MERS

Model-based Programming of
Cooperating Explorers

Brian C. Williams
CSAIL
Dept. Aeronautics and Astronautics
Massachusetts Institute of Technology

Programming Long-lived Embedded Systems

O

Helium tank

Oxidizer tank

ﬁ Main
Engines

Large collections of devices must work 1n concert to achieve goals
 Devices indirectly observed and controlled
* Need quick, robust response to anomalies throughout life
» Must manage large levels of redundancy

lab

Coordination Recapitulated At The

: MERS
Level of COOp eratlng EXpl orers AERS

(Courtesy of Jonathan How. Used with permission.)

Coordination Issues Increase For

MERS
Dexterous Explorers

(Courtesy of Frank Kirchner. Used with permission.)

Outline et

lab

* Model-based Programming

* Autonomous Engineering Operations
— An Example
— Model based Execution
— Fast Reasoning using Conflicts
* Cooperating Mobile Vehicles
— Predictive Strategy Selection

— Planning Out The Strategy

MERS

Approach

Elevate programming and operation to
system-level coaching.

=» Model-based Programming

— State Aware: Coordinates behavior at the level
of intended state.

=» Model-based Execution

— Fault Aware: Uses models to achieve intended
behavior under normal and faulty conditions.

Why Model-based Programming? MERS

Polar Lander Leading Diagnosis:
 Legs deployed during descent.

* Noise spike on leg sensors
latched by software monitors.

 Laser altimeter registers 40m.

* Begins polling leg monitors to
determine touch down.

. Read latched noise spike as Objective: Support programmers
touchdown. with embedded languages that
» Engine shutdown at ~40m. avoid these m|StalfeS’ by
B reasoning about hidden state
Programmers often make automatically. l
commonsense mistakes when Reactive Model-based

reasoning about hidden state. Programming Language (RMPL)

Model-based Programs

.) MERS
Interact Directly with State
Embedded programs interact with Model-based programs
plant sensors and actuators: Interact with plant state:
* Read sensors * Read state
» Set actuators * Write state
Model-based
Embedded Program Embedded Program
A
Obs Cntrl g’
Model-base_d Executive
S Obs v Cntrl
Plant S
Plant

Programmer must map between Model-based executive maps
state and sensors/actuators. between state and sensors/actuators.

RMPL Model-based Program Titan Model-based Executive

Executes concurrently

Preempts
Queries (hidden) states
Asserts (hidden) state

State estimates State goals

Observations o 2Ok Commands

\ 0.01 L) closed
inflow = outflow = 0 Plant

Outline et

lab

* Model-based Programming

* Autonomous Engineering Operations
— An Example
— Model based Execution
— Fast Reasoning using Conflicts
* Cooperating Mobile Vehicles
— Predictive Strategy Selection

— Planning Out The Strategy

Motivation MERS

Images courtesy
of NASA

(Courtesy of Mitch Ingham. Used with permission.)

Mars Entry Example MERS

engine to standby
- = planetary approach switch to

o inertial I
D Inertial nav rotate to entry-orient
-------- g = & hold attitude
v

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)

Mars Entry Example MERS

switch to

inertial nav rotate to entry-orient

- - & hold attitude

;/{ separate
lander
&

(Courtesy of Mitch Ingham. Used with permission.)

Mars Entry Example MERS

planetary approach

-
- -
-
-

(Courtesy of Mitch Ingham. Used with permission.)

