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1.C  Applications of the Second Law
[VN-Chapter 6; VWB&S-8.1, 8.2, 8.5, 8.6, 8.7, 8.8, 9.6]

1.C.1  Limitations on the Work that Can be Supplied by a Heat Engine
The second law enables us to make powerful and general statements
concerning the maximum work that can be
derived from any heat engine which operates in
a cycle.  To illustrate these ideas, we use a
Carnot cycle which is shown schematically at
the right. The engine operates between two heat
reservoirs, exchanging heat
QH  with the high temperature reservoir at TH

and QL with the reservoir at TL..  The entropy
changes of the two reservoirs are:
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The same heat exchanges apply to the system, but with opposite signs; the heat received from the
high temperature source is positive, and conversely.  Denoting the heat transferred to the engines
by subscript “e”,

Q Q Q QHe H Le L= − = − ;   .

The total entropy change during any operation of the engine is,
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For a cyclic process, the third of these ∆Se( ) is zero, and thus (remembering that QH < 0 ),
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For the engine we can write the first law as

∆U Q Q We He Le e= = + −0 (cyclic process) .

Or,
 W Q Qe He Le

= +

       = − −Q QH L .

Hence, using (C.1.1)
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The work of the engine can be expressed in terms of the heat received by the engine as
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The upper limit of work that can be done occurs during a reversible cycle, for which the total
entropy change ( ∆Stotal ) is zero.  In this situation:
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Also, for a reversible cycle of the engine,
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These constraints apply to all reversible heat engines operating between fixed temperatures.  The
thermal efficiency of the engine is

η = =
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The Carnot efficiency is thus the maximum efficiency that can occur in an engine working
between two given temperatures.

We can approach this last point in another way.  The engine work is given by

W Q T S Q T Te H L
total

H L H= − − + ( )∆ /

or, T S Q Q T T WL
total

H H L H e∆ = − + ( ) −/

The total entropy change can be written in terms of the Carnot cycle efficiency and the ratio of the
work done to the heat absorbed by the engine.  The latter is the efficiency of any cycle we can
devise:

∆S
Q

T

T

T

W

Q

Q

T
total He

L

L

H

e

He

He

L
Carnot Any other

cycle

= − −












= −








1 η η  .

The second law says that the total entropy change is equal to or greater than zero.  This means that
the Carnot cycle efficiency is equal to or greater than the efficiency for any other cycle, with the
equality only occurring if ∆Stotal = 0 .
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Muddy points
So, do we lose the capability to do work when we have an irreversible process and
entropy increases? (MP 1C.1)
Why do we study cycles starting with the Carnot cycle? Is it because I is easier to work
with? (MP 1C.2)

1.C.2 The Thermodynamic Temperature Scale
The considerations of Carnot cycles in this section have not mentioned the working

medium.  They are thus not limited to an ideal gas and hold for Carnot cycles with any medium.
Because we derived the Carnot efficiency with an ideal gas as a medium, the temperature
definition used in the ideal gas equation is not essential to the thermodynamic arguments.  More
specifically, we can define a thermodynamic temperature scale that is independent of the working
medium.  To see this, consider the situation shown below in Figure C-1, which has three reversible
cycles.  There is a high temperature heat reservoir at T3  and a low temperature heat reservoir at T1.
For any two temperatures T T1 2, , the ratio of the magnitudes of the heat absorbed and rejected in a
Carnot cycle has the same value for all systems.

WA
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Q1

Q3

Q3

Q1

Q2
T2

T1

T3

Q2

WB

Figure C-1:  Arrangement of heat engines to demonstrate the thermodynamic temperature scale

We choose the cycles so Q1 is the same for A and C.  Also Q3 is the same for B and C.  For a
Carnot cycle

η = + = ( )1
Q

Q
F T TL

H
L H, ; η is only a function of temperature.

Also
Q Q F T T1 2 1 2= ( ),

Q Q F T T2 3 2 3= ( ),

Q Q F T T1 3 1 3= ( ), .

But
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We thus conclude that F T T1 2,( ) has the form f T f T1 2( ) ( )/ , and similarly

F T T f T f T2 3 2 3, /( ) = ( ) ( ).   The ratio of the heat exchanged is therefore
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so that the ratio of the heat exchanged is a function of the temperature.  We could choose any
function that is monotonic, and one choice is the simplest: f T T( ) = .  This is the thermodynamic
scale of temperature, Q Q T TH L H L= . The temperature defined in this manner is the same as that
for the ideal gas; the thermodynamic temperature scale and the ideal gas scale are equivalent

1.C.3 Representation of Thermodynamic Processes in T-s coordinates.
It is often useful to plot the thermodynamic state transitions and the cycles in terms of

temperature (or enthalpy) and entropy, T,S, rather than P,V.   The maximum temperature is often
the constraint on the process and the enthalpy changes show the work done or heat received
directly, so that plotting in terms of these variables provides insight into the process.  A Carnot
cycle is shown below in these coordinates, in which it is a rectangle, with two horizontal, constant
temperature legs.  The other two legs are reversible and adiabatic, hence isentropic
( dS dQ Trev= /  = 0), and therefore vertical in T-s coordinates.

T

TH

TL

Isothermal

Adiabatic

s

Carnot cycle in T,s coordinates

If the cycle is traversed clockwise, the heat added is

a

c

b

d
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Heat added: Q TdS T S S T SH a
b

H b a H= ∫ = −( ) = ∆ .

The heat rejected (from c to d) has magnitude Q T SL L= ∆ .
The work done by the cycle can be found using the first law for a reversible process:

dU dQ dW= − .
      = −TdS dW    (This form is only true for a reversible process).

We can integrate this last expression around the closed path traced out by the cycle:

dU TdS dW= − ∫∫∫

However dU is an exact differential and its integral around a closed contour is zero:

0 = − ∫∫ TdS dW .

