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With Complex Autonomic Processes 
Programming Long-lived Embedded Systems 

Large collections of devices must work in concert to achieve goals 
• Devices indirectly observed and controlled 
• Need quick, robust response to anomalies throughout life 
• Must manage large levels of redundancy 



Coordination Recapitulated At The 

Level of Cooperating Explorers 

(Courtesy of Jonathan How. Used with permission.)



Coordination Issues Increase For 

Dexterous Explorers 

(Courtesy of Frank Kirchner. Used with permission.)
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Approach


Elevate programming and operation to 
system-level coaching. 

Î Model-based Programming

– State Aware: Coordinates behavior at the level 

of intended state. 
Î Model-based Execution


– Fault Aware: Uses models to achieve intended 

behavior under normal and faulty conditions.




Why Model-based Programming?


Polar Lander Leading Diagnosis: 

• Legs deployed during descent. 

• Noise spike on leg sensors 
latched by software monitors. 

• Laser altimeter registers 40m. 

• Begins polling leg monitors to 
determine touch down. 

• Read latched noise spike as 
touchdown. 

• Engine shutdown at ~40m. 

Programmers often make 
commonsense mistakes when 
reasoning about hidden state. 

Objective: Support programmers 
with embedded languages that 
avoid these mistakes, by 
reasoning about hidden state 
automatically. 

Reactive Model-based 
Programming Language (RMPL) 



Interact Directly with State 
Model-based Programs 


Embedded programs interact with Model-based programs 
plant sensors and actuators: interact with plant state: 

• Read sensors • Read state 

• Set actuators • Write state  

Embedded Program 

S 
Plant 

Obs Cntrl 

Model-based 
Embedded Program 

S 
Plant 

S’ 
Model-based Executive 

Obs Cntrl 

Programmer must map between Model-based executive maps 
state and sensors/actuators. between state and sensors/actuators. 



Control Sequencer

Deductive  ControllerMode
Estimation

Mode
Reconfiguration

RMPL Model-based Program Titan Model-based Executive


System Model 

CommandsObservations 

Control Program 

Plant 

State goalsState estimates 

Generates target goal states 
conditioned on state estimates 

Tracks 
likely 

plant states 

Tracks least 
cost goal states 

z Executes concurrently 
z Preempts 
z Queries (hidden) states 
z Asserts (hidden) state 

ClosedClosed

ValveValve
OpenOpen StuckStuck

openopen

StuckStuck
closedclosed

OpenOpen CloseClose

0. 010. 01

0. 010. 01

0.010.01

0.010.01

inflow = outflow = 0 
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Mission-critical sequences: 

Motivation 

images courtesy 
of NASA 

• Launch & deployment 

• Planetary fly-by 

• Orbital insertion 

• Entry, descent & landing 

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example


engine to standby 
planetary approach switch to 

inertial nav rotate to entry-orient 
& hold attitude 

separate 
lander 

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example


engine to standby 
planetary approach switch to 

Descent engine to “standby”: 

offheating 
30-60 sec
standby 

separate 
lander 

inertial nav rotate to entry-orient 
& hold attitude 

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example


engine to standby


Spacecraft approach: 
• 
• 

observable 
• 

of cruise trajectory 

planetary approach 

separate 
lander 

switch to 
inertial nav rotate to entry-orient 

& hold attitude 

270 mins delay 
relative position wrt Mars not 

based on ground computations 

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example


engine to standby 
planetary approach switch to 

separate 
lander 

inertial nav rotate to entry-orient 
& hold attitude 

Switch navigation mode: 
“Earth-relative” = Star Tracker + IMU

Switch navigation mode:

“Inertial” = IMU only 

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example


engine to standby


Rotate spacecraft: 
• 

planetary approach 

separate 
lander 

switch to 
inertial nav rotate to entry-orient 

& hold attitude 

command ACS to entry orientation 

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example


engine to standby


Rotate spacecraft: 
• once entry orientation achieved, 

ACS holds attitude 

planetary approach 

separate 
lander 

switch to 
inertial nav rotate to entry-orient 

& hold attitude 

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example


engine to standby 
planetary approach switch to 

separate 
lander 

inertial nav rotate to entry-orient 
& hold attitude 

cruise 
stage 

lander 
stagepyro

latches 

Separate lander from cruise stage: 

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example


engine to standby

planetary approach 

separate 
lander 

switch to 
inertial nav rotate to entry-orient 

& hold attitude 

• 

cruise 
stage 

lander 
stagepyro

latches 

Separate lander from cruise stage: 
when entry orientation achieved, 
fire primary pyro latch 