switch to

inertial nav rotate to entry-orient

~~~~~~ e - & hold attitude

;}{ separate
lander
%




Mars Entry Example MERS

P planetary approach switch to

-- inertial nav rotate to entry-orient

& hold attitude

,gj separate

lander

—_————
-
- -
-———
-
-
-

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

- planetary approach switch to

‘ _________________ N N .
D inertial nav rotate to entry-orient
------- - & hold attitude
%

*

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

- planetary approach switch to

& inertial nav '
______________________ rotate to entry-orient
------- - & hold attitude
T ~o a,”—

&

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

- planetary approach switch to

-- inertial nav rotate to entry-orient

. & hold attitude

—————
-
- -
-———
-
-
-

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

- planetary approach switch to

-- inertial nav rotate to entry-orient

. & hold attitude

—————
-
- -
-———
-
-
-

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

- planetary approach switch to

-- inertial nav rotate to entry-orient

. & hold attitude

—————
-
- -
-———
-
-
-

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

- planetary approach switch to

-- inertial nav rotate to entry-orient

. & hold attitude

—————
-
- -
-———
-
-
-

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

- planetary approach switch to

-- inertial nav rotate to entry-orient

. & hold attitude

—————
-
- -
-———
-
-
-

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



What 1s Required to Program at This
MERS
Level?

= planetary approach switch to

--- inertial nav rotate to entry-orient

& hold attitude

-
-
-
-———
-
-
-
-

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



MERS
1 Descent Example , |

Turn camera off and engine on

EngineA EngineB l EngineA EngineB

T .

Science Camera Science Camera




MERS

Model-based Program

Control program specifies Orbitinsert():

State traJeCtO“eS: (do-watching ((EngineA = Thrusting) OR

_ _ (EngineB = Thrusting))
« fires one of two engines (parallel
(EngineA = Standby)

* sets both engines to ‘standby’ _
(EngineB = Standby)

e prior to firing engine, camera must be (Camera = Off)

turned off to avoid plume contamination (do-watching (EngineA = Failed)
(when-donext ( (EngineA = Standby) AND

* in case of primary engine failure, fire (Camera = Off))

backup engine instead (EngineA = Thrusting)))

(when-donext ( (EngineA = Failed) AND

' ineB = db
Plant Model describes ggggr']gfg: g;fé)lr; y) AND

behavior of each component: (EngineB = Thrusting))))

— Nominal and Off nominal
— gualitative constraints
— likelihoods and costs



Plant Model PERS

lab

component modes...
described by finite domain constraints on variables...
deterministic and probabilistic transitions

cost/reward

Engine Model Camera Model

Ov

(thrust = zero) AND
(power_in = zero) Off

(power_in = zero) AND 0Ov 0v
(shutter = closed) Off

(thrust = zero) AND cmd
ower_in = nominal
(p — ) 2 kv turnoff- turnon-
standby-
(thrust = full) AND cmd
(power_in = nominal) (power_in = nominal) AND on 20 v

(shutter = open)

Firing

one per component ... operating concurrently




Example: The model-based program sets engine = thrusting, and the
deductive controller. . ..

Mode Estimation Mode Reconfiguration
Oxidizer tank Fuel tank . |

‘. LR

| | [
¥ X EX ¥EX EX
Selects valve ‘%
Deduces that g configuration;
thrust is off, and plans actions
the engine is healthy to open ‘ Deduces that a valve
six valves failed - stuck closed

* * i <= 3 F
* Determines valves * *
on backup engine that

will achieve thrust, and
plans needed actions.

Mode Reconfiguration Mode Estimation



Outline et