The work done by the cycle, which is represented by the term dW∫ , is equal to Tds∫ , the area
enclosed by the closed contour in the T-S plane.  This area represents the difference between the
heat absorbed ( TdS∫  at the high temperature) and the heat rejected ( TdS∫  at the low temperature).
Finding the work done through evaluation of TdS∫ is an alternative to computation of the work in a
reversible cycle from PdV∫ .  Finally, although we have carried out the discussion in terms of the
entropy, S, all of the arguments carry over to the specific entropy, s; the work of the reversible
cycle per unit mass is given by Tds.∫

Muddy points
How does one interpret h-s diagrams? (MP 1C.3)
Is it always OK to "switch" T-s and h-s diagram? (MP 1C.4)
What is the best way to become comfortable with T-s diagrams? (MP 1C.5)
What is a reversible adiabat physically? (MP 1C.6)

1.C.4 Brayton Cycle in T-s Coordinates
The Brayton cycle has two reversible adiabatic (i.e., isentropic) legs and two reversible,

constant pressure heat exchange legs.  The former are vertical, but we need to define the shape of
the latter.  For an ideal gas, changes in specific enthalpy are related to changes in temperature by
dh c dTp= , so the shape of the cycle in an h-s plane is the same as in a T-s plane, with a scale

factor of cp  between the two.  This suggests that a place to start is with the combined first and

second law, which relates changes in enthalpy, entropy, and pressure:

dh Tds
dp

= +
ρ

.

On constant pressure curves dP=0 and dh Tds= .  The quantity desired is the derivative of
temperature, T, with respect to entropy, s, at constant pressure: ∂ ∂T s

p( ) .  From the combined first

and second law, and the relation between dh and dT, this is
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∂
∂
T

s

T

cp p







 = (C.4.1)

The derivative is the slope of the constant pressure legs of the Brayton cycle on a T-s plane.  For a
given ideal gas (specific cp) the slope is positive and increases as T.

We can also plot the Brayton cycle in an h-s plane.  This has advantages because changes
in enthalpy directly show the work of the compressor and turbine and the heat added and rejected.
The slope of the constant pressure legs in the h-s plane is ∂ ∂h s T

p( ) = .

Note that the similarity in the shapes of the cycles in T-s and h-s planes is true for ideal
gases only. As we will see when we examine two-phase cycles, the shapes look quite different in
these two planes when the medium is not an ideal gas.

Plotting the cycle in T-s coordinates also allows another way to address the evaluation of
the Brayton cycle efficiency which gives insight into the relations between Carnot cycle efficiency
and efficiency of other cycles. As shown in Figure C-2, we can break up the Brayton cycle into

many small Carnot cycles.  The " "ith Carnot cycle has an efficiency of ηci lowi highi
T T= − ( )[ ]1 ,

where the indicated lower temperature is the heat rejection temperature for that elementary cycle
and the higher temperature is the heat absorption temperature for that cycle.  The upper and lower
curves of the Brayton cycle, however, have constant pressure.  All of the elementary Carnot cycles
therefore have the same pressure ratio:

P T

P T
PR

high

low

( )
( )

= =  constant (the same for all the cycles).

From the isentropic relations for an ideal gas, we know that pressure ratio, PR, and temperature
ratio, TR, are related by : PR TRγ γ−( ) =1 / .



1C-7
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Figure C-2: Ideal Brayton cycle as composed of many elementary Carnot cycles [Kerrebrock]

The temperature ratios T Tlowi highi( )  of any elementary cycle “i” are therefore the same and each of

the elementary cycles has the same thermal efficiency.  We only need to find the temperature ratio
across any one of the cycles to find what the efficiency is.  We know that the temperature ratio of
the first elementary cycle is the ratio of compressor exit temperature to engine entry (atmospheric
for an aircraft engine) temperature, T T2 0/  in Figure C-2.  If the efficiency of all the elementary
cycles has this value, the efficiency of the overall Brayton cycle (which is composed of the
elementary cycles) must also have this value.  Thus, as previously,

ηBrayton
inlet

compressor exit

T

T
= −









1

 

.

A benefit of this view of efficiency is that it allows us a way to comment on the efficiency
of any thermodynamic cycle.  Consider the cycle shown on the right, which operates between
some maximum and minimum
temperatures.  We can break it up into small Carnot cycles
and evaluate the efficiency of each.  It can be seen that the
efficiency of any of the small cycles drawn will be less than the
efficiency of a Carnot cycle between Tmax  and Tmin . This
graphical argument shows that the efficiency of any other
thermodynamic cycle operating between these maximum and
minimum temperatures has an efficiency less than that of a
Carnot cycle.

Muddy points
If there is an ideal efficiency for all cycles, is there a maximum work or maximum power
for all cycles? (MP 1C.7)

Arbitrary cycle operating
between T Tmin, max

C. Gouldstone
Figure C-2 available from:
Kerrebrock, Aircraft Engines and Gas Turbines, 2nd Ed. MIT Press.  Figure 1.3, p.8.
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1.C.5 Irreversibility, Entropy Changes, and “Lost Work”
Consider a system in contact with a heat reservoir during a reversible process.  If there is

heat Q absorbed by the reservoir at temperature T, the change in entropy of the reservoir is
∆S Q T= / . In general, reversible processes are accompanied by heat exchanges that occur at
different temperatures.  To analyze these, we can visualize a sequence of heat reservoirs at
different temperatures so that during any infinitesimal portion of the cycle there will not be any
heat transferred over a finite temperature difference.

During any infinitesimal portion, heat dQrev  will be transferred between the system and one of the
reservoirs which is at T.  If dQrev  is absorbed by the system, the entropy change of the system is

dS
dQ

T
system rev= .

The entropy change of the reservoir is

dS
dQ

T
reservoir rev= − .

The total entropy change of system plus surroundings is

dS dS dStotal system reservoir= + = 0 .

This is also true if there is a quantity of heat rejected by the system.

The conclusion is that for a reversible process, no change occurs in the total entropy produced, i.e.,
the entropy of the system plus the entropy of the surroundings: ∆Stotal = 0.

