
Model-based Programming of

Cooperating Explorers

Brian C. Williams
CSAIL

Dept. Aeronautics and Astronautics
Massachusetts Institute of Technology

With Complex Autonomic Processes
Programming Long-lived Embedded Systems

Large collections of devices must work in concert to achieve goals
• Devices indirectly observed and controlled
• Need quick, robust response to anomalies throughout life
• Must manage large levels of redundancy

Coordination Recapitulated At The

Level of Cooperating Explorers

(Courtesy of Jonathan How. Used with permission.)

Coordination Issues Increase For

Dexterous Explorers

(Courtesy of Frank Kirchner. Used with permission.)

Outline

• Model-based Programming
• Autonomous Engineering Operations

– An Example
– Model based Execution
– Fast Reasoning using Conflicts

• Cooperating Mobile Vehicles
– Predictive Strategy Selection
– Planning Out The Strategy

Approach

Elevate programming and operation to
system-level coaching.

Î Model-based Programming

– State Aware: Coordinates behavior at the level

of intended state.
Î Model-based Execution

– Fault Aware: Uses models to achieve intended

behavior under normal and faulty conditions.

Why Model-based Programming?

Polar Lander Leading Diagnosis:

• Legs deployed during descent.

• Noise spike on leg sensors
latched by software monitors.

• Laser altimeter registers 40m.

• Begins polling leg monitors to
determine touch down.

• Read latched noise spike as
touchdown.

• Engine shutdown at ~40m.

Programmers often make
commonsense mistakes when
reasoning about hidden state.

Objective: Support programmers
with embedded languages that
avoid these mistakes, by
reasoning about hidden state
automatically.

Reactive Model-based
Programming Language (RMPL)

Interact Directly with State
Model-based Programs

Embedded programs interact with Model-based programs
plant sensors and actuators: interact with plant state:

• Read sensors • Read state

• Set actuators • Write state

Embedded Program

S
Plant

Obs Cntrl

Model-based
Embedded Program

S
Plant

S’
Model-based Executive

Obs Cntrl

Programmer must map between Model-based executive maps
state and sensors/actuators. between state and sensors/actuators.

Control Sequencer

Deductive ControllerMode
Estimation

Mode
Reconfiguration

RMPL Model-based Program Titan Model-based Executive

System Model

CommandsObservations

Control Program

Plant

State goalsState estimates

Generates target goal states
conditioned on state estimates

Tracks
likely

plant states

Tracks least
cost goal states

z Executes concurrently
z Preempts
z Queries (hidden) states
z Asserts (hidden) state

ClosedClosed

ValveValve
OpenOpen StuckStuck

openopen

StuckStuck
closedclosed

OpenOpen CloseClose

0. 010. 01

0. 010. 01

0.010.01

0.010.01

inflow = outflow = 0

Outline

• Model-based Programming
• Autonomous Engineering Operations

– An Example
– Model based Execution
– Fast Reasoning using Conflicts

• Cooperating Mobile Vehicles
– Predictive Strategy Selection
– Planning Out The Strategy

Mission-critical sequences:

Motivation

images courtesy
of NASA

• Launch & deployment

• Planetary fly-by

• Orbital insertion

• Entry, descent & landing

(Courtesy of Mitch Ingham. Used with permission.)

Mars Entry Example

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)

Mars Entry Example

engine to standby
planetary approach switch to

Descent engine to “standby”:

offheating
30-60 sec
standby

separate
lander

inertial nav rotate to entry-orient
& hold attitude

(Courtesy of Mitch Ingham. Used with permission.)

Mars Entry Example

engine to standby

Spacecraft approach:
•
•

observable
•

of cruise trajectory

planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

270 mins delay
relative position wrt Mars not

based on ground computations

(Courtesy of Mitch Ingham. Used with permission.)

Mars Entry Example

engine to standby
planetary approach switch to

separate
lander

inertial nav rotate to entry-orient
& hold attitude

Switch navigation mode:
“Earth-relative” = Star Tracker + IMU

Switch navigation mode:

“Inertial” = IMU only

(Courtesy of Mitch Ingham. Used with permission.)

Mars Entry Example

engine to standby

Rotate spacecraft:
•

planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

command ACS to entry orientation

(Courtesy of Mitch Ingham. Used with permission.)