lab

* Model-based Programming

* Autonomous Engineering Operations
— An Example
— Model based Execution
— Fast Reasoning using Conflicts
* Cooperating Mobile Vehicles
— Predictive Strategy Selection

— Planning Out The Strategy



Modeling Plant Dynamics using Probabilistic
Concurrent, Constraint Automata (PCCA)

Compact Encoding:
— Concurrent probabilistic transitions

— State constraints between variables

Engine Model Camera Model

thrust = zero) AND : Off Ov Ov
((power_in = )zero) Off ov (power_in = zero)

off- AND 0.01
standby- (shutter = closed) >
2 kv cmd cmd

Failed
(thrust = zero) AND Stand by | 0.01 > wrmoff-
(power_in = nominal) _ O emd turnon-
standby- fire- cmd 001
cmd cmd - - .
0.01 Ov (power_in = nominal)

(thrust = full) AND AND
(power_in = nominal)

(shutter = open) 20v

Firing 2 kv

On

Typical Example (DS1 spacecraft):
— 80 Automata, 5 modes on average

— 3000 propositional variables, 12,000 propositional clauses



The Plant’s Behavior MERS

*Assigns a value to each *A set of concurrent transitions,

variable (e.g.,3,000 vars). one per automata (e.g., 80).

*Consistent with all state *Previous & Next states

constraints (e.g., 12,000). consistent with source & target
of transitions




RMPL Model-based Program Titan Model-based Executive

Executes concurrently

Preempts
Asserts and queries states
Chooses based on reward

State estimates

MAINTAIN (EAR OR EBR)

LEGEND:

EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

Observations £ Ersapco  MAINTAN EAP)

Plant : ‘ e EAS AND CO @

(EAF AND EBS AND CO)

EAF AND EBS

AND CO




RMPL Model-based Program

Executes concurrently
Preempts

Asserts and queries states
Chooses based on reward

Valve fails
stuck closed

Current Belief State

ol i
Bryzatin ®

| | | | ' [ X
X X

Titan Model-based Executive

State estimates State goals

X X

Fire backup
engine

()
\“ least cost reachable

First Action [ goal state




Mt Y qg min R.(m”) O

arg max P (m’)
s.t. M(m’) ~ O(mm’) is satisfiable s.t. M(m’) entails G(m’)
s.t. M(m’) 1s satisfiable
N !

State estimates State goals

/OpSat: \

arg min f(x)

s.t. C(x) 1s satisfiable

N

D(x) 1s unsatisfiable

Valve fails

stuck closed
Fire backup

engine

least cost reachable
goal state

Current Belief State First Action



Outline et

lab

* Model-based Programming

* Autonomous Engineering Operations
— An Example
— Model based Execution
— Fast Reasoning using Conflicts
* Cooperating Mobile Vehicles
— Predictive Strategy Selection

— Planning Out The Strategy



la

Diagnosis Formulation =~ MER>

Consi
find

Hand
Mal

stency-based Diagnosis: Given symptoms,
| diagnoses that are consistent with symptoms.

e Novel Failures by Suspending Constraints:
Ke no presumptions about faulty component

behavior.

Symptom




la

Diagnosis Formulation =~ MER>

Consi
find

Hand
Mal

stency-based Diagnosis: Given symptoms,
| diagnoses that are consistent with symptoms.

e Novel Failures by Suspending Constraints:
Ke no presumptions about faulty component

behavior.

1 A 1 Symptom

O R B



» Fast Reasoning Through Conflict #£¢>

When you have eliminated the impossible,
whatever remains, however improbable,
must be the truth.

- Sherlock Holmes. The Sign of the Four.

. Test Hypothesis
2. If inconsistent, learn reason for inconsistency

(a Conflict).
3. Use conflicts to leap over similarly infeasible options

to next best hypothesis.



Compare Most Likely Hypothesis
to Observations

=
s 07O
=

Helium tank

— —
£ X X
=
Oxidizer tank I Fuel tank

Flow, = zero

Pressure, = nominal ; | *
EEE: é

Main
Engines

C_<+—— Pressure,= nominal

Acceleration = zero

It 1s most likely that all components are okay.



Isolate Conflicting Information

=
i)
£ X