We now carry out the same type of analysis for an irreversible process, which takes the system
between the same specified states as in the reversible process. This is shown schematically
at the right, with I and R denoting the irreversible and reversible processes.
In the irreversible process, the system receives heat dQ and does work dW.
The change in internal energy for the irreversible process is

dU dQ dW= −   (Always true - first law).

For the reversible process

dU TdS dWrev= − .

Because the state change is the same in the two processes
(we specified that it was), the change in internal energy is the
same. Equating the changes in internal energy in the above two expressions yields

dQ dW TdS dWactual actual rev− = − .

Irreversible and reversible
state changes
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The subscript “actual” refers to the actual process (which is irreversible).  The entropy change
associated with the state change is

dS
dQ

T T
dW dWactual

rev actual= + −[ ]1
. (C.5.1)

If the process is not reversible, we obtain less work (see IAW notes) than in a reversible process,
dW dWactual rev< , so that for the irreversible process,

dS
dQ

T
actual> .  (C.5.2)

There is no equality between the entropy change dS and the quantity dQ/T for an irreversible
process.  The equality is only applicable for a reversible process.

The change in entropy for any process that leads to a transformation between an initial state “a”
and a final state “b” is therefore

∆S S S
dQ

Tb a
actual

a
b= − ≥ ∫

where dQactual  is the heat exchanged in the actual process.  The equality only applies to a
reversible process.

The difference dW dWrev actual−  represents work we could have obtained, but did not.  It is referred
to as lost work and denoted by Wlost .  In terms of this quantity we can write,

dS
dQ

T

dW

T
actual lost= + . (C.5.3)

The content of Equation (C.5.3) is that the entropy of a system can be altered in two ways: (i)
through heat exchange and (ii) through irreversibilities. The lost work ( dWlost  in Equation C.5.3) is
always greater than zero, so the only way to decrease the entropy of a system is through heat
transfer.

To apply the second law we consider the total entropy change (system plus surroundings).  If the
surroundings are a reservoir at temperature T, with which the system exchanges heat,

dS dS
dQ

T
reservoir surroundings actual =( ) = − .

The total entropy change is

dS dS dS
dQ

T

dW

T

dQ

T
total system surroundings actual lost actual= + = +





−
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dS
dW

T
total lost= ≥ 0 .

The quantity ( dW Tlost / ) is the entropy generated due to irreversibility.

Yet another way to state the distinction we are making is

dS dS dS dS dSsystem
from
heat
transfer

generated due to
irreversible
processes

heat transfer Gen= + = +   . (C.5.4)

The lost work is also called dissipation and noted dφ. Using this notation, the infinitesimal entropy
change of the system becomes:

dS dS
d
T

system
heat transfer= +

φ

or    TdS dQ dsystem
r= + φ

Equation (C.5.4) can also be written as a rate equation,

dS

dt
S S Sheat transfer Gen= = +˙ ˙ ˙

 . (C.5.5)

Either of equation (C.5.4) or (C.5.5) can be interpreted to mean that the entropy of
the system, S, is affected by two factors: the flow of heat Q and the appearance of
additional entropy, denoted by dSGen, due to irreversibility1.  This additional entropy is
zero when the process is reversible and always positive when the process is irreversible.
Thus, one can say that the system develops sources which create entropy during an
irreversible process.  The second law asserts that sinks of entropy are impossible in
nature, which is a more graphic way of saying that dSGen and ṠGen  are positive definite,

or zero, for reversible processes.

The term ˙ ,
˙

S
T

dQ

dt

Q

Theat transfer   or =










1
, which is associated with heat transfer to

the system, can be interpreted as a flux of entropy.  The boundary is crossed by heat and
the ratio of this heat flux to temperature can be defined as a flux of entropy.  There are no
restrictions on the sign of this quantity, and we can say that this flux either contributes
towards, or drains away, the system's entropy.  During a reversible process, only this flux
can affect the entropy of the system.  This terminology suggests that we interpret entropy
as a kind of weightless fluid, whose quantity is conserved (like that of matter) during a
reversible process.  During an irreversible process, however, this fluid is not conserved; it
cannot disappear, but rather is created by sources throughout the system.  While this
interpretation should not be taken too literally, it provides an easy mode of expression
and is in the same category of concepts such as those associated with the phrases "flux of
                                                  
1 This and the following paragraph are excerpted with minor modifications from A Course in
Thermodynamics, Volume I, by J. Kestin, Hemisphere Press (1979)
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energy" or "sources of heat".  In fluid mechanics, for example, this graphic language is
very effective and there should be no objections to copying it in thermodynamics.

Muddy points
Do we ever see an absolute variable for entropy? So far, we have worked with
deltas only (MP 1C.8)

I am confused as to dS
dQrev

T
=  as opposed to dS

dQrev

T
≥ .(MP 1C.9)

 For irreversible processes, how can we calculate dS if not equal to 
dQ

T
(MP

1C.10)

1.C.6 Entropy and Unavailable Energy (Lost Work by Another Name)
Consider a system consisting of a heat reservoir at T2 in surroundings (the atmosphere) at

T0 .  The surroundings are equivalent to a second reservoir at T0 .  For an amount of heat, Q,
transferred from the reservoir, the maximum work we could derive is Q times the thermal
efficiency of a Carnot cycle operated between these two temperatures:

Maximum work we could obtain = W Q T Tmax /= −( )1 0 2 . (C.6.1)

Only part of the heat transferred can be turned into work, in other words only part of the heat
energy is available to be used as work.

Suppose we transferred the same amount of heat from the reservoir directly to another reservoir at
a temperature T T1 2< . The maximum work available from the quantity of heat, Q , before the
transfer to the reservoir at T1 is,

W Q T T
T T
max

,
/

2 0
0 21= −( );   [Maximum work between T T2 0, ].

The maximum amount of work available after the transfer to the reservoir at T1 is,
W Q T T

T T
max

,
/

1 0
0 11= −( );   [Maximum work between T T1 0, ].