Mars Entry Example

engine to standby

Rotate spacecraft:
• once entry orientation achieved,

ACS holds attitude

planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

(Courtesy of Mitch Ingham. Used with permission.)

Mars Entry Example

engine to standby
planetary approach switch to

separate
lander

inertial nav rotate to entry-orient
& hold attitude

cruise
stage

lander
stagepyro

latches

Separate lander from cruise stage:

(Courtesy of Mitch Ingham. Used with permission.)

Mars Entry Example

engine to standby

planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

•

cruise
stage

lander
stagepyro

latches

Separate lander from cruise stage:
when entry orientation achieved,
fire primary pyro latch

(Courtesy of Mitch Ingham. Used with permission.)

Mars Entry Example

engine to standby

planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

•

cruise
stage

lander
stage

Separate lander from cruise stage:
when entry orientation achieved,
fire primary pyro latch

(Courtesy of Mitch Ingham. Used with permission.)

Mars Entry Example

engine to standby

planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

•

cruise
stage

lander
stage

Separate lander from cruise stage:
in case of failure of primary latch,
fire backup pyro latch

(Courtesy of Mitch Ingham. Used with permission.)

Mars Entry Example

engine to standby

planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

•

cruise
stage

lander
stage

Separate lander from cruise stage:
in case of failure of primary latch,
fire backup pyro latch

(Courtesy of Mitch Ingham. Used with permission.)

What is Required to Program at This
Level?

engine to standby

planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

• simple state-based control
specifications

•
systems engineers

• handle timed plant & control
behavior

• automated reasoning through low-
level plant interactions

• fault-aware (in-the-loop recoveries)

models are writable/inspectable by

(Courtesy of Mitch Ingham. Used with permission.)

Descent Example

Turn camera off and engine on

EngineA EngineB EngineA EngineB

Science Camera Science Camera

Model-based Program

Control program specifies
state trajectories:

• fires one of two engines

• sets both engines to ‘standby’

• prior to firing engine, camera must be
turned off to avoid plume contamination

• in case of primary engine failure, fire
backup engine instead

Plant Model describes
behavior of each component:
– Nominal and Off nominal
– qualitative constraints
– likelihoods and costs

OrbitInsert()::

(do-watching ((EngineA = Thrusting) OR
(EngineB = Thrusting))

(parallel
(EngineA = Standby)

(EngineB = Standby)

(Camera = Off)

(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Thrusting)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Thrusting))))

Plant Model

component modes…

described by finite domain constraints on variables…

deterministic and probabilistic transitions

cost/reward

StandbyStandby

Engine ModelEngine Model

OffOff

FailedFailed

FiringFiring

(thrust = full) AND
(power_in = nominal)

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

offoff­-
cmdcmd

standbystandby­-
cmdcmd

0.010.01

0.010.01
standbystandby­-

cmdcmd
firefire­-
cmdcmd

0 v

0 v

2 kv

2 kv

OnOn

Camera ModelCamera Model

OffOff

turnoffturnoff­-
cmdcmd

turnonturnon­-
cmdcmd

(power_in = zero) AND
(shutter = closed)

(power_in = nominal) AND
(shutter = open)

0 v

20 v

0.010.01

0.010.01

0 v

one per component … operating concurrently

Example: The model-based program sets engine = thrusting, and the

deductive controller

Mode Estimation Mode Reconfiguration
Oxidizer tankOxidizer tank Fuel tankFuel tank

Selects valve
Deduces that configuration;

thrust is off, and plans actions
Deduces that a valvethe engine is healthy to open
failed - stuck closedsix valves

Determines valves
on backup engine that
will achieve thrust, and
plans needed actions.

Mode Reconfiguration Mode Estimation

Outline

• Model-based Programming
• Autonomous Engineering Operations

– An Example
– Model based Execution
– Fast Reasoning using Conflicts

• Cooperating Mobile Vehicles
– Predictive Strategy Selection
– Planning Out The Strategy

Modeling Plant Dynamics using Probabilistic

Concurrent, Constraint Automata (PCCA)

Compact Encoding:

– Concurrent probabilistic transitions

– State constraints between variables

StandbyStandby

Engine ModelEngine Model
OffOff

FailedFailed

offoff­-
cmdcmd

standbystandby­-
cmdcmd

0.010.01

(thrust = full) AND
(power_in = nominal)

