations
Passchier and Trouw, “Microtectonics,” p. 33 (2005)
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Edge vs. Screw Dislocations
Passchier and Trouw, “Microtectonics,” p. 33 (2005)

• Burgers vectors
• Dislocation cores

b
s

b
s
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The Burgers Vector
Was, p. 275

• Start at one atom, make Disloc

a circle around the cor

dislocation core

• The Burgers Vector is 
the direction you move 
to reach your starting 
point

• Example: Edge disloc.
© Springer. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.
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Dislocation Glide

• Movement one plane at a time along the slip 
direction

Was, p. 272
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Edge Dislocation Glide

http://youtu.be/kk2oOxSDQ7U
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A video is played in class to demonstrate the concept.




http://youtu.be/kk2oOxSDQ7U


Dislocation Glide

• Movement one plane at a time along the slip 
direction
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Dislocation Climb

• Vacancy diffusion to dislocation core
• Vacancies are attracted to the compressive stress at core

Was, p. 273
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Dislocation Kinks, Jogs
Allen, “Kinetics of Materials,” p. 116

• Dislocations preferentially move on slip systems
• Certain directions of easier movement

• Close packed planes slip in close packed directions

© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Dislocation Motion
Was, p. 277
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[Fig. 7.18 in p. 277 from Was, Gary S. Fundamentals of Radiation Materials
Science, ISBN: 9783540494713] removed due to copyright restrictions.



Glissile vs. Sessile Sections
Allen, “Kinetics of Materials,” p. 124

Two edge dislocations moving towards each other form a sessile jog
© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Dislocation Loops

• Loops have mixed edge/screw character
• May be circular planes of atoms between two planes

© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Dislocation Loop Sources

• Come from sessile sections of dislocations
Old strain direction

© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Dislocation Videos!
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Dislocation sources in Mo-5Nb

http://www.numodis.fr/tridis/TEM/mechanisms/multiplication.html

A video is played in class to demonstrate the concept.




http://www.numodis.fr/tridis/TEM/mechanisms/multiplication.html


Dislocation Videos!
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A Frank-Read Source in Silicon

http://www.numodis.fr/tridis/TEM/mechanisms/multiplication.html

A video is played in class to demonstrate the concept.




http://www.numodis.fr/tridis/TEM/mechanisms/multiplication.html


Dislocation Videos!
http://www.numodis.fr/tridis/TEM/mechanisms/multiplication.html

Dislocation source in Ge at high temperature A video is played in class to demonstrate the concept.
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Dislocation Videos!
http://www.numodis.fr/tridis/TEM/mechanisms/multiplication.html

Dislocation sources and pileup in Ge A video is played in class to demonstrate the concept.
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Dislocation Videos!
http://www.numodis.fr/tridis/TEM/mechanisms/multiplication.html

Dislocation sources in Si A video is played in class to demonstrate the concept.
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Forces Between Edge 
Dislocations Was, p. 289-290

• X & Y forces, no Z-force Peach-Kohler Equation

Burgers vector of 
dislocation (2) 
transposed

Line vector of 
dislocation (2) 

transposed

Force vector on 

dislocation (2)
Stress tensor 
induced by 

dislocation (1)
© Springer. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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All Together: Loops, 
Movement, Pileup

Dislocations 
moving & piling 
up in Inconel 
617 (Ni-based 
alloy) under in-
situ straining in 
the TEM

http://youtu.be/r-geDwE8Z5Y

A video is played in class to demonstrate the concept.
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http://youtu.be/r-geDwE8Z5Y


Grain Boundaries (2D)
http://www-hrem.msm.cam.ac.uk/gallery/

• Regions of different 
orientation

• May also be different 
crystal structure

TEM image of a grain boundary in pure Al
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GBs can be Lines of 
Dislocations

http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_7/backbone/r7_2_1.html
Tilt grain boundary in Al

This image is in the public domain. http://moisespinedacaf.blogspot.com/
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Twinning

• Alternate plastic deformation mechanism
http://moisespinedacaf.blogspot.com/ http://dcg.materials.drexel.edu/?page_id=14#nuclear

Twinning observed in irradiated 
reactor pressure vessel steel

Courtesy of Dynamic Characterization Group, property of Drexel University. Used with permission.
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http://dcg.materials.drexel.edu/?page_id=14#nuclear

Twinning Differently oriented dislocations 
inside/outside twin boundary!