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example


engine to standby

planetary approach 

separate 
lander 

switch to 
inertial nav rotate to entry-orient 

& hold attitude 

• 

cruise 
stage 

lander 
stage 

Separate lander from cruise stage: 
when entry orientation achieved, 
fire primary pyro latch 

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example


engine to standby

planetary approach 

separate 
lander 

switch to 
inertial nav rotate to entry-orient 

& hold attitude 

• 

cruise 
stage 

lander 
stage 

Separate lander from cruise stage: 
in case of failure of primary latch, 
fire backup pyro latch 

(Courtesy of Mitch Ingham. Used with permission.)



Mars Entry Example


engine to standby

planetary approach 

separate 
lander 

switch to 
inertial nav rotate to entry-orient 

& hold attitude 

• 

cruise 
stage 

lander 
stage 

Separate lander from cruise stage: 
in case of failure of primary latch, 
fire backup pyro latch 

(Courtesy of Mitch Ingham. Used with permission.)



What is Required to Program at This 
Level? 


engine to standby

planetary approach switch to 

inertial nav rotate to entry-orient 
& hold attitude 

separate 
lander 

• simple state-based control 
specifications 

• 
systems engineers 

• handle timed plant & control 
behavior 

• automated reasoning through low-
level plant interactions 

• fault-aware (in-the-loop recoveries) 

models are writable/inspectable by 

(Courtesy of Mitch Ingham. Used with permission.)



Descent Example


Turn camera off and engine on 

EngineA EngineB EngineA EngineB 

Science Camera Science Camera




Model-based Program


Control program specifies 
state trajectories: 

• fires one of two engines 

• sets both engines to ‘standby’ 

• prior to firing engine, camera must be 
turned off to avoid plume contamination 

• in case of primary engine failure, fire 
backup engine instead 

Plant Model describes 
behavior of each component: 
– Nominal and Off nominal 
– qualitative constraints 
– likelihoods and costs 

OrbitInsert():: 

(do-watching ((EngineA = Thrusting) OR 
(EngineB = Thrusting)) 

(parallel 
(EngineA = Standby)

(EngineB = Standby)

(Camera = Off)

(do-watching (EngineA = Failed) 

(when-donext ( (EngineA = Standby) AND 
(Camera = Off) ) 

(EngineA = Thrusting))) 
(when-donext ( (EngineA = Failed) AND 

(EngineB = Standby) AND 
(Camera = Off) ) 

(EngineB = Thrusting)))) 



Plant Model

component modes… 

described by finite domain constraints on variables… 

deterministic and probabilistic transitions 

cost/reward 

StandbyStandby

Engine ModelEngine Model

OffOff

FailedFailed

FiringFiring

(thrust = full) AND 
(power_in = nominal) 

(thrust = zero) AND 
(power_in = zero) 

(thrust = zero) AND 
(power_in = nominal) 

offoff­-
cmdcmd

standbystandby­-
cmdcmd

0.010.01

0.010.01
standbystandby­-

cmdcmd
firefire­-
cmdcmd

0 v 

0 v 

2 kv 

2 kv 

OnOn

Camera ModelCamera Model

OffOff

turnoffturnoff­-
cmdcmd

turnonturnon­-
cmdcmd

(power_in = zero) AND 
(shutter = closed) 

(power_in = nominal) AND 
(shutter = open) 

0 v 

20 v 

0.010.01

0.010.01

0 v 

one per component … operating concurrently




Example: The model-based program sets engine = thrusting, and the 

deductive controller . . . . 


Mode Estimation Mode Reconfiguration 
Oxidizer tankOxidizer tank Fuel tankFuel tank

Selects valve 
Deduces that configuration; 

thrust is off, and plans actions 
Deduces that a valvethe engine is healthy to open 
failed - stuck closedsix valves 

Determines valves 
on backup engine that 
will achieve thrust, and 
plans needed actions. 