FiringFiring

0.010.01

standbystandby­-
cmdcmd

firefire­-
cmdcmd

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

OnOn

Camera ModelCamera Model
OffOff

turnoffturnoff­-
cmdcmd

turnonturnon­-
cmdcmd

(power_in = zero)
AND

(shutter = closed)

(power_in = nominal)
AND

(shutter = open)

0 v

2 kv

2 kv

0 v

0 v

20 v

0.010.01

0.010.01

0 v

Typical Example (DS1 spacecraft):

– 80 Automata, 5 modes on average

– 3000 propositional variables, 12,000 propositional clauses

Possible Behaviors
Visualized by a Trellis Diagram

S T

X0 X1 XN-1 XN

•Assigns a value to each
variable (e.g.,3,000 vars).
•Consistent with all state
constraints (e.g., 12,000).

•A set of concurrent transitions,
one per automata (e.g., 80).
•Previous & Next states
consistent with source & target
of transitions

The Plant’s BehaviorThe Plant’s Behavior

Control Sequencer

Deductive Controller

Commands

Tracks least-cost
state goals

RMPL Model-based Program Titan Model-based Executive

System Model

Observations

Control Program

Plant

State goalsState estimates

Control Sequencer:
Generates goal states

Mode
Estimation:

Tracks likely
States

Mode
Reconfiguration:

z

z Preempts
z

z

OrbitInsert()::
(i

iring))
(parallel

)
)

(
(

(Camera = Off))
iring)))

(
) AND

(Camera = Off))
iring))))

CO

EAS)
EAF ()
EAR i i)
EBS)
EBF ()
EBR i i)

(

)

EAR

()

hierarchical constraint
automata on state s

conditioned on state estimates
Executes concurrently

Asserts and queries states
Chooses based on reward

do-watching ((EngineA = F ring) OR
(EngineB = F

(EngineA = Standby
(EngineB = Standby
(Camera = Off)
do-watching (EngineA = Failed)

when-donext ((EngineA = Standby) AND

(EngineA = F
when-donext ((EngineA = Failed) AND

(EngineB = Standby

(EngineB = F

MAINTAIN (EAR OR EBR)

EBS

LEGEND:
(EngineA = Standby
EngineA = Failed
(Eng neA = F ring
(EngineB = Standby
EngineB = Failed
(Eng neB = F ring

CO Camera = Off)

MAINTAIN (EAF

EAS

(EAS AND CO)

EAS AND CO

EAF AND EBS AND CO

EBR
EAF AND EBS

AND CO

Control Sequencer

Deductive Controller

RMPL Model-based Program Titan Model-based Executive

System Model

Observations

Control Program

Plant

State goalsState estimates

Control Sequencer:
Generates goal states

Mode
Estimation:

Tracks likely
States

Mode
Reconfiguration:
Tracks least-cost

state goals

z

z Preempts
z

z

engine

stuck closed

S T

X0 X1 X XN

S T

X0 X1 X XN

least cost reachable
goal stateFirst ActionCurrent Belief State

Commands

conditioned on state estimates
Executes concurrently

Asserts and queries states
Chooses based on reward

Fire backup

Valve fails

N-1 N-1

Deductive Controller

Observations
Plant

State goalsState estimates

Mode
Estimation:

Tracks likely
States

Mode
Reconfiguration:
Tracks least-cost

state goals

engine

stuck closed

S T

X0 X1 X XN

S T

X0 X1 X XN

least cost reachable
goal stateFirst ActionCurrent Belief State

s.t. C(x) is satisfiable

D(x) is unsatisfiable

T(m’)

s.t. M(m’) ^ O(m’) is satisfiable

T*

s.t. M(m’) entails G(m’)

s.t. M(m’) is satisfiable

Commands

Fire backup

Valve fails

N-1 N-1

OpSat:

arg min f(x)

arg max P arg min R (m’)

Outline

• Model-based Programming
• Autonomous Engineering Operations

– An Example
– Model based Execution
– Fast Reasoning using Conflicts

• Cooperating Mobile Vehicles
– Predictive Strategy Selection
– Planning Out The Strategy

Diagnosis Formulation

Consistency-based Diagnosis: Given symptoms,
find diagnoses that are consistent with symptoms.

Handle Novel Failures by Suspending Constraints:

Make no presumptions about faulty component

behavior.