Courtesy of Dynamic Characterization Group, property of Drexel University. Used with permission.
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Inclusions (3D)

• Other phases trapped 
within base material

• Examples:
• Secondary particle 

precipitates in Zircaloys
• Carbides in steels
• Y2O3 particles in Oxide 

Dispersion Strengthened 
© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

(ODS) steels Single 
3�
crystal of MnS, space group 

Fm m, FCC crystal structure 
embedded in Alcator rotor steel
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Coherent vs. Incoherent
• Which do you think would be better at sinking defects? Stopping dislocations?

Incoherent inclusion Coherent inclusion
© Brooks / Cole, a division of Thomson Learning, Inc. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Switching Gears: Structural 
Material Properties
• Goals:

• Understand true vs. engineering stress & strain

• Quantify and differentiate between hardness, toughness, 
strength, ductility, stiffness

• Know how to measure these properties

• Resolve stresses onto slip systems

• Predict the differences in mechanical response between 
single, dual, and polycrystalline materials

Images from now on are from T. H. Courtney, Mechanical 
Behavior of Materials unless otherwise noted
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Resolved Shear Stress
• Consider a single crystal bar of FCC material, 

tensioned in the [001] direction:

How much shear does the slip system feel?

© Waveland Press, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Resolved Shear Stress
http://www.doitpoms.ac.uk/tlplib/slip/printall.php

• Project force onto the tilted 
plane containing the slip system, 

•

𝜎𝜎

to get 

𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 =

the 

𝐹𝐹

stress

𝐹𝐹

Also pro

𝐴𝐴

j

𝑠𝑠

e

𝑚𝑚

c

𝑠𝑠𝑠𝑠

t s

=

hear

𝐴𝐴0
= 𝜎𝜎 cos𝜃𝜃

direction of slip

cos𝜃𝜃

Courtesy of University of Cambridge. Used with permission.
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Resolved Shear Stress

• The total shear

𝜏𝜏

 s

=

tre

𝜎𝜎

ss b

cos

ec

𝜆𝜆

o

cos

mes

𝜃𝜃

:

=
𝜎𝜎
𝑚𝑚

• Effectively reduce

𝑚𝑚

s a

=

pp

1
cos
lies
𝜆𝜆 cos𝜃𝜃

Schmid factor

 stress felt on a slip plane
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Resolved Shear Stress
• Consider a single crystal bar of FCC material, 

tensioned in the [001] direction:

© Waveland Press, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Examples of Shear & Slip
• Alcator C-Mod rotor steel in uniaxial tension:

© Waveland Press, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Evidence of Slip Systems
http://www.doitpoms.ac.uk/tlplib/slip/printall.php

Courtesy of University of Cambridge. Used with permission.
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Evidence of Slip Systems
http://www.doitpoms.ac.uk/tlplib/miller_indices/printall.php

Courtesy of University of Cambridge. Used with permission.

A scanning electron micrograph of a single crystal of cadmium deforming by dislocation 
slip on 100 planes, forming steps on the surface
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Evidence of Slip Systems
N. Friedman et al. Phys. Rev. Lett. 109, 095507 (2012)

• Nanopillar compression 
tests using a diamond 
flat punch

• Clear 45 degree angles 
observed

• Slip systems 
activated by shear

© APS. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Evidence of Slip Systems
S. Brinckmann et al. Phys. Rev. Lett. 100, 155502 (2008)

• Nanopillar compression 
tests using a diamond 
flat punch

• Clear 45 degree angles 
observed

• Slip systems 
activated by shear

© APS. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Resolved Shear Stress
• Consider a single crystal bar of SC material, 

tensioned in the [001] direction:

© Waveland Press, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Resolved Shear Stress

• Consider a single crystal bar of SC material, 
tensioned in the [001] direction:

© Waveland Press, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Resolved Shear Stress
• Consider a single crystal bar of SC material, 

tensioned in the [011] direction:

How much shear does the slip system feel?
© Waveland Press, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Will It Slip or Break?

• Balance between two mechanisms:
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vs.