There is an amount of energy that could have been converted to work prior to the irreversible heat
transfer process of magnitude ′E ,

′ = −

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
 − −
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









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


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
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
E Q
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
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1 2

.
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However, Q T/ 1 is the entropy gain of the reservoir at T1 and (-Q T/ 2) is the entropy decrease of the
reservoir at T2 .  The amount of energy, ′E , that could have been converted to work (but now
cannot be) can therefore be written in terms of entropy changes and the temperature of the
surroundings as

′ = +










=

E T S S

T S

reservoir
at T

reservoir
at T

irreversible heat transfer process

0
1 2

0

∆ ∆

∆

  

       

        ′E     = “Lost work”, or energy which is no longer available as work.

The situation just described is a special case of an important principle concerning entropy changes,
irreversibility and the loss of capability to do work.  We thus now develop it in a more general
fashion, considering an arbitrary system undergoing an irreversible state change, which transfers
heat to the surroundings (for example the atmosphere), which can be assumed to be at constant
temperature, T0 .  The change in internal energy of the system during the state change is
∆U Q W= − .  The change in entropy of the surroundings is (with Q the heat transfer to the system)

∆S
Q

T
surroundings = −

0

 .

Now consider restoring the system to the initial state by a reversible process.  To do this we need
to do work, Wrev  on the system and extract from the system a quantity of heat Qrev .  (We did this,
for example, in “undoing” the free expansion process.)  The change in internal energy is (with the
quantities Qrev  and Wrev  both regarded, in this example, as positive for work done by the
surroundings and heat given to the surroundings)2

∆U Q Wrev rev rev= − + .

In this reversible process, the entropy of the surroundings is changed by

∆S
Q

T
surroundings rev= .

For the combined changes (the irreversible state change and the reversible state change back to the
initial state), the energy change is zero because the energy is a function of state,

∆ ∆U U Q W Q Wrev rev rev+ = = − + − +( )0 .

Thus,
Q Q W Wrev rev− = − .

                                                  
2 In the above equation, and in the arguments that  follow,  the quantities Qrev  and Wrev  are both regarded

as positive for work done by the surroundings and heat given to the surroundings.  Although this is not in
accord with the convention we have been using, it seems to me, after writing the notes in both ways, that
doing this gives easier access to the ideas.  I would be interested in your comments on whether this
perception is correct.
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For the system, the overall entropy change for the combined process is zero, because the entropy is
a function of state,

∆ ∆ ∆S S Ssystem combined process irreversible process reversible process;    = + = 0.

The total entropy change is thus only reflected in the entropy change of the surroundings:

∆ ∆S Stotal
surroundings= .

The surroundings can be considered a constant temperature heat reservoir and their entropy change
is given by

∆S
Q Q

T
total rev=

−( )
0

.

We also know that the total entropy change, for system plus surroundings is,
                    0

∆ ∆ ∆S S Stotal
irreversible
process

reversible
process system surroundings

= +










+

The total entropy change is associated only with the irreversible process and is related to the work
in the two processes by

∆S
W W

T
total rev=

−( )
0

.

The quantity W Wrev −   represents the extra work required to restore the system to the original
state.  If the process were reversible, we would not have needed any extra work to do this.  It
represents a quantity of work that is now unavailable because of the irreversibility. The quantity
Wrev  can also be interpreted as the work that the system would have done if the original process
were reversible.  From either of these perspectives we can identify ( W Wrev −  ) as the quantity we
denoted previously as ′E , representing lost work.  The lost work in any irreversible process can
therefore be related to the total entropy change (system plus surroundings) and the temperature of
the surroundings by

Lost work = W W T Srev
total− = 0∆ .

To summarize the results of the above arguments for processes where heat can be exchanged with
the surroundings at T0 :

1) W Wrev −  represents the difference between work we actually obtained and work that
would be done during a reversible state change.  It is the extra work that would be needed to
restore the system to its initial state.
2) For a reversible process, W W Srev

total= =;   ∆ 0
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1 2

c1
P1
T1

c2
P2
T2

3) For an irreversible process, W W Srev
total> >  ;  ∆ 0

4) W W E T Srev
total−( ) = ′ = 0∆  is the energy that becomes unavailable for work during an

irreversible process.

Muddy points
Is ∆S path dependent? (MP 1C.11)
Are Q rev and Wrev the Q and W going from the final state back to the initial state?
(MP 1C.12)

1.C.7 Examples of Lost Work in Engineering Processes

a) Lost work in Adiabatic Throttling: Entropy and Stagnation Pressure Changes
A process we have encountered before is adiabatic throttling of a gas, by a valve or other

device as shown in the figure at the right.  The
velocity is denoted by c.  There is no shaft
work and no heat transfer and the flow is
steady.  Under these conditions we can use the
first law for a control volume (the Steady Flow
Energy Equation) to make a statement about the
conditions upstream and downstream of the valve:

h c h c ht1 1
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where ht  is the stagnation enthalpy, corresponding to
a (possibly fictitious) state with zero velocity.
The stagnation enthalpy is the same at stations 1 and 2 if Q=W=0, even if the flow processes are
not reversible.

For an ideal gas with constant specific heats, h c T h c Tp t p t= = and .  The relation between the static

and stagnation temperatures is:
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where a is the speed of sound and M is the Mach number, M = c/a.  In deriving this result, use has
only been made of the first law, the equation of state, the speed of sound, and the definition of the
Mach number.  Nothing has yet been specified about whether the process of stagnating the fluid is
reversible or irreversible.