1

1

1 Symptom
Or1

Or2

Or3

And1

And2

A

B
C
D

E

1

1
1
1

0

F

G

X

Y

Z

0

1

Diagnosis Formulation

Consistency-based Diagnosis: Given symptoms,
find diagnoses that are consistent with symptoms.

Handle Novel Failures by Suspending Constraints:

Make no presumptions about faulty component

behavior.

1

1

1 Symptom

Or2

Or3

And1

And2

A

B
C
D

E

1

1
1
1

0

F

G

X

Y

Z

0

1

Fast Reasoning Through Conflict

When you have eliminated the impossible,
whatever remains, however improbable,
must be the truth.

- Sherlock Holmes. The Sign of the Four.

1. Test Hypothesis
2. If inconsistent, learn reason for inconsistency

(a Conflict).
3. Use conflicts to leap over similarly infeasible options

to next best hypothesis.

Compare Most Likely Hypothesis

to Observations

Helium tank

Fuel tankOxidizer tank

Main
Engines

Pressure1 = nominal
Pressure2= nominal

Acceleration = zero

Flow1 = zero

It is most likely that all components are okay.

Isolate Conflicting Information

Helium tank

Fuel tankOxidizer tank

Main
Engines

Flow 1= zero

The red component modes conflict with the model and
observations.

Leap to the Next Most Likely Hypothesis

that Resolves the Conflict

Helium tank

Fuel tankOxidizer tank

Main
Engines

Flow 1= zero

The next hypothesis must remove the conflict

New Hypothesis Exposes Additional Conflicts

Pressure1 = nominal Pressure2= nominal

Acceleration = zero

Helium tank

Fuel tankOxidizer tank

Main
Engines

Another conflict, try removing both

Final Hypothesis Resolves all Conflicts

Helium tank

Fuel tankOxidizer tank

Main
Engines

Pressure1 = nominal
Flow1 = zero

Pressure2= nominal
Flow2 = positive

Acceleration = zero

Implementation: Conflict-directed A* search.

A*

Increasing
Cost

Feasible

Infeasible

Conflict-directed A*

Increasing
Cost

Feasible

Infeasible

Conflict-directed A*

Increasing
Cost

Feasible

Infeasible
Conflict 1

Conflict-directed A*

Increasing
Cost

Feasible

Infeasible

C
onflict 3

Conflict 2

Conflict 1

feasible regions as implicants
(Kernel Assignments)

•Want kernel assignment

• Conflicts are mapped to

containing the best cost state.

Outline

• Model-based Programming
• Autonomous Engineering Operations

– An Example
– Model based Execution
– Fast Reasoning using Conflicts

• Cooperating Mobile Vehicles
– Predictive Strategy Selection
– Planning Out The Strategy

Coordination is Recapitulated at the

Level of Cooperating Explorers

(Courtesy of Jonathan How. Used with permission.)

• Explicit human guidance is at the lowest
levels

Traditional Robot Architectures

Planning and Scheduling

Goal-directed
ExecutionGoal-directed

Programs

Goals
Action descriptions

Reactive Behaviors

RMPL for Robotics

Reactive Model-based Model-based

Programming Executive

Goal-directed
Execution

Control
Programs

Plant
Models

Deductive
Controllers

Language (RMPL)

What types of reasoning should the programmer/operator guide?

• State/mode inference • Method selection
• Machine control • Roadmap path planning
• Scheduling • Optimal trajectory planning

• Generative temporal planning

RMPL Model-based Program Kirk Model-based Executive

Control Sequencer
Predictive Strategy Selection

Dynamic Scheduling
Ensures Safe Execution

Deductive Controller
Achieves State via Path Planning

Estimates using Localization

Environment Model

Control Program

location goalslocation estimates

z Executes concurrently
z Preempts
z non-deterministic choice
z A[l,u] timing
z A at l location

HOMEHOME

T
W
O

Enroute
COLLECTION POINTCOLLECTION POINT RENDEZVOUSRENDEZVOUS

Diverge
SCIENCE AREA 1’SCIENCE AREA 1’

SCIENCE AREA 3SCIENCE AREA 3

Landing Site: ABC

Landing Site: XYZ

O
N
E

SCIENCE AREA 1SCIENCE AREA 1

Observations Commands

Plant

Properties:

