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ERROR ANALYSIS 
(UNCERTAINTY ANALYSIS)

16.621 Experimental Projects Lab I
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TOPICS TO BE COVERED

• Why do error analysis?

• If we don’t ever know the true value, how do we estimate the error 
in the true value?

• Error propagation in the measurement chain
– How do errors combine?  (How do they behave in general?)
– How do we do an end-to-end uncertainty analysis?
– What are ways to mitigate errors?

• A hypothetical dilemma (probably nothing to do with anyone in the 
class)
– When should I throw out some data that I don’t like?
– Answer: NEVER, but there are reasons to throw out data

• Backup slides: an example of an immense amount of money and 
effort directed at error analysis and mitigation - jet engine testing
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ERROR AND UNCERTAINTY

• In engineering the word “error”, when used to describe an aspect of 
measurement does not necessarily carry the connotation of mistake 
or blunder (although it can!)

• Error in a measurement means the inevitable uncertainty that 
attends all measurements

• We cannot avoid errors in this sense

• We can ensure that they are as small as reasonably possible and 
that we have a reliable estimate of how small they are

[Adapted from Taylor, J. R, An Introduction to Error Analysis; 
The Study of Uncertainties in Physical Measurements]
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USES OF UNCERTAINTY ANALYSIS (I)

• Assess experimental procedure including identification of 
potential difficulties
– Definition of necessary steps
– Gaps

• Advise what procedures need to be put in place for measurement

• Identify instruments and procedures that control accuracy and 
precision
– Usually one, or at most a small number, out of the large set of 

possibilities

• Inform us when experiment cannot meet desired accuracy
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USES OF UNCERTAINTY ANALYSIS (II)

• Provide the only known basis for deciding whether:
– Data agrees with theory
– Tests from different facilities (jet engine performance) agree
– Hypothesis has been appropriately assessed (resolved)
– Phenomena measured are real 

• Provide basis for defining whether a closure check has been 
achieved
– Is continuity satisfied (does the same amount of mass go in 

as goes out?)
– Is energy conserved? 

• Provide an integrated grasp of how to conduct the experiment

[Adapted from Kline, S. J., 1985, “The Purposes of Uncertainty 
Analysis”, ASME J. Fluids Engineering, pp. 153-160]
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UNCERTAINTY ESTIMATES AND HYPOTHESIS ASSESSMENT
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HOW DO WE DEAL WITH NOT KNOWING 
THE TRUE VALUE?

• In “all” real situations we don’t know the true value we are 
looking for

• We need to decide how to determine the best 
representation of this from our measurements

• We need to decide what the uncertainty is in our best 
representation
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AN IMPLICATION OF NOT KNOWING THE TRUE VALUE

• We easily divided errors into precision (bias) errors and random
errors when we knew what the value was

• The target practice picture in the next slide is an example

• How about if we don’t know the true value?  Can we, by looking at 
the data in the slide after this, say that there are bias errors?   

• How do we know if bias errors exist or not?



11

A TEAM EXERCISE

• List the variables you need to determine in order to carry out your 
hypothesis assessment

• What uncertainties do you foresee?  (Qualitative description)

• Are you more concerned about bias errors or random errors?

• What level of uncertainty in the final result do you need to assess 
your hypothesis in a rigorous manner?

• Can you make an estimate of the level of the uncertainty in the final 
result?
– If so, what is it?
– If not, what additional information do you need to do this?
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HOW DO WE COMBINE ERRORS?

• Suppose we measure quantity X with an error of dx and quantity Y
with an error of dy

• What is the error in quantity Z if:
• Z = AX where A is a numerical constant such as π?
• Z = X + Y?
• Z = X - Y?
• Z = XY?
• Z = X/Y?
• Z is a general function of many quantities?
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ERRORS IN THE FINAL QUANTITY

• Z = X + Y

• Linear combination

–

– Error in Z is BUT this is worst case

• For random errors we could have

–

or

– These errors are much smaller

• In general if different errors are not correlated, are 
independent, the way to combine them is

• This is true for random and bias errors

Z + dz = X + dx + Y + dy
dz = dx + dy

dz = dx − dy

dy − dx

dz = dx2 + dy2
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THE CASE OF Z = X - Y

• Suppose Z = X - Y is a number much smaller than X or Y

• Say                           (say 2%)

• may be much larger than 

• MESSAGE ==> Avoid taking the difference of  two numbers of 
comparable size

dx
X =

dy
Y = ε

dz = dx2 + dy2

dz
Z =

2 dx
X − Y

dx
X
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ESTIMATES FOR THE TRUE VALUE AND THE ERROR

• Is there a “best” estimate of the true value of a quantity?

• How do I find it?

• How do I estimate the random error?

