
16.410-13 Recitation 9 Problems


Problem 1: A∗ Search 

Robot Navigation Consider the maze given in the following figure. Name 3 admissible heuristics for this 
problem. What would be a good admissible heuristics? 

Write down the steps that an A∗ search would go through using the best heuristic you can think of. You 
may find it convenient to write the cost-to-go values for each tile on the figure. 

Solution One admissible heuristic (that works for every problem) is to write H(n) = 0 for all nodes n. 
This heuristic is clearly admissible, since the actually cost to go is always positive, thus larger than H(n) = 0. 

A second admissible heuristic is the max distance (also known as the L∞ distance) of the node to the 
goal point, computed as follows. Denote the coordinates of the goal by g = (xg, yg ) and the coordinates of 
the node n under consideration by n = (xn, yn), then the max distance is 

D(n, g) = max{|xn − xg|, |yn − yg|}, 

where | · | is the absolute value operator. That is, the L∞ distance is the maximum travel distance in either 
direction x or direction y on the map. Clearly, the steps required the get to the goal is at least the maximum 
of travel in either direction. Thus, this heuristic is admissible. 

Finally, a third heuristic is called the Manhattan distance (also known as the taxicab distance or L1 

distance) is computed as follows 
D(n, g) = |xn − xg| + |yn − yg |. 

That is the total travel in either direction. Notice that if there are no obstacles, this heuristic is in fact exact. 
Clearly, introducing obstacles can only increase the length of the optimal path to get to the goal. Thus, this 
heuristic is also admissible. 

Below, the optimal cost to function is shown (this can be computed by using dynamic programming, e.g., 
Dijkstra’s algorithm, which we will cover later in the course): 
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65 7 98 108 7 56 4
119 45 3

The zero heuristic is given below: 

00 0 0 00 0 0
00 0

00 0 00 00 0 00 0

00 0 00 00 0 00 0
00 00 0

The L1 distance heuristic is given below: 

01 1 2 46 3 2
46 5

22 2 32 46 5 34 2

22 2 32 46 5 54 3
46 34 2

The Manhattan distance heuristic is given below: 

01 1 2 46 3 2
57 6

23 3 54 68 7 56 4

23 3 54 68 7 56 4
57 45 3

Notice that the values for all the heuristics are always smaller than or equal to the optimal cost-to-go, 
which confirms that the heuristics are all admissible. Notice also that the Manhattan distance is, in certain 
places is equal to the optimal cost-to-go. The heuristic based on the L∞ distance, on the hand, is optimal 
in much less places, and in many others far away from optimal. Finally, the zero heuristic is never equal to 
the optimal-cost-go except at the goal. 

As a rule of thumb, it is always better to design heuristics that better approximates the cost-to-go. 
However, the heuristics should also be computationally efficient. Clearly, the zero heuristic is the easiest 
one to compute. The computational cost for the other two heuristics are almost the same. Hence, we 
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should prefer the Manhattan distance heuristic over the L1 distance heuristic. We usually evaluate the 
computational cost of the heuristics using asymptotic analysis, e.g., in this case with respect to the number 
of nodes in the search graph (i.e., the number of cells). Notice that all the heuristics can be evaluated in 
constant time with respect to the number of nodes. In other words, no matter how many nodes there are on 
the network evaluating any of the three heuristics takes some constant number of operations. Thus, we can 
conclude that these heuristics have essentially the same computational cost (more formal statement would 
be that the they have the same asymptotic computational complexity with respect to the number of nodes). 
Clearly, the Manhattan distance heuristic is at least as large as the two others on any node, thus it is more 
closer to the optimal cost-to-go. Hence, in this problem we prefer to use the Manhattan distance heuristic. 

The A∗ algorithm starts from the initial node shown in red. It evaluates to cost-to-get to each neighboring 
vertex (in this case each equal to one), then it evaluates the cost-to-go, and it picks the minimum total cost 
to expand. See the figure below: 

1+6

1+8

1+6

In this case, two nodes have the same total cost, namely 7. The algorithm can proceed with any of these. 
Let us assume it goes down the top node. There is only one node to expand, which has cost-to-get equal to 
2 and cost to go equal to 6. See the figure below 

1+6

1+8

1+6

2+7

Similarly, the search is continued until all the nodes in the queue are expanded. This is left as an exercise. 
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Traveling in Romania You are tak­
ing your vacation in East Europe. You 
have just crossed the border from Hun­
gary to Romania. It turned out Romania 
is a beautiful country. 
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You have started in Arad on the Hungary border. You would like to see Bucharest. Use the Euclidean 
distance cost-to-go heuristic in answering the following questions (heuristic values are given above). 