Example Scenario

HOMEHOME

TWO

EnrouteCOLLECTION POINTCOLLECTION POINT RENDEZVOUSRENDEZVOUS

Diverge
SCIENCE AREA 1’SCIENCE AREA 1’

SCIENCE AREA 3SCIENCE AREA 3

Landing Site: ABC

Landing Site: XYZ

ONE

SCIENCE AREA 1SCIENCE AREA 1

z Mars rover operators have been leery of generative planners.

z Are more comfortable with specifying contingencies.

z Want strong guarantees of safety and robust to uncertainty.

z Global path planning is on the edge

Extend RMPL with planner-like capabilities ..except planning

Reactive Model-based Programming

Idea: To describe group behaviors, start with concurrent language:

z p

z If c next A

z Unless c next A

z A, B

z Always A

z	 Add temporal constraints:
z A [l,u]

• Primitive activities
• Conditional execution
• Preemption
• Full concurrency
• Iteration

• Timing

z	 Add choice (non-deterministic or decision-theoretic):
z Choose {A, B} • Contingency

z	 Parameterize by location:
z A at [l]

Example Enroute Activity:

Enroute

RendezvousRendezvous Rescue AreaRescue Area

Corridor 2

Corridor 1

RMPL for Group-Enroute

Group-Enroute()[l,u] = {
Temporal Constraints:

choose {
do {

Group-Fly-

Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];

} maintaining PATH1_OK,
do {

Group-Fly-

Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];

} maintaining PATH2_OK

};

{

Group-Transmit(OPS,ARRIVED)[0,2],

do {

Group-Wait(HOLD1,HOLD2)[0,u*10%]

} watching PROCEED

} at RE_POS

}

RMPL for Group-Enroute

Location Constraints:
Group-Enroute()[l,u] = {

choose {
do {

Group-Fly-

Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];

} maintaining PATH1_OK,
do {

Group-Fly-

Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];

} maintaining PATH2_OK

};

{

Group-Transmit(OPS,ARRIVED)[0,2],

do {

Group-Wait(HOLD1,HOLD2)[0,u*10%]

} watching PROCEED

} at RE_POS

}

RMPL for Group-Enroute

Non-deterministic
Group-Enroute()[l,u] = {

choose { choice:
do {

Group-Traverse-

Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];

} maintaining PATH1_OK,

do {

Group-Traverse-

Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];

} maintaining PATH2_OK

};
{

Group-Transmit(OPS,ARRIVED)[0,2],

do {

Group-Wait(HOLD1,HOLD2)[0,u*10%]

} watching PROCEED

} at RE_POS

}

Outline

• Model-based Programming
• Autonomous Engineering Operations

– An Example
– Model based Execution
– Fast Reasoning using Conflicts

• Cooperating Mobile Vehicles
– Predictive Strategy Selection
– Planning Out The Strategy

Control Sequencer

Deductive ControllerMode
Estimation

Mode
Reconfiguration

RMPL Model-based Program Titan Model-based Executive

Environment Model

CommandsObservations

Control Program

location goalslocation estimates

Selects consistent
threads of activity

from redundant methods

Tracks
location

Finds least
cost paths

z Executes concurrently
z Preempts
z non-deterministic choice
z A[l,u] timing
z A at l location

HOMEHOME

T
W
O

Enroute
COLLECTION POINTCOLLECTION POINT RENDEZVOUSRENDEZVOUS

Diverge
SCIENCE AREA 1’SCIENCE AREA 1’

SCIENCE AREA 3SCIENCE AREA 3

Landing Site: ABC

Landing Site: XYZ

O
N
E

SCIENCE AREA 1SCIENCE AREA 1

Executive
• pre-plans activities
• pre-plans paths
• dynamically schedules [Tsmardinos et al.]