Oxidizer tank O Fuel tank
Flow 1= Zero % | i
| %
Main
Engines

The red component modes conflict with the model and
observations.



Leap to the Next Most Likely Hypothesis
that Resolves the Conflict

Helium tank

o L
e T

Oxidizer tank Fuel tank
. |
Flow 1= Zero % — i
| %
Main
Engines

The next hypothesis must remove the conflict



New Hypothesis Exposes Additional Conflicts

=
= s -
=

Helium tank

Oxidizer tank O Fuel tank
Pressure, = nominal <«— Pressure,= nominal

Engines

Another conflict, try removing both

Acceleration = zero



Final Hypothesis Resolves all Conflicts

=
=y HE)
=
Helium tank

— —
EXe= %X
=
I
Oxidizer tank Fuel tank
Pressure, = nominal ~ —’ «— Pressure,= no_rr_unal
Flow, =zero ! * Flow, = positive
= i
¥ X F X ¥ 3
Main

] Engines
Acceleration = zero &

Implementation: Conflict-directed A* search.



A* MERS

.

Increasing A

Cost /

Infeasible

b Feasible




Conflict-directed A* MERS

.

Increasing
Cost
(0 O O
Infeasible
@) @) @)
@) @) @)

Feasible




Conflict-directed A* MERS

.

Increasing

nicasioic

® °1° Feasible




Conflict-directed A* MERS

N

Increasing
Cost

Conflict 1

Conflict 2

Feasible

» Conflicts are mapped to
feasible regions as implicants
(Kernel Assignments)

¢ 101Ju0))

*\Want kernel assignment
containing the best cost state.



Outline et

lab

* Model-based Programming

* Autonomous Engineering Operations
— An Example
— Model based Execution
— Fast Reasoning using Conflicts
* Cooperating Mobile Vehicles
— Predictive Strategy Selection

— Planning Out The Strategy



lab

Coordination 1s Recapitulated at the

: MERS
Level of COOp eratlng EXpl orers AERS

(Courtesy of Jonathan How. Used with permission.)



Traditional Robot Architectures = MERS

Goal-directed
Programs

* Explicit human guidance 1s at the lowest
levels



RMPL for Robotics MERS

ct“'ab

Reactive Model-based
Programming
Language (RMPL)

Control
Programs

Model-based
Executive

What types of reasoning should the programmer/operator guide?

« State/mode inference e Method selection
* Machine control * Roadmap path planning
« Scheduling « Optimal trajectory planning

e Generative temporal planning



RMPL Model-based Program Kirk Model-based Executive

Control Program

Executes concurrently
Preempts
non-deterministic choice
A[l,u] timing

A atl location

Environment Model

Predictive Strategy Selection
Dynamic Scheduling
Ensures Safe Execution

location estimates location goals

Achieves State via Path Planning

Estimates using Localization

Observations 9 Commands

Plant [Fegp




Example Scenario MERS

HOM

Landing Site: ABC

Diverge

Landing Site: XYZ
SCIENCE AREA 1’

Properties: SCIENCE AREA 3
e Mars rover operators have been leery of generative planners.
o Are more comfortable with specifying contingencies.

o Want strong guarantees of safety and robust to uncertainty.

o Global path planning 1s on the edge

II~ Extend RMPL with planner-like capabilities ..except planning



lab

Reactive Model-based Programming MER>

Idea: To describe group behaviors, start with concurrent language:

e Add temporal constraints:

p
If c next A

Unless ¢ next A
A, B
Always A

e A [l,u]

Primitive activities
Conditional execution
Preemption

Full concurrency
[teration

 Timing

e Add choice (non-deterministic or decision-theoretic):

o Parameterize by location:

Choose {A, B}

o Aatll]

« Contingency



Example Enroute Activity: MERS
[ o

Enroute

Corridor 2

Rescue Area



RMPL for Group-Enroute MERS

lab

Temporal Constraints:
Group-Enroute(QQ[I,u] = {

choose {
do {
Group-Fly-
Path(PATH1 1,PATH1 2,PATH1 3,RE_POS)[1*90%,u*90%] ;
} maintaining PATH1 OK,
do {
Group-Fly-
Path(PATH2_ 1,PATH2 2 ,PATH2_ 3,RE_POS)[1*90%,u*90%] ;
} maintaining PATH2 OK