Mode Reconfiguration Mode Estimation
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Modeling Plant Dynamics using Probabilistic 

Concurrent, Constraint Automata (PCCA)


Compact Encoding: 

– Concurrent probabilistic transitions 

– State constraints between variables 

StandbyStandby

Engine ModelEngine Model
OffOff

FailedFailed

offoff­-
cmdcmd

standbystandby­-
cmdcmd

0.010.01

(thrust = full) AND 
(power_in = nominal) 

FiringFiring

0.010.01

standbystandby­-
cmdcmd

firefire­-
cmdcmd

(thrust = zero) AND 
(power_in = zero) 

(thrust = zero) AND 
(power_in = nominal) 

OnOn

Camera ModelCamera Model
OffOff

turnoffturnoff­-
cmdcmd

turnonturnon­-
cmdcmd

(power_in = zero) 
AND 

(shutter = closed) 

(power_in = nominal) 
AND 

(shutter = open) 

0 v 

2 kv 

2 kv 

0 v 

0 v 

20 v 

0.010.01

0.010.01

0 v 

Typical Example (DS1 spacecraft): 

– 80 Automata, 5 modes on average 

– 3000 propositional variables, 12,000 propositional clauses 



Possible Behaviors
Visualized by a Trellis Diagram 

S T 

X0 X1 XN-1 XN 

•Assigns a value to each 
variable (e.g.,3,000 vars). 
•Consistent with all state 
constraints (e.g., 12,000). 

•A set of concurrent transitions, 
one per automata (e.g., 80). 
•Previous & Next states 
consistent with source & target 
of transitions 

The Plant’s BehaviorThe Plant’s Behavior



Control Sequencer

Deductive  Controller

Commands

Tracks least-cost
state goals

RMPL Model-based Program Titan Model-based Executive


System Model 

Observations 

Control Program 

Plant 

State goalsState estimates 

Control Sequencer: 
Generates goal states 

Mode 
Estimation: 

Tracks likely 
States 

Mode 
Reconfiguration: 

z 

z Preempts 
z 

z 

OrbitInsert():: 
( i

iring)) 
(parallel 

) 
) 

(
(

(Camera = Off) ) 
iring))) 

(
) AND 

(Camera = Off) ) 
iring)))) 

CO 

EAS ) 
EAF ( ) 
EAR i i ) 
EBS ) 
EBF ( ) 
EBR i i ) 

(

) 

EAR 

( ) 

hierarchical constraint 
automata on state s 

conditioned on state estimates 
Executes concurrently 

Asserts and queries states 
Chooses based on reward 

do-watching ((EngineA = F ring) OR 
(EngineB = F

(EngineA = Standby
(EngineB = Standby
(Camera = Off) 
do-watching (EngineA = Failed) 

when-donext ( (EngineA = Standby) AND 

(EngineA = F
when-donext ( (EngineA = Failed) AND 

(EngineB = Standby

(EngineB = F

MAINTAIN (EAR OR EBR) 

EBS 

LEGEND: 
(EngineA = Standby
EngineA = Failed
(Eng neA = F ring
(EngineB = Standby
EngineB = Failed
(Eng neB = F ring

CO Camera = Off) 

MAINTAIN (EAF

EAS 

(EAS AND CO) 

EAS AND CO 

EAF AND EBS AND CO

EBR 
EAF AND EBS 

AND CO 



Control Sequencer

Deductive  Controller

RMPL Model-based Program Titan Model-based Executive


System Model 

Observations 

Control Program 

Plant 

State goalsState estimates 

Control Sequencer: 
Generates goal states 

Mode 
Estimation: 

Tracks likely 
States 

Mode 
Reconfiguration: 
Tracks least-cost 

state goals 

z 

z Preempts 
z 

z 

engine 

stuck closed 

S T 

X0 X1 X XN 

S T 

X0 X1 X XN 

least cost reachable 
goal stateFirst ActionCurrent Belief State 

Commands 

conditioned on state estimates 
Executes concurrently 

Asserts and queries states 
Chooses based on reward 

Fire backup 

Valve fails 

N-1 N-1 



Deductive  Controller

Observations 
Plant 

State goalsState estimates 

Mode 
Estimation: 

Tracks likely 
States 

Mode 
Reconfiguration: 
Tracks least-cost 

state goals 

engine 

stuck closed 

S T 

X0 X1 X XN 

S T 

X0 X1 X XN 

least cost reachable 
goal stateFirst ActionCurrent Belief State 

s.t. C(x) is satisfiable 

D(x) is unsatisfiable 

T(m’) 

s.t. M(m’) ^ O(m’) is satisfiable 

T*

s.t. M(m’) entails G(m’) 

s.t. M(m’) is satisfiable 

Commands 

Fire backup 

Valve fails 

N-1 N-1 

OpSat: 

arg min f(x) 

arg max P arg min R (m’) 
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Diagnosis Formulation


Consistency-based Diagnosis: Given symptoms, 
find diagnoses that are consistent with symptoms. 

Handle Novel Failures by Suspending Constraints:

Make no presumptions about faulty component 

behavior.