When we define the stagnation pressure, however, we do it with respect to isentropic
deceleration to the zero velocity state.  For an isentropic process

Adiabatic throttling
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The relation between static and stagnation pressures is
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The stagnation state is defined by P Tt t, . In addition, s sstagnation state static state  = .  The static and

stagnation states are shown below in T-s coordinates.
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Figure C-1: Static and stagnation pressures and temperatures

Stagnation pressure is a key variable in propulsion and power systems.  To see why, we
examine the relation between stagnation pressure, stagnation temperature, and entropy.  The form
of the combined first and second law that uses enthalpy is

Tds dh dP= −
1

ρ
. (C.7.1)

This holds for small changes between any thermodynamic states and we can apply it to a situation
in which we consider differences between stagnation states,
say one state having properties T Pt t,( )
and the other having properties  T dT P dPt t t t+ +( ),  (see at

right).  The corresponding static states are
also indicated.  Because the entropy is the same at static and
stagnation conditions, ds needs no subscript.  Writing (1.C.8)
in terms of stagnation

conditions yields ds
c dT
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Both sides of the above are perfect differentials and can be
integrated as
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For a process with Q = W = 0, the stagnation enthalpy, and hence the stagnation temperature, is
constant.  In this situation, the stagnation pressure is related directly to the entropy as,
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The figure on the right shows this relation on a T-s diagram.
We have seen that the entropy is related to the loss, or
irreversibility.  The stagnation pressure plays the role of an
indicator of loss if the stagnation temperature is constant.
The utility is that it is the stagnation pressure (and
temperature) which are directly measured, not the entropy.
The throttling process is a representation of flow through
inlets, nozzles, stationary turbomachinery blades, and the use
of stagnation pressure as a measure of loss is a practice that has widespread application.
Eq. (C.7.2) can be put in several useful approximate forms.  First, we note that for aerospace
applications we are (hopefully!) concerned with low loss devices, so that the stagnation pressure

change is small compared to the inlet level of stagnation pressure ∆P P P P Pt t t t t/ /
1 1 2 1 1= −( ) << .

Expanding the logarithm [using ln (1-x) ≅  -x + ….],
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Another useful form is obtained by dividing both sides by c2/2 and taking the limiting forms of
the expression for stagnation pressure in the limit of low Mach number (M<<1). Doing this, we
find:
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The quantity on the right can be interpreted as the change in the “Bernoulli constant” for
incompressible (low Mach number) flow.  The quantity on the left is a non-dimensional entropy
change parameter, with the term T ∆s  now representing the loss of mechanical energy associated
with the change in stagnation pressure.

To summarize:
1) for many applications the stagnation temperature is constant and the change in stagnation

pressure is a direct measure of the entropy increase
2) stagnation pressure is the quantity that is actually measured so that linking it to entropy (which

is not measured) is useful
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3) we can regard the throttling process as a “free expansion” at constant temperature Tt1
 from the

initial stagnation pressure to the final stagnation pressure.  We thus know that, for the process,
the work we need to do to bring the gas back to the initial state is T st ∆  , which is the ”lost
work” per unit mass.

Muddy points
Why do we find stagnation enthalpy if the velocity never equals zero in the flow?
(MP 1C.13)
Why does Tt remain constant for throttling? (MP 1C.14)

b) Adiabatic Efficiency of a Propulsion System Component (Turbine)
A schematic of a turbine and the accompanying thermodynamic diagram are given in

Figure C-2.  There is a pressure and temperature drop through the turbine and it produces work.
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Figure C-2: Schematic of turbine and associated thermodynamic representation in h-s coordinates

There is no heat transfer so the expressions that describe the overall shaft work and the shaft work
per unit mass are:
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(C.7.3)

If the difference in the kinetic energy at inlet and outlet can be neglected, Equation (C.7.3) reduces
to

h h wshaft2 1−( ) = .

The adiabatic efficiency of the turbine is defined as

ηad =
( )











actual work

ideal work s = 0
For a given pressure ratio

∆
.

The performance of the turbine can be represented in an h-s plane (similar to a T-s plane for an
ideal gas) as shown in Figure C-2.  From the figure the adiabatic efficiency is
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Isothermal expansion with friction

The adiabatic efficiency can therefore be written as
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The non-dimensional term ( ∆h /Ideal work) represents the departure from isentropic (reversible)
processes and hence a loss.  The quantity ∆h is the enthalpy difference for two states along a
constant pressure line (see diagram).  From the combined first and second laws, for a constant
pressure process, small changes in enthalpy are related to the entropy change by Tds dh= . , or
approximately,

T s h2∆ ∆= .

The adiabatic efficiency can thus be approximated as
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The quantity T s∆  represents a useful figure of merit for fluid machinery inefficiency due to
irreversibility.

Muddy points
How do you tell the difference between shaft work/power and flow work in a
turbine, both conceptually and mathematically? (MP 1C.15)

c) Isothermal Expansion with Friction
In a more general look at

the isothermal expansion, we now
drop the restriction to frictionless
processes.  As seen in the diagram
at the right, work is done to
overcome friction.  If the kinetic
energy of the piston is negligible, a
balance of forces tells us that

W W Wsystem
on piston

done by
friction

received
 

 = + .

During the expansion, the piston and the walls of the container will heat up because of the friction.
The heat will be (eventually) transferred to the atmosphere; all frictional work ends up as heat
transferred to the surrounding atmosphere.

W Qfriction friction=
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The amount of heat transferred to the atmosphere due to the frictional work only is thus,
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.

The entropy change of the atmosphere (considered as a heat reservoir) due to the frictional work is
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The difference between the work that the system did (the work we could have received if there
were no friction) and the work that we actually received can be put in a (by now familiar) form as

W W T Ssystem received atm atm− = ∆ = Lost or unavailable work

Muddy points
Is the entropy change in the equations two lines above the total entropy change?
If so, why does it say ∆Satm? (MP 1C.16)

d) Entropy Generation, Irreversibility, and Cycle Efficiency
As another example, we show the links between entropy changes and cycle efficiency for an
irreversible cycle.  The conditions are:
i) A source of heat at temperature, T
ii) A sink of heat (rejection of heat) at T0

iii) An engine operating in a cycle irreversibly
During the cycle the engine extracts heat Q, rejects
heat Q0  and produces work,W:

W Q Q= − 0 .
∆ ∆ ∆S S Sengine surroundings= + .

The engine operates in a cycle and the entropy
change for the complete cycle is zero.
Therefore,
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The total entropy change is,
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Suppose we had an ideal reversible engine working between these same two temperatures, which
extracted the same amount of heat, Q, from the high temperature reservoir, and rejected heat of
magnitude Q

rev0  to the low temperature reservoir.  The work done by this reversible engine is

W Q Qrev rev
= − 0 .

