MERS

Model-based Programming of
Cooperating Explorers

Brian C. Williams
CSAIL
Dept. Aeronautics and Astronautics
Massachusetts Institute of Technology



Programming Long-lived Embedded Systems

O

Helium tank

Oxidizer tank

ﬁ Main
Engines

Large collections of devices must work 1n concert to achieve goals
 Devices indirectly observed and controlled
* Need quick, robust response to anomalies throughout life
» Must manage large levels of redundancy
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Coordination Recapitulated At The

: MERS
Level of COOp eratlng EXpl orers AERS

(Courtesy of Jonathan How. Used with permission.)



Coordination Issues Increase For

MERS
Dexterous Explorers

(Courtesy of Frank Kirchner. Used with permission.)
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MERS

Approach

Elevate programming and operation to
system-level coaching.

=» Model-based Programming

— State Aware: Coordinates behavior at the level
of intended state.

=» Model-based Execution

— Fault Aware: Uses models to achieve intended
behavior under normal and faulty conditions.



Why Model-based Programming? MERS

Polar Lander Leading Diagnosis:
 Legs deployed during descent.

* Noise spike on leg sensors
latched by software monitors.

 Laser altimeter registers 40m.

* Begins polling leg monitors to
determine touch down.

. Read latched noise spike as Objective: Support programmers
touchdown. with embedded languages that
» Engine shutdown at ~40m. avoid these m|StalfeS’ by
B reasoning about hidden state
Programmers often make automatically. l
commonsense mistakes when Reactive Model-based

reasoning about hidden state. Programming Language (RMPL)



Model-based Programs

. ) MERS
Interact Directly with State
Embedded programs interact with Model-based programs
plant sensors and actuators: Interact with plant state:
* Read sensors * Read state
» Set actuators * Write state
Model-based
Embedded Program Embedded Program
A
Obs Cntrl g’
Model-base_d Executive
S Obs v Cntrl
Plant S
Plant

Programmer must map between Model-based executive maps
state and sensors/actuators. between state and sensors/actuators.



RMPL Model-based Program Titan Model-based Executive

Executes concurrently

Preempts
Queries (hidden) states
Asserts (hidden) state

State estimates State goals

Observations o 2Ok Commands

\ 0.01 L) closed
inflow = outflow = 0 Plant
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Motivation MERS

Images courtesy
of NASA

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

engine to standby
- = planetary approach switch to

o inertial I
D Inertial nav rotate to entry-orient
-------- g = & hold attitude
v

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

switch to

inertial nav rotate to entry-orient

- - & hold attitude

;/{ separate
lander
&

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

planetary approach

-
- -
-
-

(Courtesy of Mitch Ingham. Used with permission.)

