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PRESSURE FIELDS AND UPSTREAM INFLUENCE
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PLAN OF THE LECTURE
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• Pressure fields and streamline curvature
– Streamwise and normal pressure gradients
– One-dimensional versus multi-dimensional flows

• Upstream influence and component coupling
– How does the pressure field vary upstream of a fluid component 

and when does this matter?

• Pressure fields and the asymmetry of real fluid motions



NORMAL AND STREAMWISE PRESSURE GRADIENTS

• Inviscid flow
• Streamwise:  

• Normal
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STREAMLINES AND WALL STATIC PRESSURES
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ONE-DIMENSIONAL AND TWO-DIMENSIONAL DESCRIPTIONS
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• In a one-dimensional representation of a contraction, the pressure 
gradient is always negative (or zero)

• If adopt a higher fidelity (2D) description, this is not true

• Is it possible to have a contraction in which there is no location that 
has an adverse (non-favorable) pressure gradient?

• Why is this important?  



UPSTREAM INFLUENCE OF FLUID COMPONENTS

• Approximate equation for the static pressure field
• 2-D, inviscid, steady flow, constant density
• Velocity viewed as a uniform mean flow,  , plus “small” non-

uniformities, :

• Neglect products of small quantities in momentum equation

x - momentum:    u ∂ ′ u x
∂x

+ ′ u y
∂ ′ u x
∂y

= −
1
ρ

∂ ′ p 
∂x

where ′ p  is the departure from uniform static pressure

There is no term ′ u x
∂u 
∂x

 because u  is uniform

ux = u x + ′ u x
uy = ′ u y

′ u x , ′ u y
u X
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So,

                u x
∂ ′ u x
∂x

= −
1
ρ

∂ ′ p 
∂x

         (a)

and          u x
∂ ′ u y
∂x

= −
1
ρ

∂ ′ p 
∂y

        (b)

Take    ∂(a)
∂x

+
∂(b )
∂y

 ,    yielding,  using continuity
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               ∇ 2 ′ p = 0       Laplace' s Equation

•   Famous equation with neat properties
•   We will apply this to see the upstream influence
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UPSTREAM INFLUENCE

• Important question in internal flow systems-
– When are components coupled aerodynamcially
– When can they be considered independent?

• Laplace’s equation gives direct and simple qualitative answer
• Laplace’s equation gives direct and simple quantitative answer
• First part:

-  ∇2 ′ p   has no intrinsic length scale
-   If pick a y - length =>  x - length is set
-   Consider an "unrolled" annular flow field
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A DIGRESSION: WHAT DO I MEAN BY “LENGTH SCALE”?

• What is an example of an equation with a length scale?

• How about the momentum equation for viscous, constant-pressure 
flow?
– This is an idealized example but it does make the point

• Does this equation lead to some length scale, i.e. does a length
scale naturally arise out of the structure of the equation?

• If so, what does it mean physically?

ux
∂ux

∂x
+ uy

∂ux

∂y
= ν ∂2ux

∂x 2 +
∂2ux

∂y 2
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BACK TO LAPLACE:  RELATION OF 
CIRCUMFERENTIAL AND AXIAL LENGTH SCALES
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• Consider an “unrolled” annular flow field, mean radius rm

• Suppose we have a circumferential length scale rm/n, then the axial length 
scale (extent of upstream influence) is also rm/n

• Circumferential length scale sets the region of upstream influence

• Will show this explicitly in two examples:

• Upstream influence of a circumferentially periodic non-uniformity

• Upstream influence of a radially non-uniform flow



11Figure by MIT OCW.
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UPSTREAM INFLUENCE OF A CIRCUMFERENTIALLY NON-
UNIFORM FLOW
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• Blade row with blade-to-blade spacing W
• Whatever the loading distribution (compressor, turbine, pump) the 

static pressure distribution along x=0 can be written as 

-  ′ p 0,y( )  = ane
2πiny / W( )

n=-∞

∞

∑    ;   Fourier series

-   To match this boundary condition, ′ p x,y( ) must also
     be of this y - dependence
-   Also ′ p  (static pressure non- uniformity) must be bounded
     far upstream
-   Thus

                ′ p x,y( )  = fn x( ) ane
2πiny / W[ ]

n=-∞

∞

∑
-    Plugging in to Laplace, fn x( ) is found to have the form of

     exponentials :  e 2πnx/W  and e−2πnx/W



• Physical solutions must be bounded far upstream
• Thus, only positive exponentials allowed