For the reversible engine the total entropy change over a cycle is
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Combining the expressions for work and for the entropy changes,

Q Q W Wrev rev0 0= + −

The entropy change for the irreversible cycle can therefore be written as
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The difference in work that the two cycles produce is equal to the entropy that is generated during
the cycle:

T S W Wtotal
rev0∆ = − .

The second law states that the total entropy generated is greater than zero for an irreversible
process, so that the reversible work is greater than the actual work of the irreversible cycle.

An “engine effectiveness”, Eengine , can be defined as the ratio of the actual work obtained divided

by the work that would have been delivered by a reversible engine operating between the two
temperatures T T and 0 .
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The departure from a reversible process is directly reflected in the entropy change and the decrease
in engine effectiveness.
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Muddy points
Why does ∆Sirrev=∆Stotal in this example? (MP 1C.17)
In discussing the terms "closed system" and "isolated system", can you assume
that you are discussing a cycle or not? (MP 1C.18)
Does a cycle process have to have ∆S=0? (MP 1C.19)
In a real heat engine, with friction and losses, why is ∆S still 0 if TdS=dQ+dφ?
(MP 1C.20)

e)  Propulsive Power and Entropy Flux
The final example in this section combines a number of ideas presented in this subject and

in Unified in the development of a relation between entropy generation and power needed to
propel a vehicle.  Figure C-3 shows an aerodynamic shape (airfoil) moving through the atmosphere
at a constant velocity.  A coordinate system fixed to the vehicle has been adopted so that we see
the airfoil as fixed and the air far away from the airfoil moving at a velocity c0 .  Streamlines of the
flow have been sketched, as has the velocity distribution at station “0” far upstream and station “d”
far downstream.  The airfoil has a wake, which mixes with the surrounding air and grows in the

A0

Streamlines (control surface)
Actual wake profile

Wake

A2

A1

∆c

c0

Figure C-3:  Airfoil with wake and control volume for analysis of propulsive power requirement

downstream direction.  The extent of the wake is also indicated.  Because of the lower velocity in
the wake the area between the stream surfaces is larger downstream than upstream.

We use a control volume description and take the control surface to be defined by the two stream
surfaces and two planes at station 0 and station d.  This is useful in simplifying the analysis
because there is no flow across the stream surfaces.  The area of the downstream plane control
surface is broken into A1, which is area outside the wake and A2 , which is the area occupied by
wake fluid, i.e., fluid that has suffered viscous losses.  The control surface is also taken far enough
away from the vehicle so that the static pressure can be considered uniform.  For fluid which is not
in the wake (no viscous forces), the momentum equation is  cdc dP= − / ρ .  Uniform static pressure
therefore implies uniform velocity, so that on A1 the velocity is equal to the upstream value, c0 .
The downstream velocity profile is actually continuous, as indicated.  It is  approximated in the
analysis as a step change to make the algebra a bit simpler.  (The conclusions apply to the more
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general velocity profile as well and we would just need to use integrals  over the wake instead of
the algebraic expressions below.)

The equation expressing mass conservation for the control volume is

ρ ρ ρ0 0 0 0 1 0 2 2 2A c A c A c= + . (C.7.5)

The vertical face of the control surface is far downstream of the body.  By this station, the wake
fluid has had much time to mix and the velocity in the wake is close to the free stream value, c0 .
We can thus write,

                     wake velocity = = −( )c c c2 0 ∆ ;   ∆c c/ .0 1<< (C.7.6)

(We chose our control surface so the condition ∆c c/ 0 1<<  was upheld.)

The integral momentum equation (control volume form of the momentum equation) can be
used to find the drag on the vehicle.

ρ ρ ρ0 0 0
2

0 1 0
2

2 2 2
2A c Drag A c A c= − + + . (C.7.7)

There is no pressure contribution in Eq. (C.7.7) because the static pressure on the control surface is
uniform.  Using the form given for the wake velocity, and expanding the terms in the momentum
equation out we obtain,

 ρ ρ ρ0 0 0
2

0 1 0
2

2 2 0
2

0 2
22A c Drag A c A c c c c= − + + − + ( )[ ]∆ (C.7.8)

The last term in the right hand side of the momentum equation, ρ2 2
2A c∆( ) , is small by virtue of

the choice of control surface and we can neglect it.   Doing this and grouping the terms on the right
hand side of Eq. (C.7.8) in a different manner, we have

c A c c A c A c c Drag A c c0 0 1 0 0 0 1 0 2 2 0 2 2 0ρ ρ ρ ρ[ ] = + −( )[ ] + − −{ }∆ ∆

The terms in the square brackets on both sides of this equation are the continuity equation
multiplied by c0 .  They thus sum to zero leaving the curly bracketed terms as

Drag A c c= −ρ2 2 0∆ . (C.7.9)

The wake mass flow is ρ2 A2 c2 = ρ2 A2 (c0 − ∆ c).  All this flow has a velocity defect (compared to
the free stream) of ∆c , so that the defect in flux of momentum (the mass flow in the wake times
the velocity defect) is, to first order in ∆c ,

Momentum defect in wake = −ρ2 2 0A c c∆ , = Drag.
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The combined first and second law gives us a means of relating the entropy and velocity:

Tds dh dP= − / ρ .

The pressure is uniform (dP=0) at the downstream station.  There is no net shaft work or heat
transfer to the wake so that the mass flux of stagnation enthalpy is constant.  We can also
approximate that the condition of constant stagnation enthalpy holds locally on all streamlines.
Applying both of these to the combined first and second law yields

Tds dh cdct= − .

For the present situation, dh cdc c ct = 0 0;  = ∆  , so that

T s c c0 0∆ ∆= − (C.7.10)

In Equation (C.7.10) the upstream temperature is used because differences between wake
quantities and upstream quantities are small at the downstream control station.  The entropy can be
related to the drag as

Drag = ρ2 2 0A T s∆ (C.7.11)

The quantity ρ2 2 0A c s∆  is the entropy flux (mass flux times the entropy increase per unit mass; in
the general case we would express this by an integral over the locally varying wake velocity and
density).