switch to

inertial nav rotate to entry-orient

~~~~~~ e - & hold attitude

;}{ separate
lander
%




Mars Entry Example MERS

P planetary approach switch to

-- inertial nav rotate to entry-orient

& hold attitude

,gj separate

lander

—_————
-
- -
-———
-
-
-

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

- planetary approach switch to

‘ _________________ N N .
D inertial nav rotate to entry-orient
------- - & hold attitude
%

*

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

- planetary approach switch to

& inertial nav '
______________________ rotate to entry-orient
------- - & hold attitude
T ~o a,”—

&

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

- planetary approach switch to

-- inertial nav rotate to entry-orient

. & hold attitude

—————
-
- -
-———
-
-
-

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

- planetary approach switch to

-- inertial nav rotate to entry-orient

. & hold attitude

—————
-
- -
-———
-
-
-

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

- planetary approach switch to

-- inertial nav rotate to entry-orient

. & hold attitude

—————
-
- -
-———
-
-
-

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

- planetary approach switch to

-- inertial nav rotate to entry-orient

. & hold attitude

—————
-
- -
-———
-
-
-

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example MERS

- planetary approach switch to

-- inertial nav rotate to entry-orient

. & hold attitude

—————
-
- -
-———
-
-
-

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



What 1s Required to Program at This
MERS
Level?

= planetary approach switch to

--- inertial nav rotate to entry-orient

& hold attitude

-
-
-
-———
-
-
-
-

separate
lander

(Courtesy of Mitch Ingham. Used with permission.)



MERS
1 Descent Example , |

Turn camera off and engine on

EngineA EngineB l EngineA EngineB

T .

Science Camera Science Camera




MERS

Model-based Program

Control program specifies Orbitinsert():

State traJeCtO“eS: (do-watching ((EngineA = Thrusting) OR

_ _ (EngineB = Thrusting))
« fires one of two engines (parallel
(EngineA = Standby)

* sets both engines to ‘standby’ _
(EngineB = Standby)

e prior to firing engine, camera must be (Camera = Off)

turned off to avoid plume contamination (do-watching (EngineA = Failed)
(when-donext ( (EngineA = Standby) AND

* in case of primary engine failure, fire (Camera = Off))

backup engine instead (EngineA = Thrusting)))

(when-donext ( (EngineA = Failed) AND

' ineB = db
Plant Model describes ggggr']gfg: g;fé)lr; y) AND

behavior of each component: (EngineB = Thrusting))))

— Nominal and Off nominal
— gualitative constraints
— likelihoods and costs



Plant Model PERS

lab

component modes...
described by finite domain constraints on variables...
deterministic and probabilistic transitions

cost/reward

Engine Model Camera Model

Ov

(thrust = zero) AND
(power_in = zero) Off

(power_in = zero) AND 0Ov 0v
(shutter = closed) Off

(thrust = zero) AND cmd
ower_in = nominal
(p — ) 2 kv turnoff- turnon-
standby-
(thrust = full) AND cmd
(power_in = nominal) (power_in = nominal) AND on 20 v

(shutter = open)

Firing

one per component ... operating concurrently




Example: The model-based program sets engine = thrusting, and the
deductive controller. . ..

Mode Estimation Mode Reconfiguration
Oxidizer tank Fuel tank . |

‘. LR

| | [
¥ X EX ¥EX EX
Selects valve ‘%
Deduces that g configuration;
thrust is off, and plans actions
the engine is healthy to open ‘ Deduces that a valve
six valves failed - stuck closed