•	 Find a path that gets you to Bucharest using the Greedy search. Draw the search tree. 

•	 Use A∗ to find an optimal that takes you to Bucharest. Draw the search tree. 

•	 Describe how you would construct a “controller” that takes you to Bucharest from anywhere in Romania 
in case you get lost somewhere. Show the execution of the Dijkstra algorithm. 

Solution This problem is taken from textbook (AIMA, second edition). The solution can be found in the 
textbook. 



Problem 2: Admissible Heuristics 
Puzzle Recall the 4-puzzle. Remember the heuristics that you have learned in 
the class. Describe the Manhattan distance heuristic. Prove that the Manhattan 
distance heuristic is an admissible heuristic. 
Now, consider the following heuristic. Two tiles tj and tk are in a linear conflict if 
tj and tk are the same line, the goal positions of tj and tk are both in that line, tj 

is to the right of tk, and goal position of tj is to the left of the goal position of tk. 
The linear conflict heuristic moves any two tiles that are in linear conflict without 
colliding them. See the figure in left. 
Is this heuristic admissible? Either prove that it is admissible, or disprove by a 
counter-example. Is this heuristic better than the Manhattan distance heuristic. 
Rubik puzzle Rubik puzzle is one of the hardest combinatorial problems to date 
(see the figure below). We would like to solve it using the A∗ algorithm. What 
would be a good admissible heuristic for this problem? 

1 3 3 1 

1 3 3 1 

1 3 3 
1 

1 3 3 
1 

1 3 3 
1 

1 3 3 1 

1 3 3 1 

Solution A configuration of the 4-puzzle is completely described by the the location of each tile, t1, t2, . . . , t15. 
Let us denote the position of a tile ti by (xi, yi) and its goal position by (Xi, Yi). Then, the Manhattan 
distance (to the goal) for this particular tile is 

Di = |Xi − xi| + |Yi − yi|, 

and the total distance is 
D = D1 + D2 + · · · + D15.

To reach the goal configuration, tile ti must travel at least a distance of Di, which could be achieved if 
there were no other tiles on the way. Since there are other tiles also, the total distance traveled by the tile ti 
while reaching its goal coordinate is at least Di. Note that this true for each tile, thus the total number of 
moves for reaching the final configuration from the initial configuration {t1, t2, . . . , t15} is at least D. This 
argument shows that the Manhattan distance heuristic is admissible in this case. 

The linear conflict heuristic is indeed admissible. Here we sketch a proof. You are highly encouraged 
to provide formal proof of this statement. The proof can be constructed based on the simple observation 
that for any two tiles, say ti and tj , the total distance that each of them need to travel to reach their goal 
positions is no larger than the linear conflict heuristic. In fact, take any two pair of tiles, ti and tj . Notice 
that the linear conflict heuristic adds at most a constant of 2 to the result of the Manhattan heuristic. We 
examine the two cases separately. First, if the linear conflict heuristic ends up returning the same value that 
the Manhattan distance heuristic, then the linear conflict heuristic is admissible since Manhattan distance 
heuristic is also admissible. Second, if the linear conflict heuristic returns a value that is larger than that 
returned by the Manhattan distance heuristic then the case shown in the figure must have occurred. In this 
case, since the two tiles can not go over one another, the steps required for both of them reach their goal 
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locations is at least the number returned by the heuristic. Indeed, the actual number of steps is potentially 
higher since there are more tiles on the way. 

Notice that the Manhattan distance heuristic is computed for each tile using information (i.e., the initial 
position) for that tile only. The linear conflict heuristic indeed considers pairs of tiles. However, computing 
the Manhattan distance heuristic takes only O(n) time, where n is the number of tiles (in this case n = 16). 
On the other hand, computing the linear conflict heuristic, since it considers all pairs of tiles, takes O(n2) 
time. Although, clearly the linear conflict heuristic is more closer to the optimal cost-to-go function, it is 
computationally more expensive. In this case, we expect the Manhattan heuristic work well in small-sized 
problems (problems with small n), whereas the linear-conflict heuristic become efficient in larger problems. 