• Lowest harmonic (often, but not always, n=1) has the largest 
upstream influence

• Different phenomena have different upstream extents of influence

                ′ p x,y( )  = e 2π n x / W ane
2πiny / W[ ]

n=-∞

∞

∑

′ p x,y( )  ∝e 2π n x / W a1e
2πiny / W + a−1e

−2πiny / W[ ]
′ p x,y( )  = ′ p 0,y( )e 2π n x / W       Exponential decay
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FEATURES OF THE SOLUTION
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• We neglected nonlinear terms:  are they important over the domain 
of interest or, more precisely, for the problem of interest?

• What else did we neglect?

• At a distance W/2 upstream the non-uniformity is 0.04 its value at 
x=0

• Blade spacing length scale is W

• Inlet distortion length scale is radius of the compressor
– Upstream effects are much stronger

• What can we state about applicability and limits of the conclusions 
from this simple analysis?



INSTRUMENTATION FOR TF30 ENGINE TEST
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BULLET NOSE EXTENSION WITH PRESSURE TAPS
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VARIATION OF STATIC PRESSURE WITH 
DISTANCE UPSTREAM OF AXIAL COMPRESSOR

[Soeder and Bobula]
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[Williams and Ham] 18Figure by MIT OCW.
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[Williams and Ham] 19Figure by MIT OCW.
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UPSTREAM DECAY OF STATIC-PRESSURE DISTORTION

[Williams and Ham] 20
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FEATURES OF THE UPSTREAM FLOW FIELD
(Low Mach Numbers)

• Inlet distortion (non-uniformity with length scale R)
• Total pressure constant along streamlines (Bernoulli)
• Static pressure obeys Laplace’s equation:

• No inherent length scale in equation
• Length scale set by boundary conditions
• If θ - length scale is ~ L then upstream decay of static pressure

is like
• Region of influence ~ diameter

∇2 ′ p = 0

1
rm

2
∂2 ′ p 
∂θ 2 +

∂2 ′ p 
∂x 2 = 0 ; ′ p  is static pressure disturbance

e −2π x / L
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22[Hodder]

Short Pitot Intake Effect of Presence of an Engine
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UPSTREAM INFLUENCE OF A RADIALLY NON-UNIFORM 
ANNULAR FLOW

• Again have uniform background flow in x-direction, 

• Pressure varies with radius at x=0 (boundary condition)

′ u x , ′ u r << u x

∂
∂θ

= 0    ;   axisymmetric variation

u x
∂ ′ u x
∂x

= −
1
ρ

∂ ′ p 
∂x

  ;   take 
∂( )
∂x

u x
∂ ′ u r
∂x

= −
1
ρ

∂ ′ p 
∂r

   ;   take 
1( )
r

+
∂( )
∂r

∂2 ′ p 
∂r 2 +

1
r

∂ ′ p 
∂r

+
∂2 ′ p 
∂x 2 = 0    ;     ∇2 ′ p = 0
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• Suppose annulus has a high hub/tip radius ratio
• Length scale of non-uniformities is 

• Ratio of                     1
r

∂ ′ p 
∂r

 to ∂2 ′ p 
∂r 2  is ∆r

rm

<< 1

Reduces to ∂2 ′ p 
∂r 2 +

∂2 ′ p 
∂x 2 ≅ 0

Solution is ′ p ∝exp −π x / ∆r( )

Can extend to compresible flow using Prandtl- Glauert

transformation :  x → x 1−M 2

∆r = ro − ri
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INTERACTION LENGTH, L, FOR FLOW 
NONUNIFORMITIES
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INTERACTION BETWEEN COMPONENTS
SCREEN AND CONTRACTION
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PRESSURE FIELD AT DIFFERENT AXIAL STATIONS
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WHAT DO WE EXPECT THE INTERACTION TO DO?

• What effect does a screen have on a non-uniform  flow?

• How would you characterize the attributes of a screen?

29



WHAT DO WE EXPECT THE INTERACTION TO DO?

30

• What effect does a screen have on a non-uniform  flow?

• How would you characterize the attributes of a screen?

• In regions in which the velocity is high what is the local 
pressure drop through the screen?

• Where are the regions (across the channel) in which the 
velocity is high?