Plant

Enroute Activity Encoded as a Temporal Plan Network

• Start with flexible plan representation

Enroute [450,540]
1 2

[0, 0]
Group Traverse Group Wait

[0, 0]

4 [405, 486] 5 [0, 0] [0, 0] [0, 54] [0, 0]

Science Target

8
[0, 0] [0,]Group Transmit

[0, 2]

Activity (or sub-activity)

Duration (temporal constraint)

Enroute Activity Encoded as a Temporal Plan Network

• Add conditional nodes

Enroute [450,540]
1 2

[0, 0]
Group Traverse Group Wait

[0, 0]

[0, 0] 4 [405, 486] 5 [0, 0] [0, 0] [0, 54] [0, 0]

Science Target

3 8
[0,][0, 0] Group Traverse [0, 0]

[0, 0]
Group Transmit

[405, 486] [0, 2]

Activity (or sub-activity)

Duration (temporal constraint)

Conditional node

Enroute Activity Encoded as a Temporal Plan Network

•Add temporally extended, symbolic constraints

Enroute [450,540]
1 2

[0, 0]
Group Traverse Group Wait

[0, 0]

[0, 0] 4 [405, 486] 5 [0, 0] [0, 0] 9 [0, 54] 10 [0, 0]
Ask(PATH1 = OK) Science Target Ask(EXPLORE = OK)

3 8 13
[0,][0, 0] Group Traverse [0, 0]

[0, 0]
Group Transmit

6 [405, 486] 7 11 [0, 2] 12
Ask(PATH2 = OK)

Activity (or sub-activity)

Duration (temporal constraint)

Conditional node

Symbolic constraint (Ask,Tell)

Instantiated Enroute Activity

•Add environmental constraints Group-Enroute
[500,800]

s e
[0,∞] [0,∞]

[450,540]

1 Group Traverse Group Wait 2

Ask(PROCEED)

4 9 105
Ask(PATH1=OK)

[405,486] [0,54]
Science Target

3 8 1
Group Traverse Group Transmit 3

Ask(PATH2=OK) [0,∞]
6 7 11 12[405,486] [0,2]

[10,10]
Tell(PATH1=OK) Tell(PROCEED)

[0,∞]
14 15 16 17

[450,450] [200,200]
Activity (or sub-activity)

Duration (temporal constraint)

Conditional node

Symbolic constraint (Ask,Tell) External constraints

Generates Schedulable Plan

Group-Enroute

[500,800]
s e

[0,∞] [0,∞]
[450,540]

1 Group Traverse Group Wait 2

Ask(PROCEED)

4 9 105
Ask(PATH1=OK)

[405,486] [0,54]
Science Target

133 Group Traverse 8
Group Transmit

Ask(PATH2=OK) [0,∞]
6 7 11 12

[405,486] [0,2]

[10,10]
Tell(PATH1=OK) Tell(PROCEED)

[0,∞]
14 15 16 17

[450,450] [200,200]

To Plan, . . . perform the following hierarchically:
• Trace trajectories
• Check schedulability

• Supporting and protecting goals (Asks)

Supporting and Protecting Goals

Unsupported Subgoal Threatened Activities

1 2

3 43 4

Goal: any UCAV at Target

1 2
Activity: UAV1 at Base

Activity: UAV1 at Target
Activity: UCAV1 at Target

Close open goals Activities can’t co-occur

Resolving Unsupported Subgoals:

• Scan plan graph,identifying activities that support open sub-goals; force to co-occur.

Resolving Threatened Subgoals:

• Search for inconsistent activities that co-occur, and impose ordering.

Key computation is bound time of occurrence:

• Used Floyd-Warshall APSP algorithm O(V3).

Randomized Experiments for Assessing
Scaling and Robustness

Randomized Experiments:

•	 Randomly generated range of scenarios with 1-50 vehicles.
•	 Each vehicle has two scenario options, each with five actions and

2 waypoints:

1. Go to waypoint 1
2. Observe science
3. Go to waypoint 2
4. Observe science
5. Return to collection point

•	 Waypoints generated randomly from environment with uniform
distribution.

Strategy Selection:

•	 TPN planner chooses one option per vehicle.
•	 Combined choices must be consistent with timing constraints and vehicle

paths.

Kirk Strategy Selection:

Scaling and Robustness

Each vehicle visits 2
science sites and returns

to collection point

Kirk Oct. ’02

Kirk April ’03

Performance Improvement Through
• Incremental temporal consistency
• Conflict-directed Search (in progress)

Control Sequencer

Deductive ControllerMode
Estimation

Mode
Reconfiguration

RMPL Model-based Program Titan Model-based Executive

Environment Model

CommandsObservations

Control Program

location goalslocation estimates

Selects consistent
threads of activity

from redundant methods

Tracks
location

Finds least
cost paths

z Executes concurrently
z Preempts
z non-deterministic choice
z A[l,u] timing
z A at l location

HOMEHOME

T
W
O

Enroute
COLLECTION POINTCOLLECTION POINT RENDEZVOUSRENDEZVOUS

Diverge
SCIENCE AREA 1’SCIENCE AREA 1’

SCIENCE AREA 3SCIENCE AREA 3

Landing Site: ABC

Landing Site: XYZ

O
N
E

SCIENCE AREA 1SCIENCE AREA 1

Executive
• pre-plans activities
• pre-plans paths
• dynamically schedules [Tsmardinos et al.]

