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Introduction

•	 A primary goal of your efforts in this course will 

be to gather empirical data so as to prove (or 
disprove) your hypothesis 

•	 Typically the data that you gather will not directly 
satisfy this goal 

•	 Rather, it will be necessary to “reduce” the data, to 
put it into an appropriate form, so that you can 
draw valid conclusions 

• In our discussion today we will examine some 

typical methods for processing empirical data


•	 Caution-garbage in/garbage out still applies
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Deyst’s 16.62X Project


•	 I have performed a very simple experiment

•	 The hypothesis was: my driving route 

distance, from West Garage to my driveway 
in Arlington, is eight miles 

•	 On a number of trips I recorded the mileage, 
as indicated by the odometer of my 
automobile 

•	 I now wish to reduce the data and draw 
some conclusions 



Experimental Project (cont.)


•	 My experimental procedure was: at the exit 
from West Garage I zeroed my trip 
odometer and when I reached my driveway 
at home I recorded the odometer reading 

•	 On each of ten trips I took the same route 
home 



Error Sources

Random errors 

Odometer readout resolution 
Odometer mechanical variations 
Route path variations 
Tire slippage 

Systematic errors 
Bias in the odometer readings 
Odometer scale factor error 
Tire diameter decreases due to wear 



Error Sources (cont.)


•	 The resolution I achieved in reading the 
odometer was within ±.025 miles 

•	 The best knowledge I have about the other 
random errors is that they were all in the 
range of ±.10 miles 

•	 I zeroed the odometer at the beginning of 
each trip so any bias in the measurements is 
small (i.e. about ± .005 miles) 



Error Sources (cont.)

•	 I did a scale factor calibration by driving 28 

miles, according to mileage markers on 
Interstate 95, and in both directions I 
recorded 27.425 miles on my odometer 

•	 Thus, the scale factor is 
27.425	 odometer indicted miles

S.F. =	 = .980 
28	 actual miles 

•	 And any error in the scale factor due to 
readout resolution is 

.025 
≅ ±.0006eSF = ±  

228 ⋅ 



Recorded Data

Trip 
Number 

Mileage 
Reading 

S.F. Corrected 
Mileage reading 

1 7.825 7.985 
2 7.850 8.010 
3 7.875 8.036 
4 7.900 8.061 
5 7.850 8.010 
6 7.825 7.985 
7 7.875 8.036 
8 7.850 8.010 
9 7.875 8.036 
10 7.825 7.985 



Mileage Data Analysis


•	 My system model is that the route distance 
is constant 

•	 To minimize the effect of  random errors 
take the sample mean (average) of the data 
to obtain an estimate 

n 

d̂ 	= 
1 ∑di = 8.015 miles 
n i =1 



Mileage Data Analysis (cont.)

•	 Variations of the individual measurements, 

about this estimate are 

ei = di − d̂ 

•	 The sample mean of these variations is

n	 n1 

n 
ê = ∑ei = 

1 ∑(di − d̂) = 0

i =1 n i =1


•	 So the estimate is unbiased




Mileage Data Analysis (cont.)


•	 Assuming the variations are statistically 
independent we can also compute the 
sample standard deviation of these 
variations as 

n	 n 

σ̂ = 
1 ∑(di − d̂)2 = 

(n 
1 
−1)

∑ei 
2 = .026 miles

(n −1) i =1	 i =1 



Mileage Data Analysis (cont.)

•	 Since my experiment consisted of a number of 

independent trials it is reasonable to assume that the 
route distance, as determined by my measurements, 
is gaussian 

probability

density of

route distance 
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Linear System Models

•	 The system model for my experiment assumed 

that the route distance is constant 
•	 In many instances the system model is not 

constant but is a linear function 
•	 Define a linear system model as


y = c0 + c1x 
where 
x ≡ independent variable 
y ≡ dependent variable 



Linear System Models (cont.)

Typically, for a number of values of the 
independent variable (x), the corresponding 
values of the dependent variable (y) are 
measured 

measured 
values of 
dependent 
variable (y) 
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Straight Line Fit


• For a linear model, the object is to find the 

best straight line fit to the measured data


• We can characterize each measurement as


yi = c0 + c1xi + ei 

where


ei = error or variation of the ith measuremen 
from a straight line model 



Straight Line Fit (cont.)