• How do I estimate the bias error?
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SOME “RULES” FOR ESTIMATING
RANDOM ERRORS AND TRUE VALUE

• An internal estimate can be given by repeat measurements

• Random error is generally of same size as standard deviation (root 
mean square deviation) of measurements

• Mean of repeat measurements is best estimate of true value

• Standard deviation of the mean (random error) is smaller than 
standard deviation of a single measurement by 

• To increase precision by 10, you need 100 measurements

1 Number of measurements
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GENERAL RULE FOR COMBINATION OF ERRORS

• If  Z = F (X1, X2, X3, X4)  is quantity we want

• The error in  Z, dz,  is given by our rule from before

• So, if the error F due to X1 can be estimated as

and so on

•

• The important consequence of this is that generally one or few of 
these factors is the main player and others can be ignored

dF1 =
∂F
∂X1

dx1

Influence coeff.

Error in X1

  
dz =

∂F
∂X1

 

 
  

 
 

2

dx1
2 +

∂F
∂X2

 

 
  

 
 

2

dx2
2 +" ∂F

∂Xn

 

 
  

 
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2

dxn
2
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DISTRIBUTION OF RANDOM ERRORS

• A measurement subject to many small random errors will be 
distributed “normally”

• Normal distribution is a Gaussian

• If x is a given measurement and X is the true value

• σ is the standard deviation

Gaussian or normal distribution =
1

σ 2π
e− x−X2( ) 2σ2
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A REVELATION

• The universal gas constant is

accepted R = 8.31451 ±0.00007 J/mol K

• This is not a true value but can be “accepted” as one
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ONE ADDITIONAL ASPECT OF COMBINING ERRORS

• We have identified two different types of errors, bias (systematic) 
and random
– Random errors can be assessed by repetition of measurements
– Bias errors cannot; these need to be estimated using external 

information (mfrs. specs., your knowledge)

• How should the two types of errors be combined?
– One practice is to treat each separately using our rule, and then 

report the two separately at the end
– One other practice is to combine them as “errors”

• Either seems acceptable, as long as you show that you are going
to deal (have dealt) with both
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REPORTING OF MEASUREMENTS

• Experimental uncertainties should almost always be 
rounded to one significant figure

• The last significant figure in any stated answer should 
usually be of the same order of magnitude (in the same 
decimal position) as the uncertainty

[from Taylor, J., An Introduction to Error Analysis]
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COMMENTS ON REJECTION OF DATA

• Should you reject (delete) data?

• Sometimes on measurement appears to disagree greatly with all 
others.  How do we decide:
– Is this significant?
– Is this a mistake?

• One criteria (Chauvenaut’s criteria) is as follows
– Suppose that errors are normally distributed
– If measurement is more than M standard deviations (say 3), 

probability is < 0.003 that measurement should occur
– Is this improbable enough to throw out measurement?

• The decision of “ridiculous improbability” [Taylor, 1997] is up to 
the investigator, but it allows the reader to understand the basis 
for the decision
– If beyond this range, delete the data
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A CAVEAT ON REJECTION OF DATA

• If more than one measurement is different, it may be that 
something is really happening that has not been envisioned, e.g., 
discovery of radon

• You may not be controlling all the variables that you need to

• Bottom line: Rigorous uncertainty analysis can give rationale to
decide what data to pay attention to
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SUMMARY

• Both the number and the fidelity of the number are important in a 
measurement

• We considered two types of uncertainties, bias (or systematic 
errors) and random errors 

• Uncertainty analysis addresses fidelity and is used in different
phases of an experiment, from initial planning to final reporting
– Attention is needed to ensure uncertainties do not invalidate 

your efforts
• In propagating uncorrelated errors from individual measurement to 

final result, use the square root of the sums of the squares of the 
errors
– There are generally only a few main contributors (sometimes 

one) to the overall uncertainty which need to be addressed
• Uncertainty analysis is a critical part of “real world” engineering 

projects
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BACKUP EXAMPLE: MEASUREMENT OF JET ENGINE 
PEFORMANCE

• We want to measure Thrust, Airflow, and Thrust Specific Fuel 
Consumption (TSFC)
– Engine program can be $1B or more, take three years or more
– Engine companies give guarantees in terms of fuel burn
– Engine thrust needs to be correct or aircraft can’t take off in 

the required length
– Airflow fundamental in diagnosing engine performance 
– These are basic and essential measures

• How do we measure thrust?

• How do we measure airflow?

• How do we measure fuel flow?
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THRUST STANDS

• In practice, thrust is measured with load cells

• The engines, however, are often part of a complex test facility 
and are connected to upstream ducting

• There are thus certain systematic errors which need to be 
accounted for

• The level of uncertainty in the answer is desired to be less than 
one per cent

• There are a lot of corrections to be made to the raw data 
(measured load) to give the thrust
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TEST STAND-TO-TEST STAND DIFFERENCES

• Want to have a consistent view of engine performance no matter 
who quotes the numbers

• This means that different test stands must be compared to see 
the differences 

• Again, this is a major exercise involving the running of a jet 
engine in different locations under specified conditions

• The next slide shows the level of differences in the 
measurements




