
Session   25  :   Electrodynamic Tethers 

Electrodynamic tethers are long, thin conductive wires deployed in space that can be used to 
generate power by removing kinetic energy from their orbital motion, or to produce thrust 
when adding energy from an on-board source. In either case, the frictional or thrust force, is 
produced electrodynamically, through the interaction between moving charges and magnetic 
fields. From here, we notice that the application of electrodynamic tethers is restricted to 
celestial objects that have a non-zero magnetic field and ionospheric plasma (e.g., Earth, 
Jupiter, Saturn, etc, not the moon or Mercury, etc). 

The fundamental aspect of tethers is that, as looked from a reference frame moving at some 
velocity Ev with respect to a fixed frame (for example, an object in orbit moving with respect 
to the earth), an (EFM) induced electric field will be generated, 

EE ' = EE + Ev × BE (1) 

Where EE and EE ' are the electric fields in the stationary and moving frames, respectively. 
There is magnetic field BE . The orbital situation is depicted in the figure, where there is no 
electric field in the stationary frame, EE = 0. 

From here, the induced EMF (Em) will be just the 
product of the magnitude of the velocity vector and 
the “horizontal” component of the magnetic field, 
Em = vBH . Assuming an elevation β of the magnetic 
field with respect to the horizontal, and a magnetic 
co-latitude of θm, we can write this field as, 

Em = vB0 sin θm cos β (2) 

where B0 is the local magnitude of the magnetic field. 
Since in general the orbit will be inclined by an angle i, both the elevation and col-latitude 
will change and in consequence the magnitude of the Em field will change over time. 
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As an example of the magnitude of Em, consider a tether in a 300 km circular orbit. At this 
altitude, the orbital velocity is about 7700 m/s with a baseline field of B0 ∼ 2.6×10−5 Tesla. 
We then get Em ∼ vB0 ≈ 200 V/km. If the tether is aligned in the direction of the field EE ', 
then a potential of Vm = 4 kV will be generated from end to end of a 20 km long tether. In 
principle, one could make use of this (non-constant) voltage source to generate power. 
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Tethers as Power Generators 

In this case, we have a spacecraft deploying an insulated tether “upwards” as shown in the 
figure. We assume the tether moves with a velocity Ev under a perpendicular magnetic field 
BE . The tether has length e and a corresponding resistance RT . 

e−

e−

anode

cathode

RL

RT
I

ΔVC

ΔVA

Em

VL

φ
plasma

φ
tether

e−

e−

anode

cathode

RT I

ΔVA

ΔVC

Em

VS
VS

As the tether moves, we have a field Em = vB that will generate an “open circuit” voltage 
Voc = vBe. If there is a load resistance RL in series, the a (positive) current will flow, as 
ionospheric electrons are collected on an exposed anode at the top of the tether, 

Voc − ΔV 
I = (3)

RT + RL 

where ΔV is the (relatively small) total potential drop due to plasma sheaths at the anode 
and cathode. To complete the circuit, a cathode releases the electrons at the bottom of the 
tether. Given this current flow, electrical power will be generated at the load,   2

Voc − ΔV 
P = I2RL = RL (4)

RT + RL

We observe that the generated power is both zero when the load resistance is either zero or 
∞. This means there is an optimum resistance that will yield maximum power. To find this, 
we differentiate Eq. (4) and set it to zero, therefore, 

(Voc − ΔV )2 

Pmax = which occurs when RL = RT (5)
4RT 
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The efficiency of this power-generating tether can be defined as,
 

P I2RL RL ΔV 
ηg = = = 1 − (6)

IVoc IVoc RT + RL Voc 

We can easily verify that for maximum power generation, the efficiency is ηg ≈ 0.5. Ideally, 
we would like RL » RT for maximum efficiency, but then we get lower power. 