1 

1 

1 Symptom
Or1 

Or2 

Or3 

And1 

And2 

A 

B 
C 
D 

E 

1 

1 
1 
1 

0 

F 

G 

X 

Y 

Z 

0 

1 



Diagnosis Formulation


Consistency-based Diagnosis: Given symptoms, 
find diagnoses that are consistent with symptoms. 

Handle Novel Failures by Suspending Constraints:

Make no presumptions about faulty component 

behavior.


1 

1 

1 Symptom 

Or2 

Or3 

And1 

And2 

A 

B 
C 
D 

E 

1 

1 
1 
1 

0 

F 

G 

X 

Y 

Z 

0 

1 



Fast Reasoning Through Conflict 

When you have eliminated the impossible, 
whatever remains, however improbable, 
must be the truth. 

- Sherlock Holmes. The Sign of the Four. 

1. Test Hypothesis 
2. If inconsistent, learn reason for inconsistency 

(a Conflict). 
3. Use conflicts to leap over similarly infeasible options 

to next best hypothesis. 



Compare Most Likely Hypothesis 

to Observations


Helium tank 

Fuel tankOxidizer tank 

Main 
Engines 

Pressure1 = nominal 
Pressure2= nominal 

Acceleration = zero 

Flow1 = zero 

It is most likely that all components are okay.




Isolate Conflicting Information


Helium tank 

Fuel tankOxidizer tank 

Main 
Engines 

Flow 1= zero 

The red component modes conflict with the model and 
observations. 



Leap to the Next Most Likely Hypothesis

that Resolves the Conflict


Helium tank 

Fuel tankOxidizer tank 

Main 
Engines 

Flow 1= zero 

The next hypothesis must remove the conflict 




New Hypothesis Exposes Additional Conflicts


Pressure1 = nominal Pressure2= nominal 

Acceleration = zero 

Helium tank 

Fuel tankOxidizer tank 

Main 
Engines 

Another conflict, try removing both




Final Hypothesis Resolves all Conflicts 


Helium tank 

Fuel tankOxidizer tank 

Main 
Engines 

Pressure1 = nominal 
Flow1 = zero 

Pressure2= nominal 
Flow2 = positive 

Acceleration = zero 

Implementation: Conflict-directed A* search.




A* 


Increasing 
Cost 

Feasible 

Infeasible 



Conflict-directed A* 


Increasing 
Cost 

Feasible 

Infeasible 



Conflict-directed A* 


Increasing 
Cost 

Feasible 

Infeasible 
Conflict 1 



Conflict-directed A* 


Increasing 
Cost 

Feasible 

Infeasible 

C
onflict 3 

Conflict 2 

Conflict 1 

feasible regions as implicants 
(Kernel Assignments) 

•Want kernel assignment 

• Conflicts are mapped to 

containing the best cost state.
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Coordination is Recapitulated at the 

Level of Cooperating Explorers 

(Courtesy of Jonathan How. Used with permission.)



• Explicit human guidance is at the lowest 
levels 

Traditional Robot Architectures 

Planning and Scheduling 

Goal-directed 
ExecutionGoal-directed 

Programs 

Goals 
Action descriptions 

Reactive Behaviors 



RMPL for Robotics

Reactive Model-based Model-based

Programming Executive 

Goal-directed 
Execution 

Control 
Programs 

Plant 
Models 

Deductive 
Controllers 

Language (RMPL) 

What types of reasoning should the programmer/operator guide?


• State/mode inference • Method selection 
• Machine control • Roadmap path planning 
• Scheduling • Optimal trajectory planning 

• Generative temporal planning 



RMPL Model-based Program Kirk Model-based Executive


Control Sequencer 
Predictive Strategy Selection 

Dynamic Scheduling 
Ensures Safe Execution 

Deductive Controller 
Achieves State via Path Planning 

Estimates using Localization 

Environment Model 

Control Program 

location goalslocation estimates 

z Executes concurrently 
z Preempts 
z non-deterministic choice 
z A[l,u] timing 
z A at l location 

HOMEHOME

T 
W 
O 

Enroute 
COLLECTION POINTCOLLECTION POINT RENDEZVOUSRENDEZVOUS

Diverge 
SCIENCE AREA 1’SCIENCE AREA 1’

SCIENCE AREA 3SCIENCE AREA 3

Landing Site: ABC 

Landing Site: XYZ 

O 
N 
E 

SCIENCE AREA 1SCIENCE AREA 1

Observations Commands 

Plant 



Properties: 