𝝉𝝉𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 > 𝝈𝝈𝒄𝒄𝒄𝒄𝒄𝒄𝝀𝝀 𝒄𝒄𝒄𝒄𝒄𝒄𝜽𝜽

𝝈𝝈 > 𝝈𝝈𝑼𝑼𝑼𝑼𝑼𝑼

Bond breaking



Critical Resolved Shear 
Stress (τCRSS)
• Shear stress that is enough to get dislocations 

moving (plastic deformation)

• Related to the yield stress (σy), the stress where 
plastic deformation starts:

• NOTE: σy has crys

𝜎𝜎

ta
𝑉𝑉

ll

=

ogra

𝑚𝑚

phi

𝜏𝜏𝐶𝐶𝐶𝐶
c
𝐶𝐶

 
𝐶𝐶

dependence in single 
crystals! What about polycrystals?
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τCRSS

© Waveland Press, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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vs. Temperature

Commonly cited 
material 

property region

Thermal energy 
so low, that small 
barriers become 
insurmountable

Diffusion-
enhanced region 
(easier to move 

dislocations)

http://ocw.mit.edu/help/faq-fair-use/


What Happens When 
Dislocations Get Stuck?
• Cross slip: switching to other slip planes

© Waveland Press, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• Resolved shear stress must be high enough!
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Stress vs. Strain

• Stress: Force over area

• Engineering stress: Force divided by original area

• True str

𝐹𝐹
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c

𝜎𝜎

hange

=
𝐴𝐴

s

• Conserve
0

 volume duri

𝜎𝜎𝑡𝑡
𝐹𝐹 0

ng 

=
𝑡𝑡)

=
𝐹𝐹

𝐴𝐴 𝐴𝐴
0

st

(
retching:

0

 V

𝐴𝐴
𝐴𝐴(𝑡𝑡)

= 𝜎𝜎
𝐴𝐴

0 = V(t)

𝐴𝐴(𝑡𝑡)

22.14: Nuclear Materials Defects, Slide 64



Stress vs. Strain

•

𝜎𝜎 =
𝐹𝐹
𝐴𝐴

0 0

Conserve
0

𝑒𝑒 = 𝐴𝐴

 vol

𝐿𝐿

um

= 𝑒𝑒

e duri

𝜎𝜎𝑡𝑡

ng 

=
𝐹𝐹

=
𝐹𝐹
0

𝐴𝐴
𝑡𝑡

=
𝐴𝐴

𝐴𝐴(𝑡𝑡) 𝐴𝐴 𝐴𝐴( )
𝜎𝜎
𝐴𝐴(𝑡𝑡)

0 0 0 𝑡𝑡 = 𝐴𝐴

st

𝑡𝑡

ret

𝐿𝐿

chi

𝑡𝑡

ng:

;

 

𝐴𝐴

V

(
0

𝑡𝑡

= V

)
=

(t)

0

𝐿𝐿

𝐿𝐿
𝐴𝐴

0

𝐴𝐴 𝐿𝐿(
0

𝑡𝑡)

𝜎𝜎𝑡𝑡 = 𝜎𝜎
𝐴𝐴
(𝑡𝑡)

= 𝜎𝜎
(𝑇𝑇) 𝐿𝐿 + 𝛿𝛿𝐿𝐿 𝛿𝛿𝐿𝐿
𝐿𝐿

E

= 𝜎𝜎 0

0

ngineering st

𝐿𝐿

ra

0

in (ε

= 𝜎𝜎 1 +
𝐿𝐿0

22.14: Nuclear Materials Defects, Slide 65

)



True vs. Engineering Strain

• Engineering strain (ε): 𝛿𝛿𝛿𝛿
𝛿𝛿

(from original length)

• True
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Stress-Strain Curves
http://keytometals.com/page.aspx?ID=CheckArticle&site=kts&NM=42

Courtesy of 2015 Key to Metals AG. Used with permission.
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Single, Dual, and Polycrystals

slip system

© Waveland Press, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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slip system

Primary 
slip system

Secondary 
slip system

Dislocation 
pileup, 
pinning
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Measuring Stress-Strain
J. M. Gere, “Mechanics of Materials,” pp. 12, 14

Uniaxial tensile tester, with Uniaxial compression tester, with 
extensometer for measuring strain extensometer and diameter measurement

© CL Engineering. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Dislocatio
E. 

n
Bitz

s an
ek and P. Gumbs

d
ch, Dy

Def
namic aspec

ect
ts of disloc

s
ation motion: atomistic 

simulations, Materials Science and Engineering A, 400-401 (2005), pp. 40-44

• Defects can slow down (pin) dislocations

A video is played in class to demonstrate the concept.
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Reviewing Material Properties