Plant

Achieving Program States Combines

Logical Decisions and Trajectory Planning

Vehicle
Obstacle

Waypoint

Explorers Will Need to Be Dexterous

(Courtesy of Frank Kirchner. Used with permission.)

Outline

• Model-based Programming
• Autonomous Engineering Operations

– An Example
– Model based Execution
– Fast Reasoning using Conflicts

• Cooperating Mobile Vehicles
– Predictive Strategy Selection
– Planning Out The Strategy

OEP

Example:

Coaching Heterogeneous Teams

•Search and Rescue
•Ocean Exploration

A dozen vehicles is too many to micro manage

→ Act as a coach:
• Specify evolution of state and location.

(Courtesy of Jonathan How. Used with permission.)

Forest Fire Rescue

•	 Goal: retrieve family
from fire.

•	 Rescue cannot take
place until the local
fire is suppressed.

•	 Retrofit one rescue
vehicle for fire
suppression

Ambulance

Rescue Point

Fire

Fire Line

Forest

Kirk Model-based Execution System Overview

Strategy Selection

TPN Planner

Activity Planning

Generative
Activity Planner

Visibility Graph

Mission DeveloperRMPL
Strategy macrocontrol
decompositionprogram

Mission Controller

• Strategy Selection

• Activity Planning figures out

within strategic framework using

determines the optimal rules /
strategies to accomplish mission
goals.

how to achieve mission goals

available low-level actions.

Strategy
Macro Library

Operators,

Scenario Model
Tactics,

state configuration goals

environment
and action data

schedulable plan
with rationale

Human / Computer
Interface

MILP Path-Planning

RMPL Control Program

• (defclass rescue-team

(execute ()
(sequence

(parallel [l1,u1]

(tell-start(at family RescuePoint))

(tell-start(at uav1 Ambulance))
(tell-start(at uav2 Ambulance))Initial State

)
(parallel [l2,u2]

(ask-end(suppressed Fire)) Phase 1
Intermediate

State
(ask-end(rescued family))
(ask-end(at uav1 Ambulance))

)
)

)
)

(ask-end(at uav2 Ambulance)) Phase 2Goal State

Environment Model

• Terrain Map

• Object instantiations:
– UAV uav1
– UAV uav2
– RESCU-READY uav1

– RESCUE-READY uav2
– IN-DISTRESS family

– LOCATION Ambulance
– LOCATION Fire
– LOCATION RescuePoint

Vehicle Specifications

• Vehicle linearized dynamics

• Vehicle primitive operators:

– Fly(V,A,B)
• move UAV “V” from location “A” to location “B”

– Refit(V)
• Prepare UAV “V” to drop fire retardant

– Drop(V,A)
• Drop fire retardant at location “A” with UAV “V”

– Rescue(V,P,A)
• Rescue people “P” in distress with UAV “V” at location “A”

Kirk Model-based Execution System Overview

Strategy Selection

TPN Planner

Activity Planning

Generative
Activity Planner

Visibility Graph

Mission DeveloperRMPL
Strategy macrocontrol
decompositionprogram

Mission Controller

• Strategy Selection

• Activity Planning figures out

within strategic framework using

determines the optimal rules /
strategies to accomplish mission
goals.

how to achieve mission goals

available low-level actions.