Example Scenario 

HOMEHOME

TWO 

EnrouteCOLLECTION POINTCOLLECTION POINT RENDEZVOUSRENDEZVOUS

Diverge 
SCIENCE AREA 1’SCIENCE AREA 1’

SCIENCE AREA 3SCIENCE AREA 3

Landing Site: ABC 

Landing Site: XYZ 

ONE 

SCIENCE AREA 1SCIENCE AREA 1

z Mars rover operators have been leery of generative planners.

z Are more comfortable with specifying contingencies.

z Want strong guarantees of safety and robust to uncertainty.

z Global path planning is on the edge


Extend RMPL with planner-like capabilities ..except planning




Reactive Model-based Programming


Idea: To describe group behaviors, start with concurrent language:

z p

z If c next A

z Unless c next A

z A, B

z Always A


z	 Add temporal constraints: 
z A [l,u] 

• Primitive activities 
• Conditional execution 
• Preemption 
• Full concurrency 
• Iteration 

• Timing


z	 Add choice (non-deterministic or decision-theoretic): 
z Choose {A, B} • Contingency 

z	 Parameterize by location: 
z A at [l] 



Example Enroute Activity:


Enroute


RendezvousRendezvous Rescue AreaRescue Area

Corridor 2 

Corridor 1 



RMPL for Group-Enroute


Group-Enroute()[l,u] = { 
Temporal Constraints: 

choose { 
do {

Group-Fly-

Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];


} maintaining PATH1_OK,
do {

Group-Fly-

Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];


} maintaining PATH2_OK

};

{


Group-Transmit(OPS,ARRIVED)[0,2],

do {


Group-Wait(HOLD1,HOLD2)[0,u*10%]

} watching PROCEED


} at RE_POS


} 



RMPL for Group-Enroute


Location Constraints:
Group-Enroute()[l,u] = {

choose { 
do {

Group-Fly-

Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];


} maintaining PATH1_OK,
do {

Group-Fly-

Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];


} maintaining PATH2_OK

};

{


Group-Transmit(OPS,ARRIVED)[0,2],

do {


Group-Wait(HOLD1,HOLD2)[0,u*10%]

} watching PROCEED


} at RE_POS


} 



RMPL for Group-Enroute


Non-deterministic 
Group-Enroute()[l,u] = {

choose { choice: 
do {


Group-Traverse-

Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];


} maintaining PATH1_OK,

do {


Group-Traverse-

Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];


} maintaining PATH2_OK

}; 
{


Group-Transmit(OPS,ARRIVED)[0,2],

do {


Group-Wait(HOLD1,HOLD2)[0,u*10%]

} watching PROCEED


} at RE_POS


} 
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Control Sequencer

Deductive  ControllerMode
Estimation

Mode
Reconfiguration

RMPL Model-based Program Titan Model-based Executive


Environment Model 

CommandsObservations 

Control Program 

location goalslocation estimates 

Selects consistent 
threads of activity 

from redundant methods 

Tracks 
location 

Finds least 
cost paths 

z Executes concurrently 
z Preempts 
z non-deterministic choice 
z A[l,u] timing 
z A at l location 

HOMEHOME

T 
W 
O 

Enroute 
COLLECTION POINTCOLLECTION POINT RENDEZVOUSRENDEZVOUS

Diverge 
SCIENCE AREA 1’SCIENCE AREA 1’

SCIENCE AREA 3SCIENCE AREA 3

Landing Site: ABC 

Landing Site: XYZ 

O 
N 
E 

SCIENCE AREA 1SCIENCE AREA 1

Executive 
• pre-plans activities 
• pre-plans paths 
• dynamically schedules [Tsmardinos et al.] 

Plant 



Enroute Activity Encoded as a Temporal Plan Network


• Start with flexible plan representation 

Enroute [450,540]
1 2 

[0, 0] 
Group Traverse Group Wait 

[0, 0] 

4 [405, 486] 5 [0, 0] [0, 0] [0, 54] [0, 0] 

Science Target 

8 
[0, 0] [0, ]Group Transmit 

[0, 2] 

Activity (or sub-activity) 

Duration (temporal constraint) 



Enroute Activity Encoded as a Temporal Plan Network


• Add conditional nodes 

Enroute [450,540]
1 2 

[0, 0] 
Group Traverse Group Wait 

[0, 0] 

[0, 0] 4 [405, 486] 5 [0, 0] [0, 0] [0, 54] [0, 0] 

Science Target 

3 8 
[0, ][0, 0] Group Traverse [0, 0] 

