
16.522 Space Propulsion
 
Problem Set 1
 

The traditional low thrust optimization methods consider situations with a power system 
that is dedicated solely to propulsion and is inaccessible to the payload. But many missions 
are themselves power-intensive and it becomes possible to use the mission power supply for 
electric propulsion during the spacecraft deployment phase, and also for orbital corrections 
later on. An example of this is communications satellites. 

In particular, it is interesting to observe that Google, SpaceX and Virgin Galactic are propos­
ing ambitious constellations of relatively small LEO satellites, each with a mass of about 150 
kg and carrying more than 500 W of mission power. The objective is to provide global cover­
age, therefore hundreds of satellites would be needed. It would be extraordinarily expensive 
to deliver each satellite in its service orbit with dedicated launchers. Instead, a single launch 
could position many satellites in a parking orbit and electric propulsion could then be used 
to raise the satellites’ altitude to their final service orbit. 

These small satellites could be quite constrained in mass and volume. For example, devia­
tions from a baseline mass could be severely penalized (for instance, when requiring more 
propellant) by increasing the mission cost. In addition, we need to figure out how to select 
the operation time, with some consideration for the penalties incurred by this time being too 
long. One simple model for this is the optimization of the cost-penalized transportation 
rate instead of payload size (i.e., payload mass divided by operation time and by penalty 
costs). This homework is devoted to the formulation of this problem. 

Let the payload mass mpay be related to power through mpay = βP , where β (∼ 0.1 − 0.2 
kg/W) is determined by the payload design. Here the payload includes its power system 
(solar arrays, converters, batteries, etc), as it would exist in the absence of an electric 
propulsion system. In addition, the propulsion system (thruster and power converters) has 
a mass mps = αP , where α (∼ 0.02 − 0.1 kg/W) is determined by the propulsion system 
design. 

The thruster efficiency will be allowed to depend on the specific impulse using the model 
introduced in class, 

η0
η = 

1 + (vL/c)
2 

where the loss velocity vL is a function of the thruster type and design, while η0 (the high-
specific impulse limit) is the maximum thruster efficiency. 

(a) Let m0 be the initial mass, ms the structural mass (a fixed fraction t of m0), and show 
that the mass balance reads, � � � � �� 
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where t is the thrusting time and Δv is the total velocity increment. Introduce the 
dimensionless quantities, 

c vL	 2η0t 
x = , z = and τ = 

Δv Δv	 (α + β)Δv2 

and, after substituting into the mass balance, solve for τ as a function of x, z and t. 

(b) Define the payload fraction as φ = mpay/m0 and show that, 

β −1/x − tφ = e 
α + β 

(c) We assume that each kg of propellant mass will increase the mission cost by	 ξp (in 
$/kg) and that each day of thruster firing will incur an additional penalty of ξt (in 
$/day), such that the penalty cost is, 

C = ξpmp + ξtt 

Every kg of payload mass has a cost given by f , such that the payload cost is Cpay = 
fmpay. Normalizing the penalty cost by the payload cost, show that, 

C k1	 k2−1/xC ' = = 1 − e + τ 
Cpay φ	 φ 

and write down expressions for k1 and k2 in terms of the problem variables. Finally, 
define the non-dimensional cost-penalized transportation rate, 

−1/x − tφ β e
ψ = = 

τC ' α + β τC ' 

(d) Once z and t are fixed, one can use x = c/Δv as a sweep parameter, and construct 
plots of τ(x), φ(x) and ψ(x) that will allow selection of the optimal time (maximum 
ψ) and the corresponding specific impulse, propellant fraction, etc. Do this for t = 0.1, 
z = 1. For φ and ψ, assume α = 0.05 kg/W, β = 0.15 kg/W. Identify the minimum 
non-dimensional time possible, τmin. 

(e) As a specific example, consider a spacecraft with an initial mass m0 = 150 kg in its 
parking orbit, a Δv for low-thrust climb to its operational orbit of 450 m/s, and an 
additional Δv for orbit corrections over 4 years and de-orbit of 500 m/s. The thrusters 
are electrospray devices with η0 = 0.8, and the loss velocity implied by z = 1. Calcu­
late the total thrusting time and apportion it to climb-out and corrections/de-orbit. 
Calculate the specific impulse, engine efficiency, total power, payload mass, propel­
lant mass, power supply mass, and payload and penalty costs (compare propellant 
vs time penalty costs). If the mean molecular mass of ions in the propellant is 200 
g/mol, calculate the ion cost in volts. Assume f = $20,000/kg, ξp = $30,000/kg and 
ξt = $1,150/day. 
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