MIT OpenCourseWare, Massachusetts Institute of Technology
An icon depicting an envelope.Subscribe to the OCW Newsletter Click to visit our Google+ page. Click to visit our Pinterest page. Click to visit our Facebook page. Click to visit our Twitter feed.
Help| Contact Us
 
  • Click for site home page.
  • Find Courses
    Find courses by:
    • Topic
    • MIT Course Number
    • Department
    • Instructional Approach
    • Teaching Materials
    • View All Courses
    Collections
    • Audio/Video Lectures
    • Online Textbooks
    • New Courses
    • Most Visited Courses
    • OCW Scholar Courses
    • This Course at MIT
    • Supplemental Resources
    Translated Courses
    • 繁體字 / Traditional Chinese
    • Español / Spanish
    • Português / Portuguese
    • فارسی / Persian
    • Türkçe / Turkish
    • (비디오)한국 / Korean
    • More...
    Cross-Disciplinary Topic Lists
    • Energy
    • Entrepreneurship
    • Environment
    • Introductory Programming
    • Life Sciences
    • Transportation
  • About
    • About MIT OpenCourseWare
    • Site Statistics
    • OCW Stories
    • News
  • Donate
    • Make a Donation
    • Why Donate?
    • Our Supporters
    • Other Ways to Contribute
    • Shop OCW
    • Become a Corporate Sponsor
  • Featured Sites
    OCW Initiatives
    • Highlights for High School
    • OCW Educator
    • MIT Crosslinks and OCW
    • MITx and Related OCW Courses
    Beyond OCW
    • MIT+K12 Videos
    • Teaching Excellence at MIT
    • Outreach @ MIT
    • Open Education Consortium
Advanced
Search

Home » Courses » Mathematics » Multivariable Calculus » 4. Triple Integrals and Surface Integrals in 3-Space » Exam 4

Exam 4

  • Course Home
  • Syllabus
  • Expand Menu 1. Vectors and Matrices
    • Part A: Vectors, Determinants and Planes
    • Part B: Matrices and Systems of Equations
    • Part C: Parametric Equations for Curves
    • Exam 1
  • Expand Menu 2. Partial Derivatives
    • Part A: Functions of Two Variables, Tangent Approximation and Opt
    • Part B: Chain Rule, Gradient and Directional Derivatives
    • Part C: Lagrange Multipliers and Constrained Differentials
    • Exam 2
  • Expand Menu 3. Double Integrals and Line Integrals in the Plane
    • Part A: Double Integrals
    • Part B: Vector Fields and Line Integrals
    • Part C: Green's Theorem
    • Exam 3
  • Collapse Menu 4. Triple Integrals and Surface Integrals in 3-Space
    • Part A: Triple Integrals
    • Part B: Flux and the Divergence Theorem
    • Part C: Line Integrals and Stokes' Theorem
    • Exam 4
    • Physics Applications
  • Expand Menu Final Exam
    • Practice Final Exam
    • Review
    • Final Exam

OCW Scholar

« Previous | Next »

» Practice Exam
» Exam

 

« Previous | Next »

Find Courses
  • Find by Topic
  • Find by Course Number
  • Find by Department
  • Instructional Approach
  • Teaching Materials
  • Audio/Video Courses
  • Courses with Subtitles
  • Online Textbooks
  • New Courses
  • Most Visited Courses
  • OCW Scholar Courses
  • This Course at MIT
  • Supplemental Resources
  • Translated Courses
  • View All Courses
About
  • About OpenCourseWare
  • Site Statistics
  • OCW Stories
  • News
  • Press Releases
Tools
  • Help & FAQs
  • Contact Us
  • Advanced Search
  • Site Map
  • Privacy & Terms of Use
  • RSS Feeds
Donate
  • Make a Donation
  • Why Donate?
  • Our Supporters
  • Other Ways to Contribute
  • Shop OCW
  • Become a Corporate Sponsor
Featured Sites
  • Highlights for High School
  • OCW Educator
  • MIT Crosslinks and OCW
  • MITx and Related OCW Courses
  • MIT+K12 Videos
  • Teaching Excellence at MIT
  • Outreach@MIT
  • Open Education Consortium
Our Corporate Supporters

Support for MIT OpenCourseWare's 15th anniversary is provided by SapientNitro

About MIT OpenCourseWare

OCW is a free and open publication of material from thousands of MIT courses, covering the entire MIT curriculum. Learn more »

Massachusetts Institute of Technology MIT Office of Digital Learning Open Education Consortium Creative Commons

© 2001–2015
Massachusetts Institute of Technology

Your use of the MIT OpenCourseWare site and materials is subject to our Creative Commons License and other terms of use.