The Manhattan heuristic can be extended easily to the Rubik puzzle. Let us represent the tile position 
by the face that the the tile is on and its four-by-four position on that face, i.e., tj = (ki, xi, yi), where 
ki ∈ {1, 2, . . . , 6} and xi, yi ∈ {1, 2, 3, 4}. Given a tile configuration in this form together with the goal 
configuration (Ki, Xi, Yi), we consider the length of the shortest path that takes this tile to its final position. 
One way to compute this distance is to consider unwrap the cube as shown in the figure and compute the 
number of moves (in the figure, the red tile is the initial position and the green tile is the final position). 

Note that the unwrapping should be done such that the extra face should be on the side that is closer to the 
initial tile, as seen in the figure. 

It is an interesting exercise is to try to extend the linear-conflict heuristic to the Rubik puzzle. Do 
you think such an extension is possible? If so, can you give an admissible heuristic heuristic based on the 
linear-conflict heuristic for the Rubik puzzle? 
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Problem 3: Collision Checking 

Recall that sampling-based motion planning algorithms require an “oracle” that checks whether or not a path 
collides with an obstacle or not. Assume that you have circle-shaped rigid body robot that moves on a plane 
(2 dimensions). The radius of the robot is R. Each obstacle in the environment is also shaped as a circle. 
The obstacles are given in the form of a list such that each obstacle is described by the triple (xi, yi, ri), where 
xi the x-axis coordinate, yi is the y-axis coordinate, and ri is the radius of the obstacle. 

Checking collision with a single obstacle Devise a method to quickly check whether a given straight 
path collides with a given obstacle (there is only one obstacle). You can use vector operations (e.g., the dot 
product or vector multiplications and simple addition and multiplication). 

HINT: Remember the configuration space idea. 

Efficiently checking collision with multiple obstacles Devise a method to store the obstacles in a 
data structure so that checking collision with obstacles is more efficient than checking collision each obstacle 
one by one. Analyze the complexity of your collision checking algorithm. How does it scale with the number 
of obstacles? Compare this to the complexity of checking collision each obstacle one by one. 

Solution To simplify the collision checking process, we exploit the configuration space idea, where the 
robot is reduced to a point the obstacles are inflated accordingly. Computing the configuration space of a 
robot may be challenging for complex robot and obstacle geometries. However, in this case, the robot is a 
disk with radius R and the obstacles are also disks with given radii and position. Clearly, the robot is in 
collision with an obstacle if its center gets more than R close to that obstacle. Thus the configuration space 
can be computed by inflating the radius of each obstacle by R. See the figure below. Notice that the robot 
is reduced to a point (on its center), while the obstacles are inflated by R. 
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Once the configuration space is computed collision checking can be performed efficiently. Recall that the 
robot is in collision whenever its center is in collision in the configuration space. The following algorithm 
checks whether this condition is satisfied or not. 

Algorithm 1: IsRobotInCollision (xr, yr, R), (x1, y1, r1), (x2, y2, r2), . . . , (xn, yn, rn) ) 

1 for i = {1, 2, . . . , n} do 
2 2 

2 Di ← (xr − xi) + (yr − yi) if Di < ri + R then 
3 return True 

4 return False 

The algorithm takes in position and the size of the robot, i.e.,(xr, yr, R), and the position and the size of 
each obstacle, (x1, y1, r1), (x2, y2, r2), . . . , (xn, yn, rn) ). It returns true if the robot is in collision, and returns 
false otherwise. 

Notice that for each collision check call, the computational cost of this algorithm is O(n), where n is the 
number of obstacles. The cost can be reduced considerably, e.g., by using kd-tree type data structure to 
store the obstacles. The main idea behind the kd-tree is to store each obstacle in a spatial tree structure. 
These algorithms are known to operate within sublinear time bounds in the worst case. Interested students 
are referred to the book entitled “The Design and Analysis of Spatial Data Structures,” written by H. Samet. 
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