The power needed to propel the vehicle is the product of drag x flight speed, Drag co× .
From Eq. (C.7.11), this can be related to the entropy flux in the wake to yield a compact
expression for the propulsive power needed in terms of the wake entropy flux:

Propulsive power needed = T A c s T Entropy flux in wake0 2 2 0 0ρ ∆( ) = ×    (C.7.12)

This amount of work is dissipated per unit time in connection with sustaining the vehicle motion.
Equation (C.7.12) is another demonstration of the relation between lost work and entropy
generation, in this case manifested as power that needs to be supplied because of dissipation in the
wake.

Muddy points
Is it safe to say that entropy is the tendency for a system to go into disorder? (MP 1C.21)

1.C.8  Some Overall Comments on Entropy, Reversible and Irreversible Processess
[Mainly excerpted (with some alterations) from: Engineering Thermodynamics, William
C. Reynolds and Henry C. Perkins, McGraw-Hill Book Company, 1977]



Muddy points
Isn't it possible for the mixing of two gases to go from the final state to the initial
state? If you have two gases in a box, they should eventually separate by density,
right? (MP 1C.22)

C. Gouldstone



Muddiest Points on Part 1C

1C.1 So, do we lose the capability to do work when we have an irreversible process and
entropy increases?

Absolutely. We will see this in a more general fashion very soon.  The idea of lost work
is one way to view what “entropy is all about”!

1C.2 Why do we study cycles starting with the Carnot cycle? Is it because it is easier to
work with?

Carnot cycles are the best we can do in terms of efficiency. We use the Carnot cycle as a
standard against which all other cycles are compared. We will see in class that we can
break down a general cycle into many small Carnot cycles. Doing this we can gain
insight in which direction the design of efficient cycles should go.

1C.3 How does one interpret h-s diagrams?

I find h-s diagrams useful, especially in dealing with propulsion systems, because the
difference in stagnation h can be related (from the Steady Flow Energy Equation) to shaft
work and heat input.  For processes that just have shaft work (compressors or turbines)
the change in stagnation enthalpy is the shaft work.  For processes that just have heat
addition or rejection at constant pressure, the change in stagnation enthalpy is the heat
addition or rejection.

1C.4 Is it always OK to "switch" T-s and h-s diagram?

No! This is only permissible for perfect gases with constant specific heats.  We will see,
when we examine cycles with liquid-vapor mixtures, that the h-s diagrams and the T-s
diagrams look different.

1C.5 What is the best way to become comfortable with T-s diagrams?

I think working with these diagrams may be the most useful way to achieve this
objective.  In doing this, the utility of using these coordinates (or h-s coordinates) should
also become clearer.  I find that I am more comfortable with T-s or h-s diagrams than
with P-v diagrams, especially the latter because it conveys several aspects of interest to
propulsion engineers: work produced or absorbed, heat produced or absorbed, and loss.

1C.6 What is a reversible adiabat physically?

Let's pick an example process involving a chamber filled with a compressible gas and a
piston. We assume that the chamber is insulated (so no heat-transfer to or from the
chamber) and the process is thus adiabatic. Let us also assume that the piston is ideal,
such that there is no friction between the walls of the chamber and the piston. The gas is



at some Temperature T1. We now push the piston in and compress the gas. The internal
energy of the system will then increase by the amount of work we put in and the gas will
heat up and be at higher pressure. If we now let the piston expand again, it will return to
its original position (no friction, ideal piston) and the work we took from the environment
will be returned (we get the exact same amount of work back and leave no mark on the
environment). Also, the temperature and the pressure of the gas return to the initial
values. We thus have an adiabatic reversible process. For both compression and
expansion we have no change in entropy of the system because there is no heat transfer
and also no irreversibility. If we now draw this process in the h-s or T-s diagram we get a
vertical line since the entropy stays constant: S = constant or ∆S = 0 and we can also call
this process an isentropic process.

1C.7 If there is an ideal efficiency for all cycles, is there a maximum work or maximum
power for all cycles?

Yes.  As with the Brayton cycle example, we could find the maximum as a function of
the appropriate design parameters.

1C.8 Do we ever see an absolute variable for entropy? So far, we have worked with
deltas only.

It is probably too strong a statement to say that for “us” the changes in entropy are what
matters, but this has been my experience for the type of problems aerospace engineers
work on. Some values of absolute entropy are given in Table A.8 in SB&VW.  We will
also see, in the lectures on Rankine cycles, that the entropy of liquid water at a
temperature of 0.01 C and a pressure of 0.6113 kPa has been specified as zero for
problems involving two-phase (steam and water) behavior.

1C.9 I am confused as to dS
dQrev

T
=  as opposed to dS

dQrev

T
≥ .

Both of these are true and both can always be used.  The first is the definition of entropy.
The second is a statement of how the entropy behaves.  Section 1C.5 attempts to make

the relationship clearer through the development of the equality dS
dQ

T

dW

T
lost= + .

1C.10 For irreversible processes, how can we calculate dS if not equal to 
dQ

T
?

We need to define a reversible process between the two states in order to calculate the
entropy (see muddy point 3, above).  See VN Chapter 5 (especially) for discussion of
entropy or section 1C.5.  If you are still in difficulty, come and see me.



1C.11 Is ∆S path dependent?

No. Entropy is a function of state (see Gibbs) and thus ∆S is path independent. For
example we could have three different paths connecting the same two states and therefore
have the same change in entropy

∆S path I = ∆S path II = ∆S path III .

1C.12 Are Q rev and Wrev the Q and W going from the final state back to the initial state?

Yes. We have an irreversible process from state 1 to state 2. We then used a reversible
process to restore the initial state 1 (we had to do work on the system and extract heat
from the system).

1C.13 Why do we find stagnation enthalpy if the velocity never equals zero in the flow?

The stagnation enthalpy (or temperature) is a useful reference quantity.  Unlike the static
temperature it does not vary along a streamline in an adiabatic flow, even if irreversible.
It was thus the natural reference temperature to use in describing the throttling process.
In addition, changes in stagnation pressure are direct representations of the shaft work or
heat associated with a fluid component. The enthalpy is not, unless we assume that
changes in KE are small.  Measurement of stagnation temperature thus allows direct
assessment of shaft work in a turbine or compressor, for example.

