
16.410-13 Recitation 9 Problems

Problem 1: A∗ Search

Robot Navigation Consider the maze given in the following figure. Name 3 admissible heuristics for this
problem. What would be a good admissible heuristics?

Write down the steps that an A∗ search would go through using the best heuristic you can think of. You
may find it convenient to write the cost-to-go values for each tile on the figure.

Solution One admissible heuristic (that works for every problem) is to write H(n) = 0 for all nodes n.
This heuristic is clearly admissible, since the actually cost to go is always positive, thus larger than H(n) = 0.

A second admissible heuristic is the max distance (also known as the L∞ distance) of the node to the
goal point, computed as follows. Denote the coordinates of the goal by g = (xg, yg) and the coordinates of
the node n under consideration by n = (xn, yn), then the max distance is

D(n, g) = max{|xn − xg|, |yn − yg|},

where | · | is the absolute value operator. That is, the L∞ distance is the maximum travel distance in either
direction x or direction y on the map. Clearly, the steps required the get to the goal is at least the maximum
of travel in either direction. Thus, this heuristic is admissible.

Finally, a third heuristic is called the Manhattan distance (also known as the taxicab distance or L1

distance) is computed as follows
D(n, g) = |xn − xg| + |yn − yg |.

That is the total travel in either direction. Notice that if there are no obstacles, this heuristic is in fact exact.
Clearly, introducing obstacles can only increase the length of the optimal path to get to the goal. Thus, this
heuristic is also admissible.

Below, the optimal cost to function is shown (this can be computed by using dynamic programming, e.g.,
Dijkstra’s algorithm, which we will cover later in the course):

1

01 1 2 1210 3 2
1311 12

1817 17 1516 1412 13 1514 16

65 7 98 108 7 56 4
119 45 3

The zero heuristic is given below:

00 0 0 00 0 0
00 0

00 0 00 00 0 00 0

00 0 00 00 0 00 0
00 00 0

The L1 distance heuristic is given below:

01 1 2 46 3 2
46 5

22 2 32 46 5 34 2

22 2 32 46 5 54 3
46 34 2

The Manhattan distance heuristic is given below:

01 1 2 46 3 2
57 6

23 3 54 68 7 56 4

23 3 54 68 7 56 4
57 45 3

Notice that the values for all the heuristics are always smaller than or equal to the optimal cost-to-go,
which confirms that the heuristics are all admissible. Notice also that the Manhattan distance is, in certain
places is equal to the optimal cost-to-go. The heuristic based on the L∞ distance, on the hand, is optimal
in much less places, and in many others far away from optimal. Finally, the zero heuristic is never equal to
the optimal-cost-go except at the goal.

As a rule of thumb, it is always better to design heuristics that better approximates the cost-to-go.
However, the heuristics should also be computationally efficient. Clearly, the zero heuristic is the easiest
one to compute. The computational cost for the other two heuristics are almost the same. Hence, we

2

should prefer the Manhattan distance heuristic over the L1 distance heuristic. We usually evaluate the
computational cost of the heuristics using asymptotic analysis, e.g., in this case with respect to the number
of nodes in the search graph (i.e., the number of cells). Notice that all the heuristics can be evaluated in
constant time with respect to the number of nodes. In other words, no matter how many nodes there are on
the network evaluating any of the three heuristics takes some constant number of operations. Thus, we can
conclude that these heuristics have essentially the same computational cost (more formal statement would
be that the they have the same asymptotic computational complexity with respect to the number of nodes).
Clearly, the Manhattan distance heuristic is at least as large as the two others on any node, thus it is more
closer to the optimal cost-to-go. Hence, in this problem we prefer to use the Manhattan distance heuristic.

The A∗ algorithm starts from the initial node shown in red. It evaluates to cost-to-get to each neighboring
vertex (in this case each equal to one), then it evaluates the cost-to-go, and it picks the minimum total cost
to expand. See the figure below:

1+6

1+8

1+6

In this case, two nodes have the same total cost, namely 7. The algorithm can proceed with any of these.
Let us assume it goes down the top node. There is only one node to expand, which has cost-to-get equal to
2 and cost to go equal to 6. See the figure below

1+6

1+8

1+6

2+7

Similarly, the search is continued until all the nodes in the queue are expanded. This is left as an exercise.