¥
{

Group-Transmit(OPS,ARRIVED)[O, 2],
do {
Group-Wart(HOLD1 ,HOLD2)[0,u*10%]
} watching PROCEED
} at RE_POS



RMPL for Group-Enroute MERS

lab

Location Constraints:
Group-Enroute(Q[I,u] = {

choose {
do {
Group-Fly-
Path(PATH1 1,PATH1 2,PATH1 3,RE_POS)[1*90%,u*90%] ;
} maintaining PATH1 OK,
do {
Group-Fly-
Path(PATH2 1,PATH2 2,PATH2 3,RE_POS)[1*90%,u*90%] ;
} maintaining PATH2 OK

¥
{

Group-Transmit(OPS,ARRIVED)[O, 2],
do {
Group-Wait(HOLD1,HOLD2)[0,u*10%]
} watching PROCEED
} at RE_POS



RMPL for Group-Enroute MERS

lab

Non-deterministic
Group-Enroute(Q[I,u] = {

choose { choice:
do {
Group-Traverse-
Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[1*90%,u*90%] ;
} maintaining PATH1 OK,
do {

Group-Traverse-
Path(PATH2_ 1,PATH2 2,PATH2_3,RE_POS)[1*90%,u*90%];
} maintaining PATH2 OK

¥
{

Group-Transmit(OPS,ARRIVED)[O, 2],
do {
Group-Wait(HOLD1,HOLD2)[0,u*10%]
} watching PROCEED
} at RE_POS



Outline et

lab

* Model-based Programming

* Autonomous Engineering Operations
— An Example
— Model based Execution
— Fast Reasoning using Conflicts
* Cooperating Mobile Vehicles
— Predictive Strategy Selection

— Planning Out The Strategy



RMPL Model-based Program Titan Model-based Executive

Executes concurrently
Preempts

non-deterministic choice
Afl,u] timing
A atl location

location estimates location goals

Executive @

» pre-plans activities Observations Commands
./_f_..ff/ <

- pre-plans paths Plant [*sg

» dynamically schedules [Tsmardinos et al.]



Enroute Activity Encoded as a Temporal Plan Network

« Start with flexible plan representation

Enroute [450,540]

0,0 :
0 Group Traverse Group Wait

Q 405, 486] G[O’ 0 0.0] Q [0, 541 G

Group Transmit [0, ]

[0, 2]

N Activity (or sub-activity)

B Duration (temporal constraint)




Enroute Activity Encoded as a Temporal Plan Network

* Add conditional nodes

Enroute [450,540]

Group Traverse Group Wait

[405, 486] [0, 54]
[0.0] =

Group Traverse Group Transmit

. G 1405, 486] O

[0, 2]

N Activity (or sub-activity)

B Duration (temporal constraint)

. Conditional node




Enroute Activity Encoded as a Temporal Plan Network

*Add temporally extended, symbolic constraints

Enroute [450,540]

Group Traverse Group Wait

[405, 486] [0, 54]
[0, 0]
/' Ask( PATHI = OK) Ask( EXPLORE = OK)

Group Traverse Group Transmit

@ 1405, 486]
Ask( PATH2 = OK)

[0, 0]
[0, 2]

Activity (or sub-activity)

Duration (temporal constraint)

Conditional node

Symbolic constraint (Ask,Tell)




Instantiated Enroute Activity

*Add environmental constraints

Group-Enroute

[500,800]
[0,00] %
[450,540]
- >
Group Traverse Group Walit
Ask(PATH1=0K) Ask(PROCEED)
>
[405,486] [0,54]
\S@ence tget \
Group Traverse/' Group Transmit 3
Ask(PATH2=0K)

[405,486] 1 [0,2] @

Tel 1 (PATH1=0K) Tel 1 (PROCEED)

-O—@®
[450,450] [200,200]

[10,10]

Activity (or sub-activity)

Duration (temporal constraint)

Conditional node

Symbolic constraint (Ask,Tell) B External constraints



Generates Schedulable Plan

[0,0]
[450,540]
Ask(PATH1=0K) Ask(PROCEED)
s O
[405,486] [0,54]
Science Tg#bet \
Group Traverse / /
Ask (PATH2=0K) [0,00]
20, D0
[405,486] [0,2]
Tel 1 (PATH1=0K Tel 1 (PROCEED
[10,10] eti( ) et ) [0,%0]
14 15 16
[450,450] [200,200]

To Plan, . . . perform the following hierarchically:
 Trace trajectories
» Check schedulability

 Supporting and protecting goals (Asks)



Supporting and Protecting Goals MERS

Unsupported Subgoal Threatened Activities
Goal: any UCAYV at Target

@ @ @Activity: UAV1 at Basci@

Activity: UCAV1 at Target

Activity: UAV1 at Target
3 3

Close open goals Activities can’t co-occur

Resolving Unsupported Subgoals:

» Scan plan graph,identifying activities that support open sub-goals; force to co-occur.