* * i <= 3 F
* Determines valves * *
on backup engine that

will achieve thrust, and
plans needed actions.

Mode Reconfiguration Mode Estimation
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Modeling Plant Dynamics using Probabilistic
Concurrent, Constraint Automata (PCCA)

Compact Encoding:
— Concurrent probabilistic transitions

— State constraints between variables

Engine Model Camera Model

thrust = zero) AND : Off Ov Ov
((power_in = )zero) Off ov (power_in = zero)

off- AND 0.01
standby- (shutter = closed) >
2 kv cmd cmd

Failed
(thrust = zero) AND Stand by | 0.01 > wrmoff-
(power_in = nominal) _ O emd turnon-
standby- fire- cmd 001
cmd cmd - - .
0.01 Ov (power_in = nominal)

(thrust = full) AND AND
(power_in = nominal)

(shutter = open) 20v

Firing 2 kv

On

Typical Example (DS1 spacecraft):
— 80 Automata, 5 modes on average

— 3000 propositional variables, 12,000 propositional clauses



The Plant’s Behavior MERS

*Assigns a value to each *A set of concurrent transitions,

variable (e.g.,3,000 vars). one per automata (e.g., 80).

*Consistent with all state *Previous & Next states

constraints (e.g., 12,000). consistent with source & target
of transitions




RMPL Model-based Program Titan Model-based Executive

Executes concurrently

Preempts
Asserts and queries states
Chooses based on reward

State estimates

MAINTAIN (EAR OR EBR)

LEGEND:

EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

Observations £ Ersapco  MAINTAN EAP)

Plant : ‘ e EAS AND CO @

(EAF AND EBS AND CO)

EAF AND EBS

AND CO




RMPL Model-based Program

Executes concurrently
Preempts

Asserts and queries states
Chooses based on reward

Valve fails
stuck closed

Current Belief State

ol i
Bryzatin ®

| | | | ' [ X
X X

Titan Model-based Executive

State estimates State goals

X X

Fire backup
engine

()
\“ least cost reachable

First Action [ goal state




Mt Y qg min R.(m”) O

arg max P (m’)
s.t. M(m’) ~ O(mm’) is satisfiable s.t. M(m’) entails G(m’)
s.t. M(m’) 1s satisfiable
N !

State estimates State goals

/OpSat: \

arg min f(x)

s.t. C(x) 1s satisfiable

N

D(x) 1s unsatisfiable

Valve fails

stuck closed
Fire backup

engine

least cost reachable
goal state

Current Belief State First Action
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la

Diagnosis Formulation =~ MER>

Consi
find

Hand
Mal

stency-based Diagnosis: Given symptoms,
| diagnoses that are consistent with symptoms.

e Novel Failures by Suspending Constraints:
Ke no presumptions about faulty component

behavior.

Symptom




la

Diagnosis Formulation =~ MER>

Consi
find

Hand
Mal

stency-based Diagnosis: Given symptoms,
| diagnoses that are consistent with symptoms.

e Novel Failures by Suspending Constraints:
Ke no presumptions about faulty component

behavior.

1 A 1 Symptom

O R B



» Fast Reasoning Through Conflict #£¢>

When you have eliminated the impossible,
whatever remains, however improbable,
must be the truth.

- Sherlock Holmes. The Sign of the Four.

. Test Hypothesis
2. If inconsistent, learn reason for inconsistency

(a Conflict).
3. Use conflicts to leap over similarly infeasible options

to next best hypothesis.



Compare Most Likely Hypothesis
to Observations

=
s 07O
=

Helium tank

— —
£ X X
=
Oxidizer tank I Fuel tank

Flow, = zero

Pressure, = nominal ; | *
EEE: é

Main
Engines

C_<+—— Pressure,= nominal

Acceleration = zero

It 1s most likely that all components are okay.



Isolate Conflicting Information

=
i)
£ X

Oxidizer tank O Fuel tank
Flow 1= Zero % | i
| %
Main
Engines

The red component modes conflict with the model and