3

Traveling in Romania You are tak­
ing your vacation in East Europe. You
have just crossed the border from Hun­
gary to Romania. It turned out Romania
is a beautiful country.

4

Oradea

Zerind

Arad

Timisoara
Lugoj

Mehadia

Dobreta
Craiova

Pitesti

Rimnicu
Vilcea

Sibiu
Fagaras

Bucharest

Giurgiu
Eforie

HirsovaUrziceni

Vaslui

Lasi

Neamt71

75

118

111

70

75
120

146

97

138

80

151

140 99

211

101
85

90

86

98

142

92

87

Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Lasi
Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0

160
242
161
176

77
151
226
244
241
234
380

10
193
253
329

80
199
374

Straight-line distance
to Bucharest

A Map of Romania

Image by MIT OpenCourseWare.

You have started in Arad on the Hungary border. You would like to see Bucharest. Use the Euclidean
distance cost-to-go heuristic in answering the following questions (heuristic values are given above).

•	 Find a path that gets you to Bucharest using the Greedy search. Draw the search tree.

•	 Use A∗ to find an optimal that takes you to Bucharest. Draw the search tree.

•	 Describe how you would construct a “controller” that takes you to Bucharest from anywhere in Romania
in case you get lost somewhere. Show the execution of the Dijkstra algorithm.

Solution This problem is taken from textbook (AIMA, second edition). The solution can be found in the
textbook.

Problem 2: Admissible Heuristics
Puzzle Recall the 4-puzzle. Remember the heuristics that you have learned in
the class. Describe the Manhattan distance heuristic. Prove that the Manhattan
distance heuristic is an admissible heuristic.
Now, consider the following heuristic. Two tiles tj and tk are in a linear conflict if
tj and tk are the same line, the goal positions of tj and tk are both in that line, tj

is to the right of tk, and goal position of tj is to the left of the goal position of tk.
The linear conflict heuristic moves any two tiles that are in linear conflict without
colliding them. See the figure in left.
Is this heuristic admissible? Either prove that it is admissible, or disprove by a
counter-example. Is this heuristic better than the Manhattan distance heuristic.
Rubik puzzle Rubik puzzle is one of the hardest combinatorial problems to date
(see the figure below). We would like to solve it using the A∗ algorithm. What
would be a good admissible heuristic for this problem?

1 3 3 1

1 3 3 1

1 3 3
1

1 3 3
1

1 3 3
1

1 3 3 1

1 3 3 1

Solution A configuration of the 4-puzzle is completely described by the the location of each tile, t1, t2, . . . , t15.
Let us denote the position of a tile ti by (xi, yi) and its goal position by (Xi, Yi). Then, the Manhattan
distance (to the goal) for this particular tile is

Di = |Xi − xi| + |Yi − yi|,

and the total distance is
D = D1 + D2 + · · · + D15.

To reach the goal configuration, tile ti must travel at least a distance of Di, which could be achieved if
there were no other tiles on the way. Since there are other tiles also, the total distance traveled by the tile ti
while reaching its goal coordinate is at least Di. Note that this true for each tile, thus the total number of
moves for reaching the final configuration from the initial configuration {t1, t2, . . . , t15} is at least D. This
argument shows that the Manhattan distance heuristic is admissible in this case.

The linear conflict heuristic is indeed admissible. Here we sketch a proof. You are highly encouraged
to provide formal proof of this statement. The proof can be constructed based on the simple observation
that for any two tiles, say ti and tj , the total distance that each of them need to travel to reach their goal
positions is no larger than the linear conflict heuristic. In fact, take any two pair of tiles, ti and tj . Notice
that the linear conflict heuristic adds at most a constant of 2 to the result of the Manhattan heuristic. We
examine the two cases separately. First, if the linear conflict heuristic ends up returning the same value that
the Manhattan distance heuristic, then the linear conflict heuristic is admissible since Manhattan distance
heuristic is also admissible. Second, if the linear conflict heuristic returns a value that is larger than that
returned by the Manhattan distance heuristic then the case shown in the figure must have occurred. In this
case, since the two tiles can not go over one another, the steps required for both of them reach their goal

5

Image by MIT OpenCourseWare.

locations is at least the number returned by the heuristic. Indeed, the actual number of steps is potentially
higher since there are more tiles on the way.

