
16.522 Space Propulsion
 
Problem Set 2
 

The differential equations of motion derived in class can be solved numerically for any kind 
of accelerating forces acting on a vehicle. If we restrict ourselves to planar motion, we have, 
in polar coordinates: 

θ̇2	 ¨ r̈ − r + 
µ 

= ar and rθ + 2ṙθ̇ = aθ2r

2 2 2where ar and aθ are the radial and angular accelerations so that ac = ar + aθ. 

Your assignment consists on designing a software tool that integrates numerically a non-
dimensional version of these equations. Do not use anything less accurate than a Runge-
Kutta algorithm. 

(a) Derive	 expressions for ar and aθ as a function of γ, the angle between the orbital 
velocity and thrust vectors. 

(b) Write down the equations of motion in non-dimensional form by defining, 

r t Δv	 ar,θ 
r̂ = t̂ =  Δv̂ =  and âr,θ = (ε = âθ) 

a0 a3
0/µ µ/a0 µ/a0

2 

where a0 is the semi-major axis of the baseline (or initial) orbit. 

(c) Assume angular accelerations only and run your code for several values of ε = âθ until 
reaching escape conditions. 

•	 Reproduce the results in the table shown in page 4 of the notes (Lecture 5). 

•	 Calculate the same parameters of the table in the case of tangential thrust and 
comment on the differences. 

•	 Include a plot of the spiral trajectory with the highest ε and mark the escape 
point on your plot. Is the orbit nearly circular at that point? 

•	 Include a plot of the orbital energy as a function of Δv̂ for the same case. 

•	 Compare against the impulsive Δv̂ .escape

•	 Compare against the analytical expressions for r (spiral) and Δv derived in esc 

class. 

(d) As we discussed in class it is possible to write differential equations for the integrals 
of motion for low thrust maneuvers. The general method is relatively straightforward: 
start from the regular identities where the integrals of motion appear and take time 
derivatives treating these integrals of motion as variables and the orbital radius as 
constant. The derivative of the velocity vector is treated as the acceleration due to 
thrust. Use this procedure and, 
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Starting from Prove that 

µ

 
2 
r 
− 

1 
a

 
= v2 = fv · fv 

da 
dt 

= 
2a2 

µ 
(fv · fac) 

fh = fr × fv 
dh 
dt 

= 
1 
h 

[r2(fv · fac) − (fr · fv)(fr · fac)] 

p = a(1 − e2) 
de 
dt 

= 
1 

µae 
[(fr · fv)(fr · fac) + (pa − r2)(fv · fac)] 

Notes: These  expressions  are  much  easier  to  prove  using  tensorial  notation . This
method is  somewhat unorthodox, however,  it can  be proved that the results are
the same as when following the more rigorous variation of parameters approach.

(e) As an example, consider that low thrust is applied to a vehicle in an initially elliptical 
orbit (say, e0 = 0.5). It can be proven that firing always perpendicular to the apsidal 
line will circularize the orbit without changing the semi-major axis. As a side note, 
this maneuver is patented by a satellite manufacturer and is used to circularize geo­
synchronous orbits. Use your numerical tool to prove this. 

• Plot the firing angle γ as a function of time for one orbital period. 

• Plot the non-dimensional version of the quantities derived in (d). 

• Show the resulting trajectory in a polar plot. 

• Plot the eccentricity as a function of Δv̂. 
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