[0, 0] 
Group Transmit 

[405, 486] [0, 2] 

Activity (or sub-activity) 

Duration (temporal constraint) 

Conditional node 



Enroute Activity Encoded as a Temporal Plan Network


•Add temporally extended, symbolic constraints

Enroute [450,540]
1 2 

[0, 0] 
Group Traverse Group Wait 

[0, 0] 

[0, 0] 4 [405, 486] 5 [0, 0] [0, 0] 9 [0, 54] 10 [0, 0] 
Ask( PATH1 = OK) Science Target Ask( EXPLORE = OK) 

3 8 13 
[0, ][0, 0] Group Traverse [0, 0] 

[0, 0] 
Group Transmit 

6 [405, 486] 7 11 [0, 2] 12 
Ask( PATH2 = OK) 

Activity (or sub-activity) 

Duration (temporal constraint) 

Conditional node 

Symbolic constraint (Ask,Tell) 



Instantiated Enroute Activity


•Add environmental constraints Group-Enroute 
[500,800] 

s e 
[0,∞] [0,∞] 

[450,540] 

1 Group Traverse Group Wait 2 

Ask(PROCEED) 

4 9 105 
Ask(PATH1=OK) 

[405,486] [0,54] 
Science Target 

3 8 1
Group Traverse Group Transmit 3

Ask(PATH2=OK) [0,∞] 
6 7 11 12[405,486] [0,2] 

[10,10] 
Tell(PATH1=OK) Tell(PROCEED) 

[0,∞]
14 15 16 17 

[450,450] [200,200] 
Activity (or sub-activity) 

Duration (temporal constraint) 

Conditional node 

Symbolic constraint (Ask,Tell) External constraints 



Generates Schedulable Plan

Group-Enroute


[500,800] 
s e 

[0,∞] [0,∞] 
[450,540] 

1 Group Traverse Group Wait 2 

Ask(PROCEED) 

4 9 105 
Ask(PATH1=OK) 

[405,486] [0,54] 
Science Target 

133 Group Traverse 8 
Group Transmit

Ask(PATH2=OK) [0,∞] 
6 7 11 12

[405,486] [0,2] 

[10,10] 
Tell(PATH1=OK) Tell(PROCEED) 

[0,∞]
14 15 16 17 

[450,450] [200,200] 

To Plan, . . . perform the following hierarchically: 
• Trace trajectories 
• Check schedulability 

• Supporting and protecting goals (Asks) 



Supporting and Protecting Goals


Unsupported Subgoal Threatened Activities 

1 2 

3 43 4 

Goal: any UCAV at Target 

1 2 
Activity: UAV1 at Base 

Activity: UAV1 at Target 
Activity: UCAV1 at Target 

Close open goals Activities can’t co-occur 

Resolving Unsupported Subgoals: 

• Scan plan graph,identifying activities that support open sub-goals; force to co-occur. 

Resolving Threatened Subgoals: 

• Search for inconsistent activities that co-occur, and impose ordering. 

Key computation is bound time of occurrence: 

• Used Floyd-Warshall APSP algorithm O(V3). 



Randomized Experiments for Assessing 
Scaling and Robustness 

Randomized Experiments: 


•	 Randomly generated range of scenarios with 1-50 vehicles. 
•	 Each vehicle has two scenario options, each with five actions and 

2 waypoints: 

1. Go to waypoint 1
2. Observe science 
3. Go to waypoint 2
4. Observe science 
5. Return to collection point 

•	 Waypoints generated randomly from environment with uniform 
distribution. 

Strategy Selection: 

•	 TPN planner chooses one option per vehicle. 
•	 Combined choices must be consistent with timing constraints and vehicle 

paths. 



Kirk Strategy Selection: 

Scaling and Robustness 

Each vehicle visits 2 
science sites and returns 

to collection point 

Kirk Oct. ’02 

Kirk April ’03 

Performance Improvement Through 
• Incremental temporal consistency 
• Conflict-directed Search (in progress) 



Control Sequencer

Deductive  ControllerMode
Estimation

Mode
Reconfiguration

RMPL Model-based Program Titan Model-based Executive


Environment Model 

CommandsObservations 

Control Program 

location goalslocation estimates 

Selects consistent 
threads of activity 

from redundant methods 

Tracks 
location 

Finds least 
cost paths 

z Executes concurrently 
z Preempts 
z non-deterministic choice 
z A[l,u] timing 
z A at l location 

HOMEHOME

T 
W 
O 

Enroute 
COLLECTION POINTCOLLECTION POINT RENDEZVOUSRENDEZVOUS

Diverge 
SCIENCE AREA 1’SCIENCE AREA 1’

SCIENCE AREA 3SCIENCE AREA 3

Landing Site: ABC 

Landing Site: XYZ 

O 
N 
E 

SCIENCE AREA 1SCIENCE AREA 1

Executive 
• pre-plans activities 
• pre-plans paths 
• dynamically schedules [Tsmardinos et al.] 