•	 To characterize the complete set of n 

measurements define the following arrays 

y1	  1 x1  e1  
⋅  ⋅ ⋅  c0  ⋅  

y = ⋅  X = ⋅ ⋅  
c=

c1   e =  ⋅  
    yn	 1 xn 

 e n  

• So the measurement equation becomes 
y = X c + e 



Straight Line Fit (cont.)


•	 Recall that we wish to find the best straight 
line fit to the measured data array y 

•	 A useful criterion for the best fit is to 
minimize the sum of the squared errors 

n 
2 2 T e
 = ∑ei = e e 

i =1 



Straight Line Fit (cont.)

•	 And upon substitution from above


2 
e = (y − X c)T( y − X c) 

T= y y − 2yTX c + cTX TX c  

•	 Our goal is to find the array c so that the 
sum squared error is minimized 

•	 First determine the gradient of the sum 
squared error with respect to c 

2∂ e 
= −2yTX + 2cTXTX

∂c 



Straight Line Fit (cont.)

• Setting the gradient to zero yields the optimum


− 1X T yĉ 	= (X TX )

•	 Since the required inverse matrix is only  2 × 2 we 
can readily solve for the two elements of ĉ 

∑ ∑ xi 
2 − ∑ xi ∑	( yixi ) n∑ ( xiyi ) − ∑ xi ∑ yi 

2 ∑ 2ĉ0	 = 
yi

n xi 
2 − (∑ xi )

ĉ1 = 
n xi 

2 − (∑ xi )∑ 

•	 These are the equations used in your calculator 
or computer to get a best straight line fit to data 
as 

ŷ( x) = ĉ0 + ĉ1x 



Beam Deflection Example


•	 A cantilever beam deflects downward when a mass 

is attached to its free end. A beam model predicts 

that the deflection will be a linear function of the 

mass.


•	 A student places various masses on the end of the 

beam and records the deflections


•	 The masses are measured to within  ±. .11grams

•	 The error in reading the deflections is within  ±. .23 


millimeters


Excerpted from: Beckwith, T.G., Marangoni R.D.,and Lienhard V, J.H., 
Mechanical Measurements, Fifth Edition, Addison Wesley, Reading, 
MA, 1993, pp. 113-115 



Beam Deflection Data

x value, y value, beam 
load mass (gm) deflection (mm) 

0 0 
50.15 0.6 
99.90 1.8 
150.15 3.0 
200.05 3.6 
250.20 4.8 
299.95 6.0 
350.05 6.2 
401.00 7.5 



Straight Line Fit to Beam Data

beam

deflection (mm) ŷ( x ) = −.076 + .019 x
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Linear Fit Analysis

•	 Recall that the best fit to y(x) is 

ŷ( x) = ĉ0 + ĉ1x 

•	 The variations or errors from the fit, at each 
measurement point, are then 

ei = yi − ŷ( xi ) = yi − ( ĉ0 + ĉ1xi ) 

•	 So the array of measurement errors is


e = y − ŷ = y − X ĉ = y − X(X TX )−1X Ty 

= (I − X(X TX )−1X T )y 



Straight Line Fit (cont.)


•	 A useful result is obtained by premultiplying 

X	Tboth sides of this equation by the matrix 

∑ei   0	
X Te = 

 
∑xiei 

 
 

= ( X T − X TX(X TX )−1X T )y = 
 0  

•	 Thus, the sample mean and x weighted sample 
mean of the errors are both zero 



Straight Line Fit 

Simple Example 

y3


y1


x

y2


1 = − l x2 = 0 x3 = l


∑ei = d − 2d + d = 0 ∑xiei = (−l)⋅ d +(0)⋅(−2d)+ l ⋅ d = 0


d 

d 

−2d 



Straight Line Fit (cont.)


•	 We can also derive an expression for the 
sample standard deviation, in terms of the 
measured data, by noting that 

σ̂ = 
1 

(n−1) 
ei 

2 

i=1 

n 

∑ = 
1 

(n−1) 
eTe = 

1 
(n−1)

(y− ŷ)T(y− ŷ) 

= 
1 

(n−1) 
yT(I − X(XTX)−1XT )y 



Nonlinear System Models


•	 In many instances the system model will not 
be linear 

•	 Often it is still possible to use a linear fit to 
analyze data 

•	 For example, suppose the system is an 
electronic circuit, for which we measure the 
output voltage over time in response to an 
initial condition 



Nonlinear System Models (cont.)