1C.14 Why does Tt remain constant for throttling?

Because for a steady adiabatic flow with no shaft work done the Steady Flow Energy
Equation yields constant stagnation enthalpy even though the flow processes might not be
reversible (see notes). For a perfect gas h = cpT, thus the stagnation temperature remains
constant.

1C.15 How do you tell the difference between shaft work/power and flow work in a
turbine, both conceptually and mathematically?

Let us look at the expansion of a flow through a turbine using both the control mass
approach and the control volume approach. Using the control mass approach we can
model the situation by tracking 1kg of air as follows: state 1 – before the expansion we
have 1kg of air upstream of the turbine. We then push the gas into the turbine and expand
it through the blade rows. After the expansion we take 1kg of air out of the turbine and
the mass of air is downstream of the turbine – state 2. The work done by the gas is work
done by the turbine (blades moved around by the gas) plus the work done by pressures
(flow work). Using the first law we can then write for the change of internal energy of
1kg of air:

u2 – u1 = - wshaft + p1v1 – p2v2  (adiabatic turbine: dq = 0)



When entering the turbine, the fluid has to push the surroundings out of the way to make
room for itself (it has volume v1 and is at p1) – the work to do this is +p1v1. When leaving
the turbine the fluid is giving up room and the work to keep that volume v2 at pressure p2

is freed; thus –p2v2. We can then write for the shaft work

wshaft = u1 + p1v1 – (u2 + p2v2).
The right hand side of the above equation is the change in enthalpy (h1 - h2). This is
another example to show how useful enthalpy is (enthalpy is the total energy of a fluid:
the internal energy plus the extra energy that it is credited with by having a volume v at
pressure p). The shaft work outputted by the turbine is equal to the change in enthalpy
(enthalpy contains the flow work!).

wshaft = h1 - h2.

We can also solve this problem by using the 1st law in general form (control volume
approach).

    .   .      .         .             .
    d/dt{Σ ECV} = Σ Q + Σ Wshaft + Σ Wshear + Σ Wpiston + Σ m ( h  + _ c2 + gz).

Note that in this form the flow work is buried in h already! For this turbine, we can drop
the unsteady term on the left and neglect heat fluxes (adiabatic turbine), shear work and
piston work (no pistons but blades, so we keep the shaft work). Further we assume that
changes in potential energy and kinetic energy are negligible and we obtain for 1kg/s air

0 =  - wshaft + h1 - h2.

We obtain the same result as before: wshaft = h1 - h2.

1C.16 Is the entropy change in the equations two lines above the total entropy change? If
so, why does it say ∆Satm?

The entropy change in question is the entropy change due to the heat produced by friction
only.

∆S
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T

W W

Tatm
only

friction

atm
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atm

( ) = =
−( )

due to frictional
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1C.17 Why does ∆Sirrev=∆Stotal in this example?

When we wrote this equality, we were considering a system that was returned to its
original state, so that there were no changes in any of the system properties.  All evidence
of irreversibility thus resides in the surroundings.

1C.18 In discussing the terms "closed system" and "isolated system", can you assume that
you are discussing a cycle or not?



The terms closed system and isolated system have no connection to whether we are
discussing a cycle or not.  They are attributes of a system (any system), whether
undergoing cyclic behavior, one-way transitions, or just sitting there.

1C.19 Does a cycle process have to have ∆S=0?

Entropy is a state function. If the process is cyclic, initial and final states are the same.
So, for a cyclic process, ∆S = 0 .

1C.20 In a real heat engine, with friction and losses, why is ∆S still 0 if TdS=dQ+dφ?

The change in entropy during a real cycle is zero because we are considering a complete
cycle (returning to initial state) and entropy is a function of state (holds for both ideal and
real cycles!). Thus if we integrate dS = dQ/T + dΦ/T around the real cycle we will obtain
∆Scycle = 0. What essentially happens is that all irreversibilities (dΦ's) are turned into
additional heat that is rejected to the environment. The amount of heat rejected in the real
cycle QR

real is going to be larger than the amount of heat rejected in an ideal cycle QR
ideal

QR
ideal = QA TR/TA (from ∆Scycle = 0)

QR
real = QA TR/TA + TR∆SΦ (from ∆Scycle = 0)

We will see this better using the T-s diagram. The change of entropy of the surroundings
(heat reservoirs) is ∆Ssurr = -QA/TA + QR

real/TR = ∆SΦ > 0. So ∆Scycle = 0 even for real
cycles, but ∆Stotal = ∆Scycle + ∆Ssurr = ∆SΦ > 0.

1C.21 Is it safe to say that entropy is the tendency for a system to go into disorder?

Entropy can be given this interpretation from a statistical perspective, and this provides a
different, and insightful view of this property. At the level in which we have engaged the
concept, however, we focus on the macroscopic properties of systems, and there is no
need to address the idea of order and disorder ; as we will see, entropy is connected to the
loss of our ability to do work, and that is sufficient to make it a concept of great utility for
the evaluation and design of engineering systems. We will look at this in a later lecture. If
you are interested in pursuing this, places to start might be the book by Goldstein and
Goldstein referred to above, Great Ideas in Physics by Lightman ( paperback book by an
MIT professor), or Modern Thermodynamics, by Kondepudi and Prigogine.



1C.22 Isn't it possible for the mixing of two gases to go from the final state to the initial
state? If you have two gases in a box, they should eventually separate by density,
right?

Let us assume that gas X is oxygen and gas Y is nitrogen. When the membrane breaks the
entire volume will be filled with a mixture of oxygen and nitrogen. This may be
considered as a special case of an unrestrained expansion, for each gas undergoes an
unrestrained expansion as it fills the entire volume. It is impossible for these two
uniformly mixed gases to separate without help from the surroundings or environment. A
certain amount of work is necessary to separate the gases and to bring them back into the
left and right chambers.