Resolving Threatened Subgoals:

» Search for inconsistent activities that co-occur, and impose ordering.

Key computation is bound time of occurrence:

 Used Floyd-Warshall APSP algorithm O(V3).



4\ Randomized Experiments for Assessing
lab

Scaling and Robustness

Randomized Experiments:

. Randomly generated range of scenarios with 1-50 vehicles.
«  Each vehicle has two scenario options, each with five actions and
2 waypolints:

1. Go to waypoint 1

2. Observe science

3. Go to waypoint 2

4. Observe science

5. Return to collection point

. Waypoints generated randomly from environment with uniform
distribution.

Strategy Selection:

. TPN planner chooses one option per vehicle.
. Combined choices must be consistent with timing constraints and vehicle

paths.



Kirk Strategy Selection:

. MERS
Scaling and Robustness

Flanning Time vs. Number of UAYs

” Each vehicle visits 2
2l science sites and returns.
to collection point

2a -
% a0k B Kirk Oct. 02 |
E B Kirk April 03
g 151 i
o

10 F -

i i

|:| | | 1
0 5 10 15 20 2& 30 3/ 40 45 A0
Performance Improvement Through MNurnber of UAY's

* Incremental temporal consistency
* Conflict-directed Search (in progress)



RMPL Model-based Program Titan Model-based Executive

Executes concurrently
Preempts

non-deterministic choice
Afl,u] timing
A atl location

location estimates location goals

Executive @

» pre-plans activities Observations Commands
./_f_..ff/ <

* pre-plans paths Plant [Fsg

» dynamically schedules [Tsmardinos et al.]



Achieving Program States Combines
Logical Decisions and Trajectory Planning

L1 Vehicle

A Waypoint



\ Explorers Will Need to Be Dexterous #5%>

(Courtesy of Frank Kirchner. Used with permission.)



Outline et

lab

* Model-based Programming

* Autonomous Engineering Operations
— An Example
— Model based Execution
— Fast Reasoning using Conflicts
* Cooperating Mobile Vehicles
— Predictive Strategy Selection

— Planning Out The Strategy



Example:

' MERS
»  Coaching Heterogeneous Teams

*Search and Rescue
Ocean Exploration

(Courtesy of Jonathan How. Used with permission.)

A dozen vehicles 1s too many to micro manage

— Act as a coach:
 Specify evolution of state and location.



Forest Fire Rescue peno

e Goal: retrieve family Fire Line
from fire. Forest
« Rescue cannot take - R - REN
. \
place until the local - ;e \
- . d O ; Rescue Point
ire 1s suppressed. Ambulance/ 1 ®
| Fire
\
\
 Retrofit one rescue \ P
. N
vehicle for fire S~ 7

suppression



Kirk Model-based Execution System Overview MERS

RMPL Mission Developer
control ; Strategy macro
orogram Strategy Selection decomposition

-

Strategy

Macro Library

Mission Controller ‘
lstate configuration goals

. Strategy Selection Activity Planning | ~
determines the optimal rules / envionment N~

strategies to accomplish mission and action data Operators,

goals. Tactics,
Scenario Model
-~

 Activity Planning figures out
how to achieve mission goals

within strategic framework using
available low-level actions. Human / Computer
Interface
schedulable plan
with rationale

MILP Path-Planning




RMPL Control Program MERS

e (defclass rescue-team
(execute ()

(parallel [11,ul]
(tell-start(at uavl Ambullance))

" (tell-start(at uav2 Ambulance))
initial State <{: (ask-end(suppressed Fire)) Phase 1

—

Intermediate ) (parallel [12,u2]
State (tell-start(at family RescuePoint))
—  (ask-end(rescued family))
(ask-end(at uavl Ambulance)) . Ph 2
Goal State < (ask-end(at uav2 Ambulance)) ase
)



Environment Model MERS

e Terrain Map

* (Object instantiations:
— UAV uavl
— UAV uav2
— RESCU-READY uavl
— RESCUE-READY uav?2
— IN-DISTRESS family
— LOCATION Ambulance
— LOCATION Fire