observations.



Leap to the Next Most Likely Hypothesis
that Resolves the Conflict

Helium tank

o L
e T

Oxidizer tank Fuel tank
. |
Flow 1= Zero % — i
| %
Main
Engines

The next hypothesis must remove the conflict



New Hypothesis Exposes Additional Conflicts

=
= s -
=

Helium tank

Oxidizer tank O Fuel tank
Pressure, = nominal <«— Pressure,= nominal

Engines

Another conflict, try removing both

Acceleration = zero



Final Hypothesis Resolves all Conflicts

=
=y HE)
=
Helium tank

— —
EXe= %X
=
I
Oxidizer tank Fuel tank
Pressure, = nominal ~ —’ «— Pressure,= no_rr_unal
Flow, =zero ! * Flow, = positive
= i
¥ X F X ¥ 3
Main

] Engines
Acceleration = zero &

Implementation: Conflict-directed A* search.



A* MERS

.

Increasing A

Cost /

Infeasible

b Feasible




Conflict-directed A* MERS

.

Increasing
Cost
(0 O O
Infeasible
@) @) @)
@) @) @)

Feasible




Conflict-directed A* MERS

.

Increasing

nicasioic

® °1° Feasible




Conflict-directed A* MERS

N

Increasing
Cost

Conflict 1

Conflict 2

Feasible

» Conflicts are mapped to
feasible regions as implicants
(Kernel Assignments)

¢ 101Ju0))

*\Want kernel assignment
containing the best cost state.
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Coordination 1s Recapitulated at the

: MERS
Level of COOp eratlng EXpl orers AERS

(Courtesy of Jonathan How. Used with permission.)



Traditional Robot Architectures = MERS

Goal-directed
Programs

* Explicit human guidance 1s at the lowest
levels



RMPL for Robotics MERS

ct“'ab

Reactive Model-based
Programming
Language (RMPL)

Control
Programs

Model-based
Executive

What types of reasoning should the programmer/operator guide?

« State/mode inference e Method selection
* Machine control * Roadmap path planning
« Scheduling « Optimal trajectory planning

e Generative temporal planning



RMPL Model-based Program Kirk Model-based Executive

Control Program

Executes concurrently
Preempts
non-deterministic choice
A[l,u] timing

A atl location

Environment Model

Predictive Strategy Selection
Dynamic Scheduling
Ensures Safe Execution

location estimates location goals

Achieves State via Path Planning

Estimates using Localization

Observations 9 Commands

Plant [Fegp




Example Scenario MERS

HOM

Landing Site: ABC

Diverge

Landing Site: XYZ
SCIENCE AREA 1’

Properties: SCIENCE AREA 3
e Mars rover operators have been leery of generative planners.
o Are more comfortable with specifying contingencies.

o Want strong guarantees of safety and robust to uncertainty.

o Global path planning 1s on the edge

II~ Extend RMPL with planner-like capabilities ..except planning



lab

Reactive Model-based Programming MER>

Idea: To describe group behaviors, start with concurrent language:

e Add temporal constraints:

p
If c next A

Unless ¢ next A
A, B
Always A

e A [l,u]

Primitive activities
Conditional execution
Preemption

Full concurrency
[teration

 Timing

e Add choice (non-deterministic or decision-theoretic):

o Parameterize by location:

Choose {A, B}

o Aatll]

« Contingency



Example Enroute Activity: MERS
[ o

Enroute

Corridor 2

Rescue Area



RMPL for Group-Enroute MERS

lab

Temporal Constraints:
Group-Enroute(QQ[I,u] = {

choose {
do {
Group-Fly-
Path(PATH1 1,PATH1 2,PATH1 3,RE_POS)[1*90%,u*90%] ;
} maintaining PATH1 OK,
do {
Group-Fly-
Path(PATH2_ 1,PATH2 2 ,PATH2_ 3,RE_POS)[1*90%,u*90%] ;
} maintaining PATH2 OK

¥
{

Group-Transmit(OPS,ARRIVED)[O, 2],
do {
Group-Wart(HOLD1 ,HOLD2)[0,u*10%]
} watching PROCEED
} at RE_POS



RMPL for Group-Enroute MERS