Plant 



Achieving Program States Combines 

Logical Decisions and Trajectory Planning


Vehicle 
Obstacle 

Waypoint 



Explorers Will Need to Be Dexterous 

(Courtesy of Frank Kirchner. Used with permission.)



Outline


• Model-based Programming 
• Autonomous Engineering Operations


– An Example 
– Model based Execution 
– Fast Reasoning using Conflicts 

• Cooperating Mobile Vehicles 
– Predictive Strategy Selection 
– Planning Out The Strategy 



OEP

Example: 

Coaching Heterogeneous Teams 

•Search and Rescue
•Ocean Exploration 

A dozen vehicles is too many to micro manage



→ Act as a coach: 
• Specify evolution of state and location. 

(Courtesy of Jonathan How. Used with permission.)



Forest Fire Rescue


•	 Goal: retrieve family 
from fire. 

•	 Rescue cannot take 
place until the local 
fire is suppressed. 

•	 Retrofit one rescue 
vehicle for fire 
suppression 

Ambulance 

Rescue Point 

Fire 

Fire Line 

Forest 



Kirk Model-based Execution System Overview 

Strategy Selection 

TPN Planner 

Activity Planning 

Generative 
Activity Planner 

Visibility Graph 

Mission DeveloperRMPL 
Strategy macrocontrol 
decompositionprogram 

Mission Controller 

• Strategy Selection 

• Activity Planning figures out 

within strategic framework using 

determines the optimal rules / 
strategies to accomplish mission 
goals. 

how to achieve mission goals 

available low-level actions. 

Strategy 
Macro Library 

Operators, 

Scenario Model 
Tactics, 

state configuration goals 

environment 
and action data 

schedulable plan 
with rationale 

Human / Computer 
Interface 

MILP Path-Planning 



RMPL Control Program


• (defclass rescue-team 

(execute ()
(sequence

(parallel [l1,u1]

(tell-start(at family RescuePoint))

(tell-start(at uav1 Ambulance)) 
(tell-start(at uav2 Ambulance))Initial State 

)
(parallel [l2,u2]

(ask-end(suppressed Fire)) Phase 1 
Intermediate 

State 
(ask-end(rescued family)) 
(ask-end(at uav1 Ambulance)) 

) 
) 

) 
) 

(ask-end(at uav2 Ambulance)) Phase 2Goal State 



Environment Model


• Terrain Map 

• Object instantiations: 
– UAV uav1 
– UAV uav2 
– RESCU-READY uav1

– RESCUE-READY uav2 
– IN-DISTRESS family

– LOCATION Ambulance 
– LOCATION Fire 
– LOCATION RescuePoint 



Vehicle Specifications


• Vehicle linearized dynamics 

• Vehicle primitive operators: 

– Fly(V,A,B) 
• move UAV “V” from location “A” to location “B” 

– Refit(V) 
• Prepare UAV “V” to drop fire retardant 

– Drop(V,A) 
• Drop fire retardant at location “A” with UAV “V” 

– Rescue(V,P,A) 
• Rescue people “P” in distress with UAV “V” at location “A” 



Kirk Model-based Execution System Overview 

Strategy Selection 

TPN Planner 

Activity Planning 

Generative 
Activity Planner 

Visibility Graph 

Mission DeveloperRMPL 
Strategy macrocontrol 
decompositionprogram 

Mission Controller 

• Strategy Selection 

• Activity Planning figures out 

within strategic framework using 

determines the optimal rules / 
strategies to accomplish mission 
goals. 

how to achieve mission goals 

available low-level actions. 

