
16.410-13 Recitation 12 Problems 

Problem 1: MDP Navigation 

Captain Jack Sparrow, infamous pirate, has sailed his ship to the side of the island of Tortuga. See the figure 
below. 

CCaptain Sparrow would like to anchor in the harbor on the western side of the island. Let’s help him 
by using an ancient navigation technique that is known all sailors worth their salt: value iteration. 

Consider the figure. There are four locations. The dotted arrows denote the valid moves between them. 
Ultimately Captain Sparrow wants to reach location 4, the harbor of Tortuga. Although, he would be very 
happy, if he could collect the gold at location 2 before reaching the harbor. However, there is a risk of a 
thunderstorm which may drag Sparrow’s ship to location 3, which is near several rocks that can sink his ship. 
Assume that ship takes the gold, the first time it reaches location 2. 

Let’s assume that the goal location, i.e., location 4, has reward big reward. Also, let’s assume that location 
3 has a big negative reward. Finally, let’s assume that Sparrow gets some positive reward when he travels to 
location 2 for the first time, since he collects the gold. 

Part A: Modeling 

In this part, you should formulate an MDP model of the system. Explicitly note how you handle the gold 
being in the ship. Provide a reasonable model of the system by writing the transition function and the reward 
function. 

The state must include whether Captain Sparrow has gold or not. Hence the state space will be 
{1, 2, 3, 4} × {NG,G}, where 1, 2, 3, and 4 indicate the location whereas NG and G indicate that the 
captain has does not have the gold or has the gold, respectively. 
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Let us define the set of actions as follows: {a1,4, a1,2, a2,1, aT }. Intuitively, a1,4 steers the ship from 
location 1 to location 4; a1,2 steers the ship from location 1 to location 2, and a2,1 steers the ship from 
location 2 to location 1. Applying action uT , the Captain can stay at his current location with probability 
one. Let’s assume that the Captain can steer his ship deterministically from location 1 to any other state. 
The only non-deterministic action is a2,1, in which case the ship ends up at state 1 with probability p and 
state 3 with probability 1 − p. Let us assign p = 0.5. To model collecting the gold, we will assume taking 
action a1,2 when in state (1, NG) the ship ends up at state (2, G), with probability one. 

(1,G) (1,NG)

(2,NG)(2,G)(3,G)(3,NG)

(4,NG) (4,G)

a1,4

a1,4

a1,2 a1,2a2,1

a2,1

Note that uT is not shown in the graph. Notice that the states (2, NG) and (3, NG) are not reachable, 
with probability one. You can safely remove these states from your model. 

To ensure that Captain Sparrow ends up at the harbor we assign the actions that reach location 4 reward 
1000. To ensure that the Captain does not drift towards the rocks, let’s assign reward -1000 to the triplet 
((2, G), a2,1, (3, G)). Finally, let us assign the triplet ((1, NG), a1,2, (2, G)) reward 200 to represent the value 
of the gold. For all the other triplets, we can assign reward 0. 

Part B: Value iteration 

Say the discount factor is 0.5. Start with the value V0(s) = 0 for all s, and execute the value iteration for 
one step, i.e., compute V1(s) for all s ∈ S. 

Recall that the value iteration is carried out by the following update equation: 

Vi+1(s) T (s, a, s�)(R(s, a, s�) + γVi(s
�)).← 

s�∈S 

In the following, we provide the update for the first state only. The rest can be carried out similarly. 

V1((1, NG)) = max 
a1,2,a1,4

{T ((1, NG), a1,2, (2, G))(R((1, NG), a1,2, (2, NG)) + γV0((2, NG))), 

T ((1, NG), a1,4, (4, NG))(R((1, NG), a1,4, (4, NG)) + γV0((4, NG)))} = 200. 

Part C: Discussion on policies 

How many policies are there? 
Assume that the discount factor is γ, the reward for collecting the gold is RG, the reward for reaching 

the harbor is RH , and the reward for colliding with the rocks is RR. Also, assume that once Sparrow starts 
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traveling out from location 2, the probability that he ends up at the rocks at location 3 is p. Compute the 
value function for all the policies keeping γ, RG, RH , and RH as parameters. Can you assess which one of 
these policies is better? (HINT: Policy iteration algorithm was doing something along those lines). 

The way the problem is set up, the only decision that the Captain can make comes up in two states: 
(1, NG) and (1, G). Sparrow can choose from one of the two options in both states. Hence, there are exactly 
4 policies. 

Notice that in state (1, G), it does not make sense to go back to state (2, G) since the only that can be 
collected is the negative reward when going into state (3, G). Hence, the only state that there is a nontrivial 
choice is the initial state, (1, NG), which reduces our policy space to only two policies: Sparrow can either 
choose to go to state (2, G) and collect the gold and then head out to the harbor, or alternatively Sparrow can 
directly go to the harbor without collecting the gold. Let us denote these policies by π1 and π2, respectively. 
More precisely, we have 

π1((1, NG)) = a1,4, π1((1, G)) = a1,4, π1((2, G)) = a2,1 

and π1( ) = aT for all other states. The only difference in π2 is that π2((1, NG)) = a1,2.·
We can evaluate the value function for these two policies using the policy evaluation. Recall that for 

policy evaluation we need to solve the following system of linear equations. 