lab

Location Constraints:
Group-Enroute(Q[I,u] = {

choose {
do {
Group-Fly-
Path(PATH1 1,PATH1 2,PATH1 3,RE_POS)[1*90%,u*90%] ;
} maintaining PATH1 OK,
do {
Group-Fly-
Path(PATH2 1,PATH2 2,PATH2 3,RE_POS)[1*90%,u*90%] ;
} maintaining PATH2 OK

¥
{

Group-Transmit(OPS,ARRIVED)[O, 2],
do {
Group-Wait(HOLD1,HOLD2)[0,u*10%]
} watching PROCEED
} at RE_POS



RMPL for Group-Enroute MERS

lab

Non-deterministic
Group-Enroute(Q[I,u] = {

choose { choice:
do {
Group-Traverse-
Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[1*90%,u*90%] ;
} maintaining PATH1 OK,
do {

Group-Traverse-
Path(PATH2_ 1,PATH2 2,PATH2_3,RE_POS)[1*90%,u*90%];
} maintaining PATH2 OK

¥
{

Group-Transmit(OPS,ARRIVED)[O, 2],
do {
Group-Wait(HOLD1,HOLD2)[0,u*10%]
} watching PROCEED
} at RE_POS
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RMPL Model-based Program Titan Model-based Executive

Executes concurrently
Preempts

non-deterministic choice
Afl,u] timing
A atl location

location estimates location goals

Executive @

» pre-plans activities Observations Commands
./_f_..ff/ <

- pre-plans paths Plant [*sg

» dynamically schedules [Tsmardinos et al.]



Enroute Activity Encoded as a Temporal Plan Network

« Start with flexible plan representation

Enroute [450,540]

0,0 :
0 Group Traverse Group Wait

Q 405, 486] G[O’ 0 0.0] Q [0, 541 G

Group Transmit [0, ]

[0, 2]

N Activity (or sub-activity)

B Duration (temporal constraint)




Enroute Activity Encoded as a Temporal Plan Network

* Add conditional nodes

Enroute [450,540]

Group Traverse Group Wait

[405, 486] [0, 54]
[0.0] =

Group Traverse Group Transmit

. G 1405, 486] O

[0, 2]

N Activity (or sub-activity)

B Duration (temporal constraint)

. Conditional node




Enroute Activity Encoded as a Temporal Plan Network

*Add temporally extended, symbolic constraints

Enroute [450,540]

Group Traverse Group Wait

[405, 486] [0, 54]
[0, 0]
/' Ask( PATHI = OK) Ask( EXPLORE = OK)

Group Traverse Group Transmit

@ 1405, 486]
Ask( PATH2 = OK)

[0, 0]
[0, 2]

Activity (or sub-activity)

Duration (temporal constraint)

Conditional node

Symbolic constraint (Ask,Tell)




Instantiated Enroute Activity

*Add environmental constraints

Group-Enroute

[500,800]
[0,00] %
[450,540]
- >
Group Traverse Group Walit
Ask(PATH1=0K) Ask(PROCEED)
>
[405,486] [0,54]
\S@ence tget \
Group Traverse/' Group Transmit 3
Ask(PATH2=0K)

[405,486] 1 [0,2] @

Tel 1 (PATH1=0K) Tel 1 (PROCEED)

-O—@®
[450,450] [200,200]

[10,10]

Activity (or sub-activity)

Duration (temporal constraint)

Conditional node

Symbolic constraint (Ask,Tell) B External constraints



Generates Schedulable Plan

[0,0]
[450,540]
Ask(PATH1=0K) Ask(PROCEED)
s O
[405,486] [0,54]
Science Tg#bet \
Group Traverse / /
Ask (PATH2=0K) [0,00]
20, D0
[405,486] [0,2]
Tel 1 (PATH1=0K Tel 1 (PROCEED
[10,10] eti( ) et ) [0,%0]
14 15 16
[450,450] [200,200]

To Plan, . . . perform the following hierarchically:
 Trace trajectories
» Check schedulability

 Supporting and protecting goals (Asks)



Supporting and Protecting Goals MERS

Unsupported Subgoal Threatened Activities
Goal: any UCAYV at Target

@ @ @Activity: UAV1 at Basci@

Activity: UCAV1 at Target

Activity: UAV1 at Target
3 3

Close open goals Activities can’t co-occur

Resolving Unsupported Subgoals:

» Scan plan graph,identifying activities that support open sub-goals; force to co-occur.
Resolving Threatened Subgoals:

» Search for inconsistent activities that co-occur, and impose ordering.

Key computation is bound time of occurrence:

 Used Floyd-Warshall APSP algorithm O(V3).