— LOCATION RescuePoint



Vehicle Specifications MERS

lab

e Vehicle linearized dynamics

* Vehicle primitive operators:

— Fly(V,A,B)

e move UAV “V” from location “A” to location “B”

— Refit(V)
* Prepare UAV “V” to drop fire retardant

— Drop(V,A)
* Drop fire retardant at location “A” with UAV “V?”

— Rescue(V,P,A)
* Rescue people “P” in distress with UAV “V” at location “A”



Kirk Model-based Execution System Overview MERS

RMPL Mission Developer
control ; Strategy macro
orogram Strategy Selection decomposition

-

Strategy

Macro Library

Mission Controller ‘
lstate configuration goals

. Strategy Selection Activity Planning | ~
determines the optimal rules / envionment N~ A

strategies to accomplish mission and action data Operators,

goals. Tactics,
Scenario Model
-~

 Activity Planning figures out
how to achieve mission goals

within strategic framework using
available low-level actions. Human / Computer
Interface
schedulable plan
with rationale

MILP Path-Planning




Kirk Constructs Vehicle Activity Plan
»  Using a Generative Temporal Planner

MERS

Approach:
* Encode Goal Plan using an LPGP-style encoding
 Prototype using LPGP [Fox/Long, CP03]

Mission Goal State Plan

Vehicle Use Atomic Generative Planner
Operator (GraphPlan — Blum & Furst)
Definitions To Generate Operators and Precedence

Venhicle Activity Plan




Generated Activity Plan MERS

" Refit-Inv : | iy Fly-Inv Fly-Inv
/"IM 110, +INF] ~I>Reflt-End I Fly-Start h20,+INF] [20,+INF]
Fl rt a q > =
/ _[20,+INF] | [10,20]
f oint

CF‘* CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1
~[T 0,200] || [0,100] ||| [0,100] | /93087 |  [0.100] ||| [0,100] || [0,100] |~

lllllllll

Kirk extracts a least commitment plan and generates a rationale



Kirk Model-based Execution System Overview MERS

RMPL Mission Developer
control ; Strategy macro
orogram Strategy Selection decomposition

-

Strategy

Macro Library

Mission Controller ‘
lstate configuration goals

. Strategy Selection Activity Planning | ~
determines the optimal rules / envionment N~ A

strategies to accomplish mission and action data Operators,

goals. Tactics,
Scenario Model
-~

 Activity Planning figures out
how to achieve mission goals

within strategic framework using
available low-level actions. Human / Computer
Interface
schedulable plan
with rationale

MILP Path-Planning




Output: Least Commitment Plan MERS
with Rationale

Plan layered with rationale Rescue(UAV1,Troops,RSQ)
Refit(UAV1
( ) Fly(UAV1,Base, RSQ) Fly(UAV1,RSQ,Base)
x‘mﬂ &HNF] [30\60] [ZO’%F]
e ' @)

> —> —>

[20 +INF]. o 10 @ [20,4 ,:]‘

> > > >
0, ﬁro\ \ V [0,100] O
Control Program Phase Il
Control Program Phase |

Fly(UAV2,Base,Radar) Attack(UAV2,Radar) Fly(UAV2,Radar,Base)




Kirk Ensures Plan Completeness, Consistenc:}h e
»; and Minimality

Activity-A fact-L Activity-C
fact-J ’ ! I ] ! | fact-O
1:H7 (13,
Start fact-M ' End

Activity-B Activity-D
fact-K \, [|2’u2] ‘»fa t-N ‘ [|4,U4] ‘ »faCt'y

« Complete Plan
» A plan is complete IFF every precondition of every activity is achieved.
* An activity’s precondition is achieved IFF:
» The precondition is the effect of a preceding activity (support), and
« _No.intervening.step.conflicts with.the precondition_ (mutex).

 Consistent Plan

* The plan is consistent IFF the temporal constraints of its activities are consistent (the
associated distance graph has no negative cycles), and

* no conflicting (mutex) activities can co-occur.

* Minimal Plan
* The plan is minimal IFF every constraint serves a purpose, i.e.,

* If we remove any temporal or symbolic constraint from a minimal plan,
the new plan is not equivalent to the original plan




Plan-based HCI Proof of Concept:

. . : MERS