Strategy 
Macro Library 

Operators, 

Scenario Model 
Tactics, 

state configuration goals 

environment 
and action data 

schedulable plan 
with rationale 

Human / Computer 
Interface 

MILP Path-Planning 



Kirk Constructs Vehicle Activity Plan 

Using a Generative Temporal Planner 


Approach: 
• Encode Goal Plan using an LPGP-style encoding 
• Prototype using LPGP [Fox/Long, CP03] 

Mission Goal State Plan 

Generative Temporal Planner 
Use Atomic Generative Planner 

To Generate Operators and Precedence 

Extract Temporal Plan 
and Check Schedulability 

Translate to Planning Problem 
with Atomic Operators 

Vehicle 
Operator 
Definitions 

(GraphPlan – Blum & Furst) 

Vehicle Activity Plan 



Generated Activity Plan


Refit-Inv Fly-Inv Fly-InvRefit-End Refit-Start Fly-Start[10,+INF] [20,+INF] [20,+INF]
[10,20]Fly-Start [20,+INF]Fly-Inv Suppress-StartSuppress-Inv Fly-EndFire [20,+INF] [10,20] Suppress-End 

CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1 CP-Inv-1CP-Start CP-Midpoint [0,100] [0,100] [0,100] [0,100] [0,100] [0,100] [0,100]

Kirk extracts a least commitment plan and generates a rationale


[0,100]

[20,+INF] [10,20]Fly-Start
Fire

Fly-Inv
[20,+INF]

Fly-End Suppress-StartSuppress-Inv
[10,20]

Refit-Start Refit-Inv
[10,+INF] Refit-End Fly-Start

Fly-Inv
[20,+INF]

Fly-Inv
[20,+INF]



Kirk Model-based Execution System Overview 

Strategy Selection 

TPN Planner 

Activity Planning 

Generative 
Activity Planner 

Visibility Graph 

Mission DeveloperRMPL 
Strategy macrocontrol 
decompositionprogram 

Mission Controller 

Human / Computer 
Interface 

MILP Path-Planning 

• Strategy Selection 

• Activity Planning figures out 

within strategic framework using 

determines the optimal rules / 
strategies to accomplish mission 
goals. 

how to achieve mission goals 

available low-level actions. 

Strategy 
Macro Library 

Operators, 

Scenario Model 
Tactics, 

state configuration goals 

environment 
and action data 

schedulable plan 
with rationale 



Output: Least Commitment Plan 

with Rationale


Plan layered with rationale Rescue(UAV1,Troops,RSQ)


Refit(UAV1)

Fly(UAV1,Base,RSQ) Fly(UAV1,RSQ,Base) 

[20,+INF] 
[10,+INF] [20,+INF] [30,60] 

[20,+INF] [10,20] [20,+INF] 

[0,100] [0,100] 

Control Program Phase II
Control Program Phase I 

Fly(UAV2,Radar,Base)Fly(UAV2,Base,Radar) Attack(UAV2,Radar) 



Kirk Ensures Plan Completeness, Consistency 
and Minimality


Activity-A fact-L Activity-C
fact-J [l3,u3]	

fact-O
[l1,u1] 

fact-MStart End 

Activity-B	 Activity-D 
fact-Pfact-K fact-N[l2,u2] [l4,u4] 

•	 Complete Plan 
•	 A plan is complete IFF every precondition of every activity is achieved. 
•	 An activity’s precondition is achieved IFF: 

•	 The precondition is the effect of a preceding activity (support), and 
• No intervening step conflicts with the precondition (mutex). 

•	 Consistent Plan 
•	 The plan is consistent IFF the temporal constraints of its activities are consistent (the 

associated distance graph has no negative cycles), and 
•	 no conflicting (mutex) activities can co-occur. 

•	 Minimal Plan 
•	 The plan is minimal IFF every constraint serves a purpose, i.e., 

•	 If we remove any temporal or symbolic constraint from a minimal plan, 
the new plan is not equivalent to the original plan 



Plan-based HCI Proof of Concept: 

Coaching through Coordinated Views 

(Courtesy of Howard Shrobe, Principal Research Scientist, MIT CSAIL. Used with permission.)



Plan & Geography View 

Sequencing: 

(Courtesy of Howard Shrobe, Principal Research Scientist, MIT CSAIL. Used with permission.)



Causal View

Causality 

Explanation


(Courtesy of Howard Shrobe, Principal Research Scientist, MIT CSAIL. Used with permission.)



Model-based Programming

of Robust Robotic Networks


•	 Long-lived systems achieve robustness by coordinating a complex 
network of internal devices. 

•	 Programmers make a myriad of mistakes when programming 
these autonomic processes. 

•	 Model-based programming simplifies this task by elevating the 
programmer to the level of a coach: 
–	 Makes hidden states directly accessible to the programmer. 
–	 Automatically mapping between states, observables and control variables. 

•	 Model-based executives reasoning quickly and extensively by 
exploiting conflicts. 

•	 Mission-level executives combine activity planning, logical 
decision making and control into a single hybrid decision problem. 