4\ Randomized Experiments for Assessing
lab

Scaling and Robustness

Randomized Experiments:

. Randomly generated range of scenarios with 1-50 vehicles.
«  Each vehicle has two scenario options, each with five actions and
2 waypolints:

1. Go to waypoint 1

2. Observe science

3. Go to waypoint 2

4. Observe science

5. Return to collection point

. Waypoints generated randomly from environment with uniform
distribution.

Strategy Selection:

. TPN planner chooses one option per vehicle.
. Combined choices must be consistent with timing constraints and vehicle

paths.



Kirk Strategy Selection:

. MERS
Scaling and Robustness

Flanning Time vs. Number of UAYs

” Each vehicle visits 2
2l science sites and returns.
to collection point

2a -
% a0k B Kirk Oct. 02 |
E B Kirk April 03
g 151 i
o

10 F -

i i

|:| | | 1
0 5 10 15 20 2& 30 3/ 40 45 A0
Performance Improvement Through MNurnber of UAY's

* Incremental temporal consistency
* Conflict-directed Search (in progress)



RMPL Model-based Program Titan Model-based Executive

Executes concurrently
Preempts

non-deterministic choice
Afl,u] timing
A atl location

location estimates location goals

Executive @

» pre-plans activities Observations Commands
./_f_..ff/ <

* pre-plans paths Plant [Fsg

» dynamically schedules [Tsmardinos et al.]



Achieving Program States Combines
Logical Decisions and Trajectory Planning

L1 Vehicle

A Waypoint



\ Explorers Will Need to Be Dexterous #5%>

(Courtesy of Frank Kirchner. Used with permission.)
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Example:

' MERS
»  Coaching Heterogeneous Teams

*Search and Rescue
Ocean Exploration

(Courtesy of Jonathan How. Used with permission.)

A dozen vehicles 1s too many to micro manage

— Act as a coach:
 Specify evolution of state and location.



Forest Fire Rescue peno

e Goal: retrieve family Fire Line
from fire. Forest
« Rescue cannot take - R - REN
. \
place until the local - ;e \
- . d O ; Rescue Point
ire 1s suppressed. Ambulance/ 1 ®
| Fire
\
\
 Retrofit one rescue \ P
. N
vehicle for fire S~ 7

suppression



Kirk Model-based Execution System Overview MERS

RMPL Mission Developer
control ; Strategy macro
orogram Strategy Selection decomposition

-

Strategy

Macro Library

Mission Controller ‘
lstate configuration goals

. Strategy Selection Activity Planning | ~
determines the optimal rules / envionment N~

strategies to accomplish mission and action data Operators,

goals. Tactics,
Scenario Model
-~

 Activity Planning figures out
how to achieve mission goals

within strategic framework using
available low-level actions. Human / Computer
Interface
schedulable plan
with rationale

MILP Path-Planning




RMPL Control Program MERS

e (defclass rescue-team
(execute ()

(parallel [11,ul]
(tell-start(at uavl Ambullance))

" (tell-start(at uav2 Ambulance))
initial State <{: (ask-end(suppressed Fire)) Phase 1

—

Intermediate ) (parallel [12,u2]
State (tell-start(at family RescuePoint))
—  (ask-end(rescued family))
(ask-end(at uavl Ambulance)) . Ph 2
Goal State < (ask-end(at uav2 Ambulance)) ase
)



Environment Model MERS

e Terrain Map

* (Object instantiations:
— UAV uavl
— UAV uav2
— RESCU-READY uavl
— RESCUE-READY uav?2
— IN-DISTRESS family
— LOCATION Ambulance
— LOCATION Fire
— LOCATION RescuePoint



Vehicle Specifications MERS

lab

e Vehicle linearized dynamics

* Vehicle primitive operators:

— Fly(V,A,B)

e move UAV “V” from location “A” to location “B”

— Refit(V)
* Prepare UAV “V” to drop fire retardant

— Drop(V,A)
* Drop fire retardant at location “A” with UAV “V?”