• Find the following on a stress-strain diagram:

• Toughness

• Strength

• Ductility

• Stiffness

• Perhaps define them first…
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Young's Modulus (Stiffness, E)

Source: Wikimedia Commons
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Measures elastic 
deformation vs. stress

https://commons.wikimedia.org/wiki/File:StressStrainWEB.svg
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Toughness (Gc)

● Measures the energy it takes to separate a 
material

© source unknown. All rights reserved. This content is
Source: inventor.grantadesign.com excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/faq-fair-use/.
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Material Properties on 
Stress-Strain Diagram

Courtesy of Ben Best.Used with permission.

http://www.benbest.com/cryonics/lessons.html
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Materials Selection Charts

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Failure Criteria – Crack 
Propagation

Resistance to crack 
propagation

-Y1, Y2 are geometric 
factors near 1

-σ*, F* are critical stress 
and force, respectively

Source: inventor.grantadesign.com © source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

22.14: Nuclear Materials Defects, Slide 76

http://ocw.mit.edu/help/faq-fair-use/


Fracture Toughness – Real 
Data from Alcator C-Mod

© Elsevier. Inc. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

Engineering Materials Science, Milton Ohring , Ch. 10
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Failure Criteria – Fatigue

 Repeated application 
of stress can cause 
cracks to grow

 Induced by 
vibrations, 
mechanical loading

 Telltale “fatigue 
striations”

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.  Where do these 

Source: www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/anal/kelly/fatigue.html come from?
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Failure Criteria – Fatigue

 Stress (S) vs. 
number of cycles 
(N)

 Lower limit of stress 
(where N is infinite) 
is the “safe zone”

 Why do these 
This image is in the public domain. limits exist?

Source: www.nde-ed.org/EducationResources/CommunityCollege/Materials/Mechanical/S-NFatigue.htm
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Fatigue Striations in Alcator
C-Mod Rotor

© Waveland Press, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Failure Mechanisms in 
Tension

1.1.
2.2.
3.3.

4.
4.

Stages of cup-and-cone 
fracture formation in 

ductile materials
© Elsevier. Inc. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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1.
2.
3.

4.

1. Brittle fracture
2. Single crystal slip bands
3. Ideal ductile fracture (full 

elongation)
4. Realistic cup-and-cone 

fracture

http://ocw.mit.edu/help/faq-fair-use/


Examples of Cup-and-Cone 
Fracture in Alcator C-Mod
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Brittle & Ductile Fracture, 
Side by Side
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Brittle

Ductile

MnS Precipitate



Creep – Plastic Deformation 
Below Yield Stress
• Imagine stretching a bar of metal within the elastic 

region

© The National Board of Boiler and Pressure Vessel Inspectors. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://www.nationalboard.org/Index.aspx?pageID=181
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Creep – Stress vs. Time
J. M. Gere, “Mechanics of Materials,” pp. 22

• Stress increased
elastically to σ0

• Held for long time

• Stress at constant
strain decreases due
to creep

© CL Engineering. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.
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Creep Mechanisms

 Plastic flow under 
constant stress

 Tension, gravity...
 Happens well below 

yield stress
 Multiple modes 

(Coble, Nabarro-
Herring...)

This image is in the public domain.

Source: Wikimedia Commons
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Creep Mechanisms

• Dislocation climb
• Follows power law

• Nabarro-Herring (diffusional)
• Vacancy movement

• Coble
© Elsevier, Inc. All rights reserved. This content is

• Grain boundary movement
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

Engineering Materials Science, Milton Ohring , Ch. 10
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Failure Criterion – Creep 
Lifetime

 Creep rupture 
lifetime can limit 
usefulness of part

 Example: Alloys 
HT9, T91 in high 
temperature service 
conditions

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Klueh, R. L., and A. T. Nelson. "Ferritic / Martensitic Steels for Next-generation
Reactors." Journal of Nuclear Materials 371, no. 1-3 (2007): 37-52.

Source: R.L. Klueh, A.T. Nelson. J. Nucl. Mater., 371(1-3):37-52 (2007).
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Creep Failure by Time at 
Temperature and Pressure

Creep failure of alloy T91 due to improper heat treatment, heated above A1 
temperature. In T. Totenmeier, “Experience with Grade 91 Steel in the Fossil 

Power Industry.” Presentation, ALSTOM, Feb. 2009.
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