We can also verify that the input power IVoc is identical to the rate of change of the elec­
trodynamic drag work (force FE , force density fE), 

Ẇ = FE · Ev = fE · Ev dV = Ej × BE · Ev dV = IBev = IEme = IVoc (7) 

Tethers as Thrusters 

Now, we have a spacecraft that deploys the tether “downwards”. In this case, the anode 
at the bottom collects electrons from the ionosphere. The Em field will point also upwards, 
however, we now have an on-board power supply that forces the net (positive) current in the 
opposite direction, as shown. 
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Instead of removing energy from the orbit, this configuration will add energy, as the force 
density fE = Ej × BE points in the direction of the velocity vector Ev, 

With the current give by,
 

EF = Ef dV = IBe 
Ev 

(8) 
v 
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Vs − ΔV − Eme 
I = (9)

RT 

We could also write the magnitude of this force (thrust) as, 

˙IBve IEme W 
F = = = (10) 

v v v 

Therefore, the rate of work added to the orbit is, 

Ẇ = Fv (11) 

The efficiency of the tether as a thruster is, 

Ẇ IEme Voc
ηt = = = < 1 (12)

IVs IVs Vs 

It is then possible to use a tether both as a generator and a propellant-less thruster. In fact, 
since the tether can be used as a generator, an interesting question would be: what is the 
tether efficiency compared against a fuel cell? Fuel cells make use of some consumable (like 
propellant) to produce electric power. As an exercise, calculate the efficiency of a tether 
producing power when its drag is compensated by a thruster consuming propellant. This is 
a tether working as a fuel cell. 

Tether Dynamics 

As we have seen, it is important that the tether is oriented along the radial vector in its 
orbit for it to be used as an electrodynamic generator or thruster. 
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We need to analyze the tether dynamics to verify that such alignment can be achieved 
without the use of complicated active control. 
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Referring to the schematic, we have a mass-less tether of length ` = `1 + `2 with two point
masses at its ends, such that m1 + m2 = m. Let us analyze the dynamics of m2, assuming
that the center of mass (cm) is orbiting at a radius R. There will be a centrifugal force
acting on m2 given by,

m2v
2 m2v

2

= (13)
R + `2 cos θ

(
`2

R 1 + cos θ
R

)
which is balanced by a gravitational force,

m2µ m2µ
= (14)

(R + ` cos )2
2 θ

R2

(
`2

1 + cos θ
R

)2

In addition, the orbital velocity is,

v = ΩR

(
`2

1 + cos θ
R

)
(15)

and since
√
µ/R = RΩ, then µ = R3Ω2. The net (upwards) force acting on m2 is the

difference between these two forces,

`
Fnet = m2Ω

2R

(
2

1 + cos θ
R

)
−m2Ω

2 1
R( 2 (16)

`2
1 + cos θ

R

)
Even for a long wire, we have `2 � R, therefore we can approximate,

( 1

`2
1 + cos θ

R

) `
2 ≈ 1− 2

2 cos θ
R

the net force on m2 is then,

2
Fnet = 3m `2Ω

2 m1m
2 cos θ = 3 ` Ω2 cos θ (17)

m

The projection of this force on the direction of the wire is the tension,

T = F cos θ (18)

The tension on a 20 km tether for a mass of 100 kg would be 7.4 N, which is not a strong force
enabling the use of light and thin wires. The projection of the net force in the orthogonal
direction generates a torque,

m1m2
τ = −F` sin θ and for small θ, τ = −3 `2Ω2θ (19)

m

5



It is the clear that the gravity gradient force gives a torque that goes in the opposite direction 
to the tether defection from the vertical and therefore the it tends to stabilize the tether in 
the direction favorable for its use as electrodynamic actuator. 

Given its moment of inertia J , the tether rotational dynamics are described by, 

dω m1m22 2 2J = τ where J = m1e1 + m2e2 = e (20)
dt m 

Combining Eq. (19) and Eq. (20), we get, 

¨ θ + 3 Ω2θ = 0 (21) 

which means the tether will oscillate at a frequency, 

√ 
fω = 3 Ω (22) 

For example, at 500 km altitude, we have Ω ≈ 10−3 rad/s, which corresponds to an orbital 
period of 94 minutes. The corresponding oscillation time for the tether would then be 54 
minutes, which means we have a “lazy” oscillation. The dynamic analysis in the off-plane 
direction is somewhat more complicated, but yields an oscillation frequency in the same 
order, 2Ω. 
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