Notice that the Manhattan distance heuristic is computed for each tile using information (i.e., the initial
position) for that tile only. The linear conflict heuristic indeed considers pairs of tiles. However, computing
the Manhattan distance heuristic takes only O(n) time, where n is the number of tiles (in this case n = 16).
On the other hand, computing the linear conflict heuristic, since it considers all pairs of tiles, takes O(n2)
time. Although, clearly the linear conflict heuristic is more closer to the optimal cost-to-go function, it is
computationally more expensive. In this case, we expect the Manhattan heuristic work well in small-sized
problems (problems with small n), whereas the linear-conflict heuristic become efficient in larger problems.

The Manhattan heuristic can be extended easily to the Rubik puzzle. Let us represent the tile position
by the face that the the tile is on and its four-by-four position on that face, i.e., tj = (ki, xi, yi), where
ki ∈ {1, 2, . . . , 6} and xi, yi ∈ {1, 2, 3, 4}. Given a tile configuration in this form together with the goal
configuration (Ki, Xi, Yi), we consider the length of the shortest path that takes this tile to its final position.
One way to compute this distance is to consider unwrap the cube as shown in the figure and compute the
number of moves (in the figure, the red tile is the initial position and the green tile is the final position).

Note that the unwrapping should be done such that the extra face should be on the side that is closer to the
initial tile, as seen in the figure.

It is an interesting exercise is to try to extend the linear-conflict heuristic to the Rubik puzzle. Do
you think such an extension is possible? If so, can you give an admissible heuristic heuristic based on the
linear-conflict heuristic for the Rubik puzzle?

6

Problem 3: Collision Checking

Recall that sampling-based motion planning algorithms require an “oracle” that checks whether or not a path
collides with an obstacle or not. Assume that you have circle-shaped rigid body robot that moves on a plane
(2 dimensions). The radius of the robot is R. Each obstacle in the environment is also shaped as a circle.
The obstacles are given in the form of a list such that each obstacle is described by the triple (xi, yi, ri), where
xi the x-axis coordinate, yi is the y-axis coordinate, and ri is the radius of the obstacle.

Checking collision with a single obstacle Devise a method to quickly check whether a given straight
path collides with a given obstacle (there is only one obstacle). You can use vector operations (e.g., the dot
product or vector multiplications and simple addition and multiplication).

HINT: Remember the configuration space idea.

Efficiently checking collision with multiple obstacles Devise a method to store the obstacles in a
data structure so that checking collision with obstacles is more efficient than checking collision each obstacle
one by one. Analyze the complexity of your collision checking algorithm. How does it scale with the number
of obstacles? Compare this to the complexity of checking collision each obstacle one by one.

Solution To simplify the collision checking process, we exploit the configuration space idea, where the
robot is reduced to a point the obstacles are inflated accordingly. Computing the configuration space of a
robot may be challenging for complex robot and obstacle geometries. However, in this case, the robot is a
disk with radius R and the obstacles are also disks with given radii and position. Clearly, the robot is in
collision with an obstacle if its center gets more than R close to that obstacle. Thus the configuration space
can be computed by inflating the radius of each obstacle by R. See the figure below. Notice that the robot
is reduced to a point (on its center), while the obstacles are inflated by R.

7

�

�

Once the configuration space is computed collision checking can be performed efficiently. Recall that the
robot is in collision whenever its center is in collision in the configuration space. The following algorithm
checks whether this condition is satisfied or not.

Algorithm 1: IsRobotInCollision (xr, yr, R), (x1, y1, r1), (x2, y2, r2), . . . , (xn, yn, rn))

1 for i = {1, 2, . . . , n} do
2 2

2 Di ← (xr − xi) + (yr − yi) if Di < ri + R then
3 return True

4 return False

The algorithm takes in position and the size of the robot, i.e.,(xr, yr, R), and the position and the size of
each obstacle, (x1, y1, r1), (x2, y2, r2), . . . , (xn, yn, rn)). It returns true if the robot is in collision, and returns
false otherwise.

Notice that for each collision check call, the computational cost of this algorithm is O(n), where n is the
number of obstacles. The cost can be reduced considerably, e.g., by using kd-tree type data structure to
store the obstacles. The main idea behind the kd-tree is to store each obstacle in a spatial tree structure.
These algorithms are known to operate within sublinear time bounds in the worst case. Interested students
are referred to the book entitled “The Design and Analysis of Spatial Data Structures,” written by H. Samet.

8

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