Strategy
Macro Library

Operators,

Scenario Model
Tactics,

state configuration goals

environment
and action data

schedulable plan
with rationale

Human / Computer
Interface

MILP Path-Planning

Kirk Constructs Vehicle Activity Plan

Using a Generative Temporal Planner

Approach:
• Encode Goal Plan using an LPGP-style encoding
• Prototype using LPGP [Fox/Long, CP03]

Mission Goal State Plan

Generative Temporal Planner
Use Atomic Generative Planner

To Generate Operators and Precedence

Extract Temporal Plan
and Check Schedulability

Translate to Planning Problem
with Atomic Operators

Vehicle
Operator
Definitions

(GraphPlan – Blum & Furst)

Vehicle Activity Plan

Generated Activity Plan

Refit-Inv Fly-Inv Fly-InvRefit-End Refit-Start Fly-Start[10,+INF] [20,+INF] [20,+INF]
[10,20]Fly-Start [20,+INF]Fly-Inv Suppress-StartSuppress-Inv Fly-EndFire [20,+INF] [10,20] Suppress-End

CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1CP-Start CP-Midpoint [0,100] [0,100] [0,100] [0,100] [0,100] [0,100] [0,100]

Kirk extracts a least commitment plan and generates a rationale

[0,100]

[20,+INF] [10,20]Fly-Start
Fire

Fly-Inv
[20,+INF]

Fly-End Suppress-StartSuppress-Inv
[10,20]

Refit-Start Refit-Inv
[10,+INF] Refit-End Fly-Start

Fly-Inv
[20,+INF]

Fly-Inv
[20,+INF]

Kirk Model-based Execution System Overview

Strategy Selection

TPN Planner

Activity Planning

Generative
Activity Planner

Visibility Graph

Mission DeveloperRMPL
Strategy macrocontrol
decompositionprogram

Mission Controller

Human / Computer
Interface

MILP Path-Planning

• Strategy Selection

• Activity Planning figures out

within strategic framework using

determines the optimal rules /
strategies to accomplish mission
goals.

how to achieve mission goals

available low-level actions.

Strategy
Macro Library

Operators,

Scenario Model
Tactics,

state configuration goals

environment
and action data

schedulable plan
with rationale

Output: Least Commitment Plan

with Rationale

Plan layered with rationale Rescue(UAV1,Troops,RSQ)

Refit(UAV1)

Fly(UAV1,Base,RSQ) Fly(UAV1,RSQ,Base)

[20,+INF]
[10,+INF] [20,+INF] [30,60]

[20,+INF] [10,20] [20,+INF]

[0,100] [0,100]

Control Program Phase II
Control Program Phase I

Fly(UAV2,Radar,Base)Fly(UAV2,Base,Radar) Attack(UAV2,Radar)

Kirk Ensures Plan Completeness, Consistency
and Minimality

Activity-A fact-L Activity-C
fact-J [l3,u3]	

fact-O
[l1,u1]

fact-MStart End

Activity-B	 Activity-D
fact-Pfact-K fact-N[l2,u2] [l4,u4]

•	 Complete Plan
•	 A plan is complete IFF every precondition of every activity is achieved.
•	 An activity’s precondition is achieved IFF:

•	 The precondition is the effect of a preceding activity (support), and
• No intervening step conflicts with the precondition (mutex).

•	 Consistent Plan
•	 The plan is consistent IFF the temporal constraints of its activities are consistent (the

associated distance graph has no negative cycles), and
•	 no conflicting (mutex) activities can co-occur.

•	 Minimal Plan
•	 The plan is minimal IFF every constraint serves a purpose, i.e.,

•	 If we remove any temporal or symbolic constraint from a minimal plan,
the new plan is not equivalent to the original plan

Plan-based HCI Proof of Concept:

Coaching through Coordinated Views

(Courtesy of Howard Shrobe, Principal Research Scientist, MIT CSAIL. Used with permission.)

Plan & Geography View

Sequencing:

(Courtesy of Howard Shrobe, Principal Research Scientist, MIT CSAIL. Used with permission.)

Causal View

Causality

Explanation

(Courtesy of Howard Shrobe, Principal Research Scientist, MIT CSAIL. Used with permission.)

Model-based Programming

of Robust Robotic Networks

•	 Long-lived systems achieve robustness by coordinating a complex
network of internal devices.

•	 Programmers make a myriad of mistakes when programming
these autonomic processes.

•	 Model-based programming simplifies this task by elevating the
programmer to the level of a coach:
–	 Makes hidden states directly accessible to the programmer.
–	 Automatically mapping between states, observables and control variables.

•	 Model-based executives reasoning quickly and extensively by
exploiting conflicts.

•	 Mission-level executives combine activity planning, logical
decision making and control into a single hybrid decision problem.