Vπ(s) = T (s, π(s), s�)[R(s, π(s), s�) + γV (s�)] for all s ∈ S. 
s�∈S 

First consider the policy π1, let us calculate the value function under this policy using policy evaluation. 
Then, 

Vπ1 ((4, NG)) = 1[R((4, NG), aT , (4, NG)) + γVπ1 ((4, NG))] = RH + γVπ1 ((4, NG))) 

Hence, 

Vπ1 ((4, NG))) = 
RH 

1 − γ 
. 

Then, we have 

Vπ1 ((1, NG)) = 1[R((1, NG), a1,4, (4, NG)) + γVπ1 ((4, NG))] = γVπ1 ((4, NG)) 

Hence, the value at the initial state is 

γ 
Vπ1 ((1, NG)) = RH . (1)

1 − γ 

Next, consider the policy π2. Notice that 

RH
Vπ2 ((4, NG))) = Vπ2 ((4, G))) = ,

1 − γ 

as before. Also, 

γ 
Vπ2 ((1, G)) = 1[R((1, G), a1,4, (4, G)) + γVπ2 ((4, G))] = γVπ2 ((4, G)) = RH . 

1 − γ 

Moreover, 
Vπ2 ((3, G)) = 1[R((3, G), aT , (3, G)) + γVπ2 ((3, G))]. 

Then, 
1 

Vπ2 ((3, G)) = RR. 
1 − γ 
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Also, 

Vπ2 ((2, G)) = p[R((2, G), a2,1, (1, G)) + γVπ2 ((2, G))] + (1 − p)[R((2, G), a2,1, (3, G) + γVπ2 (3, G))], 

which yields, 
γ γ2 

Vπ2 ((2, G)) = p RR + (1 − p) RH . 
1 − γ 1 − γ 

Finally, 
Vπ2 ((1, NG)) = 1[R((1, NG), a1,2, (2, G)) + γVπ2 ((2, G))] = RG + γVπ2 ((2, G)), 

which yields 

γ γ2 

Vπ2 ((1, NG)) = RG + γ p RR + (1 − p) RH . (2)
1 − γ 1 − γ 

Hence, the discounted reward that Sparrow get with the first policy is given in Eqn (1), and that he can 
collect using the second policy is given in Eqn (2). 

Part D: Discussion on the discount factor 

How would the solution look for a discount factor close to one? How about when the discount factor is close 
to zero? What can you say when the discount factor is exactly one and exactly zero? 

A high discount factor will value the future reward, hence will cause Sparrow to go directly to the Harbor. 
A low discount on the other hand will value immediate awards and will have Sparrow go try to collect the 
reward. We can compute the rewards that Sparrow can collect for the two policies of available to him using 
Equations (1) and (2). 

When the discount factor is exactly one, the problem is not well-defined. For instance, for state (4, G), 
the value function would take value infinity. When the discount factor is zero, the future is not taken into 
account at all. Hence, Sparrow, in that case, would directly go to location 2 to collect the gold (convince 
yourself that no other policy achieves a better reward). 

Problem 2: Markov decision processes1 

Consider a planning planning problem modeled as an MDP with states X = {a, b, c} and controls U = 
{1, 2, uT }. The state XG = {c} is identified as the goal state. The actions u = 1 and u = 2 are shown 
in the figure below. Taking the action uT , the agent can stay in its current state with probability one, i.e., 
T (x, uT , x) = 1 for all x ∈ {a, b, c}. 

The reward structure is such that the agent gets reward 1 when it is in state c and takes action uT , 
otherwise the reward is zero. That is, 

1 when x = c, y = c, a = uT ;
R(x, a, y) = 

0 otherwise. 

The discount factor is 0.9. Please answer the following questions. 
1this problem is based on an exercise in PA 
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•	 How would you compute the value function using the value iteration and the optimal policy? Write 
down the equations for value iteration. Calculate the first iteration of the value iteration by hand. 

The value iteration algorithm is carried out by repeatedly applying the following update: 

Vi+1(s) max T (s, a, s�)(R(s, a, s�) + γVi(s
�)).←	

a 
s�∈S 

Initially, you can set Vi(s) = 0 for all s ∈ S. The calculation is quite straightforward, and not provided here. 

•	 How would you compute the value function and the optimal policy using the policy iteration? Write 
down the equations for policy evaluation and policy improvement. Calculate the first iteration of the 
policy iteration by hand. 

The policy iteration consists of two main steps: policy evaluation and policy improvement. The algorithm 
starts with an initial policy, and in each iteration, it first computes of the value of this policy by policy 
evaluation, and then computes a new policy that improves up on the current policy by policy improvement. 
These steps are repeated in an iterative manner, until the value function does not change. 

Given a policy π, the policy evaluation step is carried out by solving the following linear system of 
equations: 

Vπ(s) = T (s, π(s), s�)[R(s, π(s), s�) + γV (s�)] 
s�∈S 

The solution to these equations is the value function V that maps each state to a real number (its value 
under the policy π). 

In the policy improvement step, the policy is refined to a better one, by using the value function of the 
current policy, i.e., the value function found in the policy evaluation step. The policy improvement step is 
carried out as follows: 

π(s)	 arg max T (s, a, s�)[R(s, a, s�) + γ V (s�)]. (3)←	
a


s�∈S


To solve the problem presented in the figure, first pick an initial policy, say π(a) = 1, π(b) = 1, and 
π(c) = uT . Then, go through the policy evaluation and the policy improvement steps until the policy 
converges (i.e., it does not change anymore). The calculations are straightforward and are not provided 
here. 
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