— Rescue(V,P,A)
* Rescue people “P” in distress with UAV “V” at location “A”



Kirk Model-based Execution System Overview MERS

RMPL Mission Developer
control ; Strategy macro
orogram Strategy Selection decomposition

-

Strategy

Macro Library

Mission Controller ‘
lstate configuration goals

. Strategy Selection Activity Planning | ~
determines the optimal rules / envionment N~ A

strategies to accomplish mission and action data Operators,

goals. Tactics,
Scenario Model
-~

 Activity Planning figures out
how to achieve mission goals

within strategic framework using
available low-level actions. Human / Computer
Interface
schedulable plan
with rationale

MILP Path-Planning




Kirk Constructs Vehicle Activity Plan
»  Using a Generative Temporal Planner

MERS

Approach:
* Encode Goal Plan using an LPGP-style encoding
 Prototype using LPGP [Fox/Long, CP03]

Mission Goal State Plan

Vehicle Use Atomic Generative Planner
Operator (GraphPlan — Blum & Furst)
Definitions To Generate Operators and Precedence

Venhicle Activity Plan




Generated Activity Plan MERS

" Refit-Inv : | iy Fly-Inv Fly-Inv
/"IM 110, +INF] ~I>Reflt-End I Fly-Start h20,+INF] [20,+INF]
Fl rt a q > =
/ _[20,+INF] | [10,20]
f oint

CF‘* CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1
~[T 0,200] || [0,100] ||| [0,100] | /93087 |  [0.100] ||| [0,100] || [0,100] |~

lllllllll

Kirk extracts a least commitment plan and generates a rationale



Kirk Model-based Execution System Overview MERS

RMPL Mission Developer
control ; Strategy macro
orogram Strategy Selection decomposition

-

Strategy

Macro Library

Mission Controller ‘
lstate configuration goals

. Strategy Selection Activity Planning | ~
determines the optimal rules / envionment N~ A

strategies to accomplish mission and action data Operators,

goals. Tactics,
Scenario Model
-~

 Activity Planning figures out
how to achieve mission goals

within strategic framework using
available low-level actions. Human / Computer
Interface
schedulable plan
with rationale

MILP Path-Planning




Output: Least Commitment Plan MERS
with Rationale

Plan layered with rationale Rescue(UAV1,Troops,RSQ)
Refit(UAV1
( ) Fly(UAV1,Base, RSQ) Fly(UAV1,RSQ,Base)
x‘mﬂ &HNF] [30\60] [ZO’%F]
e ' @)

> —> —>

[20 +INF]. o 10 @ [20,4 ,:]‘

> > > >
0, ﬁro\ \ V [0,100] O
Control Program Phase Il
Control Program Phase |

Fly(UAV2,Base,Radar) Attack(UAV2,Radar) Fly(UAV2,Radar,Base)




Kirk Ensures Plan Completeness, Consistenc:}h e
»; and Minimality

Activity-A fact-L Activity-C
fact-J ’ ! I ] ! | fact-O
1:H7 (13,
Start fact-M ' End

Activity-B Activity-D
fact-K \, [|2’u2] ‘»fa t-N ‘ [|4,U4] ‘ »faCt'y

« Complete Plan
» A plan is complete IFF every precondition of every activity is achieved.
* An activity’s precondition is achieved IFF:
» The precondition is the effect of a preceding activity (support), and
« _No.intervening.step.conflicts with.the precondition_ (mutex).

 Consistent Plan

* The plan is consistent IFF the temporal constraints of its activities are consistent (the
associated distance graph has no negative cycles), and

* no conflicting (mutex) activities can co-occur.

* Minimal Plan
* The plan is minimal IFF every constraint serves a purpose, i.e.,

* If we remove any temporal or symbolic constraint from a minimal plan,
the new plan is not equivalent to the original plan




Plan-based HCI Proof of Concept:

. . : MERS
Coaching through Coordinated Views

Betion: FLY-TO
\Botor: UCAVZ
Ohqjects: BASEL
[5, WA]
A \
i ) Betion: FLY-TO
WAYEATIT L Betor: UCAVL
— Ohijects: BASEL Flan