IMPACT ON DOWNSTREAM CONDITIONS
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WHAT IS THE EFFECT OF A SCREEN ON A NON-
UNIFORM UPSTREAM FLOW?
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DOES THIS EFFECT DEPEND ON THE SCREEN 
CHARACTERISTICS?  HOW?

33

• Does the pressure field upstream of the screen depend 
on the pressure drop through the screen?

• What are the features of the upstream pressure field

• For a given far upstream flow non-uniformity, would we 
get a more uniform velocity downstream if the pressure 
drop increased?

• How do we connect the pressure field to the velocity 
non-uniformity?  

- Upstream?  

- Downstream?  

- Upstream to downstream?



EFFECT OF SCREEN PRESSURE DROP ON 
DOWNSTREAM VELOCITY (I)
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EFFECT OF SCREEN PRESSURE DROP ON 
DOWNSTREAM VELOCITY (II)
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REGION OF INFLUENCE OF SCREEN
[K is screen pressure drop]
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A MORE COMPLICATED (OR IS IT?) EXAMPLE: STATIC PRESSURE 
FIELD UPSTREAM OF A COMPRESSOR STATOR/STRUT GEOMETRY

[The figure shows only one section (one “wavelength”) of a periodic geometry]
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WHAT ARE THE FEATURES OF THIS PRESSURE FIELD?
(Location is 0.5 of a stator chord upstream of the stator leading edge)

38

• The figure shows a section of a periodic geometry.  The 
geometry is repeated (on both sides) to simulate a full 
annulus with, say, twelve struts and 72 blades

• There is a large length-scale non-uniformity

• There are smaller length scale “bumps” on this

• How would we explain the features of this pressure field?



Inflow & Outflow to Fluid Devices -
Asymmetry of Real Fluid Motion

• Examples we looked at had fundamental asymmetry

(inflow to inlet: streamlines entered from all directions - however 
outflow of ejector: parallel jet exited in direction of exit nozzle)

• Different streamlines configuration associated with inflow or exit 
flow!
Note: asymmetry was implicit in control volume treatment

• Cause for asymmetry no-slip condition at solid surface, 
feature of all real fluids!

• For high Re-flow:

so for same ∆p, higher u yields smaller ∆u

x
p

x
uu

∂
∂

−=
∂
∂

ρ
1

u
dpdu
ρ

−=
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Boundary Layer Subjected to Pressure Rise

• Same ∆p in free-stream as in BL

• Fluid in BL retarded by viscous forces (a) to (b) to (c)

• For same pressure rise, BL suffers larger drop in velocity than fluid 
outside BL flow will eventually separate

• The ∆p at which ∆u is driven to 0 in BL is less than that which free-
stream can attain

(a) (b) (c)

Separation
streamline

40



Contrast Between Inflow to, Outflow from, Pipe

For high Re, BL thin streamlines for flow into pipe will follow geometry

• Inflow: 

– favorable pressure gradient from 1 to 
2 (acceleration of fluid in BL)

– at 2 have region of low pressure 
(streamline curvature)

– from 2 to 3 static pressure rises again, 
BUT outside boundary layer (BL) 
some streamline convergence, so 
severity of adverse pressure gradient 
lessened 

– adverse pressure gradient mild 
enough to avoid separation

②

①③

41



Contrast Between Inflow & Outflow of Pipe

42

• How about outflow of pipe: 

– will outflow have also this streamline configuration?

– why or why not? What are pressure gradients driving the 
outflow pattern?

• Asymmetry in streamline configuration due to viscosity

• Motions are not reversible in thermodynamic and kinematic sense

External Flow Example:
thin wing: Kutta-Joukowski
condition

Internal Flow Example:
flow leaving straight nozzle, 
parallel to nozzle axis

Good assumptions for describing real flow



Example: Flow Through a Bent Tube

• Freely rotating bent tube, 
constant area A, volume rate of 
flow Q

• Flow entering at center 0 and 
exiting through bent part

• What is rotation rate Ω ?

• What happens if there is inflow instead of outflow through bent 
tube?

• Does it rotate? Why or why not?
43

Figure by MIT OCW.



FLOW INTO (a) AND OUT OF (b) A PIPE IN A QUIESCENT FLUID
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Figure by MIT OCW.



INFLOW FROM A QUIESCENT FLUID INTO A PIPE:
FLOW NEAR THE PIPE ENTRANCE

②

①③
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EXIT FLOW FROM A SUBSONIC NOZZLE WITH PRESSURE 
INSIDE THE JET HIGHER THAN pambient
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