Coaching through Coordinated Views

Betion: FLY-TO
\Botor: UCAVZ
Ohqjects: BASEL
[5, WA]
A \
i ) Betion: FLY-TO
WAYEATIT L Betor: UCAVL
— Ohijects: BASEL Flan
‘-\ Betion: FLY-TO Betion: ATTACK Top Level
Betor: UCAVL Bctor: UCAVI
UCAVZ /, o Objects: saML | [Objects: SAMI .
[5, NA] [10, 10] . \Botion: ATTACK
/ petion: FLY-TO) lacror: ucava
4 P [ction: FLY-TO 2;'?“; ?C;:;il T lobjects: mTL
Actor: Ucavz Jecker [10, 10]
Chijects: WAYPOINTL
RADARR]1
TETTT Activity UCAVZ-FLY-TO-WAYPOINT beginning
UCAVZ-FLY-TO-WAYPOINT Establishes the following
preregquisites:
/ UCAVZ-FLY-TO-WAYPOINT helps establish (AT UCAVZ
WAYPOINT) a prerequisite of UCAVZ-FLY-TO-TARGET
\ UCAVZ-FLY-TO-WAYPOINT establishes (AT UCAVZ WAYEC
_'—'—'_'-'_ﬂ-
UCAVZ executes a FLY-TO operation on WAYPOINTL
- - - Activity UCAV1-FLY-TO-SAH beginming
sction: FLY-TO Action: FLY-TO Bction: ATTACK UCAV1-FLY-TO-SAM Establishes the following
wotor: TCAVZ | Actor: UCAVZ 1Actc\r: UCAVZ rerequisites:
thjects: WAYPOINT1 Objects: HVT1 Objects: HVT1 Action: FLY-TO r UCASF? FLY TCI SAM hel tablish (AT UCAV1 SAML
[10, 10] hotor: UCAVE Skt eips &s ish | ) a

Bction: ATTACK Dbjects: BASEL prerequisite of UCAV1-ATTACK-SAM
Actor: UCAVL Action: FLY-TO [5, NA] UCAV1-FLY-TO-5AM establishes (AT UCAV1 SAMI)
Objects: SAM1 Botor: UCAVL UCAV] executes a FLY-TO operation on SAML

tction: FLY-TO
sctor: TCAVI
ibjects: SAM1

Set Cument Plan Rewvert Clear Soreen UCAV1-FLY-TO-SEH finished, go on? [defaunlt Yes]: l

(Courtesy of Howard Shrobe, Principal Research Scientist, MIT CSAIL. Used with permission.)



Plan & Geography View MERS

)

1
WAYEOTHT 1

—_——

T

g ©

-
BAM]

RADAR 1
EESET \
UCAVZ /

T

Seq uenCl ng Action: FLY-TO Action: FLY-TO Action: ATTACE
Botor: UCAVZ = Aotor: UCAVZ Elctar: TCAVZ
Obqjects: WAYPOINTI Obqjects: HVT1 Obqjects: HVT1 Botion: FLY-TO

[10, 10] \Actnr: UZAV2

Botion: FLY-TO Botion: ATTACE Objects: BASEL
Botor: UCAWV1 . |Actor: UCAVI ABction: FLY-TO [S, HNA]
Objects: SAML Obdjects: SAM1 |™|actor: UCAV1
[5, NA] [10, 10] oObjects: BASE1

(Courtesy of Howard Shrobe, Principal Research Scientist, MIT CSAIL. Used with permission.)



Causal View MERS

lab

Causality

Beotion: FLY-TO
Bobor: UCAVZ
ObHjects: BASEL
[5, NA]

Beotion: FLY-TD
Beoktor: UCZAV]
CObjects: BASEL

Plan

Action: FLY-TO Betion: ATTACE Top Lewel
. Botor: UCAWV1

Ac?nr. mZAV1 _Clnr

Obhjects: SAMIL Ohjects: SAML .

[S, HA] [ 10, 10] Beotion: ATTACE

Betion: FLY-TO Beotor: TCAVE
Betor: UCAVZ 10k jects: HVTL
'_']:l:lect-Sl HVT1 [ lDf lD]

Beotion: FLY-TD
Beotor: UCAVZ
Obqjects: WAYPOINT1

Explanation
UCAVZ2-ATTACE-TARGET Has the following prerequisites:
UCAVZ-ATTACK-TARGET requires (AT UCAVZ HVTL)
This was established by
Botivity UCAVZ-FLY-TO-TARGET achiewving (AT UCAVZ HY

UCAVZ-ATTACKE-TARGET Establishes the following
prerequisites:
UCAVZ-ATTACE-TARSET helps establish (DESTROYED HWVT1)
preregquisite of HNEW
UCAVZ-ATTACE -TARGET establishes (DESTROYED HVTL)

(Courtesy of Howard Shrobe, Principal Research Scientist, MIT CSAIL. Used with permission.)



Model-based Programming
lab of Robust Robotic Networks

MERS

* Long-lived systems achieve robustness by coordinating a complex
network of internal devices.

* Programmers make a myriad of mistakes when programming
these autonomic processes.

* Model-based programming simplifies this task by elevating the
programmer to the level of a coach:
— Makes hidden states directly accessible to the programmer.

— Automatically mapping between states, observables and control variables.

* Model-based executives reasoning quickly and extensively by
exploiting conflicts.

* Mission-level executives combine activity planning, logical
decision making and control into a single hybrid decision problem.