‘-\ Betion: FLY-TO Betion: ATTACK Top Level
Betor: UCAVL Bctor: UCAVI
UCAVZ /, o Objects: saML | [Objects: SAMI .
[5, NA] [10, 10] . \Botion: ATTACK
/ petion: FLY-TO) lacror: ucava
4 P [ction: FLY-TO 2;'?“; ?C;:;il T lobjects: mTL
Actor: Ucavz Jecker [10, 10]
Chijects: WAYPOINTL
RADARR]1
TETTT Activity UCAVZ-FLY-TO-WAYPOINT beginning
UCAVZ-FLY-TO-WAYPOINT Establishes the following
preregquisites:
/ UCAVZ-FLY-TO-WAYPOINT helps establish (AT UCAVZ
WAYPOINT) a prerequisite of UCAVZ-FLY-TO-TARGET
\ UCAVZ-FLY-TO-WAYPOINT establishes (AT UCAVZ WAYEC
_'—'—'_'-'_ﬂ-
UCAVZ executes a FLY-TO operation on WAYPOINTL
- - - Activity UCAV1-FLY-TO-SAH beginming
sction: FLY-TO Action: FLY-TO Bction: ATTACK UCAV1-FLY-TO-SAM Establishes the following
wotor: TCAVZ | Actor: UCAVZ 1Actc\r: UCAVZ rerequisites:
thjects: WAYPOINT1 Objects: HVT1 Objects: HVT1 Action: FLY-TO r UCASF? FLY TCI SAM hel tablish (AT UCAV1 SAML
[10, 10] hotor: UCAVE Skt eips &s ish | ) a

Bction: ATTACK Dbjects: BASEL prerequisite of UCAV1-ATTACK-SAM
Actor: UCAVL Action: FLY-TO [5, NA] UCAV1-FLY-TO-5AM establishes (AT UCAV1 SAMI)
Objects: SAM1 Botor: UCAVL UCAV] executes a FLY-TO operation on SAML

tction: FLY-TO
sctor: TCAVI
ibjects: SAM1

Set Cument Plan Rewvert Clear Soreen UCAV1-FLY-TO-SEH finished, go on? [defaunlt Yes]: l

(Courtesy of Howard Shrobe, Principal Research Scientist, MIT CSAIL. Used with permission.)



Plan & Geography View MERS

)

1
WAYEOTHT 1

—_——

T

g ©

-
BAM]

RADAR 1
EESET \
UCAVZ /

T

Seq uenCl ng Action: FLY-TO Action: FLY-TO Action: ATTACE
Botor: UCAVZ = Aotor: UCAVZ Elctar: TCAVZ
Obqjects: WAYPOINTI Obqjects: HVT1 Obqjects: HVT1 Botion: FLY-TO

[10, 10] \Actnr: UZAV2

Botion: FLY-TO Botion: ATTACE Objects: BASEL
Botor: UCAWV1 . |Actor: UCAVI ABction: FLY-TO [S, HNA]
Objects: SAML Obdjects: SAM1 |™|actor: UCAV1
[5, NA] [10, 10] oObjects: BASE1

(Courtesy of Howard Shrobe, Principal Research Scientist, MIT CSAIL. Used with permission.)



Causal View MERS

lab

Causality

Beotion: FLY-TO
Bobor: UCAVZ
ObHjects: BASEL
[5, NA]

Beotion: FLY-TD
Beoktor: UCZAV]
CObjects: BASEL

Plan

Action: FLY-TO Betion: ATTACE Top Lewel
. Botor: UCAWV1

Ac?nr. mZAV1 _Clnr

Obhjects: SAMIL Ohjects: SAML .

[S, HA] [ 10, 10] Beotion: ATTACE

Betion: FLY-TO Beotor: TCAVE
Betor: UCAVZ 10k jects: HVTL
'_']:l:lect-Sl HVT1 [ lDf lD]

Beotion: FLY-TD
Beotor: UCAVZ
Obqjects: WAYPOINT1

Explanation
UCAVZ2-ATTACE-TARGET Has the following prerequisites:
UCAVZ-ATTACK-TARGET requires (AT UCAVZ HVTL)
This was established by
Botivity UCAVZ-FLY-TO-TARGET achiewving (AT UCAVZ HY

UCAVZ-ATTACKE-TARGET Establishes the following
prerequisites:
UCAVZ-ATTACE-TARSET helps establish (DESTROYED HWVT1)
preregquisite of HNEW
UCAVZ-ATTACE -TARGET establishes (DESTROYED HVTL)

(Courtesy of Howard Shrobe, Principal Research Scientist, MIT CSAIL. Used with permission.)



Model-based Programming
lab of Robust Robotic Networks

MERS

* Long-lived systems achieve robustness by coordinating a complex
network of internal devices.

* Programmers make a myriad of mistakes when programming
these autonomic processes.

* Model-based programming simplifies this task by elevating the
programmer to the level of a coach:
— Makes hidden states directly accessible to the programmer.

— Automatically mapping between states, observables and control variables.

* Model-based executives reasoning quickly and extensively by
exploiting conflicts.

* Mission-level executives combine activity planning, logical
decision making and control into a single hybrid decision problem.