•	 The system model might be 

v( t) = v(0)e−α t 

where 
v(0) = initial condition voltage 
α =1/τ = inverse time constant 

• In this case the independent variable is 
time and the dependent (measured) variable 
is output voltage 



Nonlinear System Models (cont.)

•	 To linearize take the natural log of both 

sides of this equation 

ln(v(t)) = ln(v(0))− α t 
•	 And we can obtain our previous linear equation


y	= c0 + c1x 

by identifying 

y ≡ ln(v(t)) c0 ≡ ln(v(0)) c1 ≡ −α x ≡ t 



Nonlinear System Models (cont.)

•	 Thus the exponential system model is converted 

into a linear model 
•	 The measured data is converted using the 

identities xi = ti and yi = ln( vi ) 

•	 These values are used to obtain  ĉ as before

1 x1  

−1X T yX = ⋅ ⋅  ĉ = (X TX )
1 xn  

•	 The best exponential fit to the data is then 

v̂( t) = exp(ŷ) = exp(ĉ0 + ĉ1t) = exp(ĉ0 ) ⋅ exp(ĉ1t)




Nonlinear System Model 

Example: Exponential Fit


1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 
0 2  4 6 8 10 12  



Power Series Approximations


•	 Often, in cases where such a simple 
transformation is not available the data may 
be fit by a power series 

•	 Suppose the dependent variable  y( x) can be 
approximated to sufficient accuracy by a 
finite power series in x, of degree m 

my(x) = c0 + c1x + c2x
2 + "+ c x
m 



Power Series Approximations (cont.)

•	 Also, if we have n measurements of the 


dependent variable y, corresponding to n 

values of the independent variable x, then 

define the linear model as before so


y	= Xc + e 
•	 Where now 

2 m1 x1 x1 " x1  
c0  1 x2 x2

2 " x2 
m  

c = #  X = # # #  #cm   	 
2 m1 xn x " xn n 



Power Series Approximations (cont.)


•	 And our previous result can now be applied once 

again to get the best linear fit for c as 


ĉ 	= (X TX )−1X T y 

•	 So the best linear fit is 
2	 mŷ(x) = ĉ0 + ĉ1x+ ĉ2x + "+ ĉ xm

•	 The solution is somewhat more difficult because 

the required inverse is (m+1) × (m+1) , but for most 

situations the problem is still tractable




Fourier Series Approximations


•	 Sometimes the model may be periodic in 
nature and a truncated Fourier series can 
approximate the function 

•	 If y(x) is an odd periodic function of x, with 
first harmonic wavelength 2L, then a 
Fourier sine series approximation to y(x) is 

y(x) ≅ c1sin(πx / L)+ c2 sin(2πx / L)+⋅⋅⋅+ cm sin(mπx / L) 



Fourier Series Approx. (cont.)


From: Beckwith, T.G., Marangoni R.D.,and Lienhard V, J.H., 
Mechanical Measurements, Fifth Edition, Addison Wesley, Reading, 
MA, 1993, p. 141 

C. Gouldstone
Figure 4.10 Plot of square-wave function: (a) plot of first three terms only (includes the fifth harmonic), (b) plot of the first five terms (includes the ninth harmonic), (c) plot of the first eight terms (includes the fifteenth harmonic)



Fourier Series Approx. (cont.)

•	 Thus, if n measurements yi are taken at 

various values xi of the independent variable, 
then the X matrix can be defined as 

sin( πx1 / L ) sin( 2πx1 / L ) sin( 3πx1 / L ) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ sin(mπx1 / L )  
sin(πx2 / L ) sin( 2πx2 / L ) sin( 3πx2 / L ) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅sin( mπx2 / L )  

X =  ⋅ ⋅ ⋅ ⋅  

 ⋅ ⋅ ⋅ ⋅ 


sin(πx / L ) sin( 2πx / L ) sin( 3πx / L ) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅sin( mπx / L ) 

 
n n n	 n 



Fourier Series Approx. (cont.)


• And, as before, the array  ĉ is obtained from 

ĉ = (X TX )−1X T y 

•	 So the best linear fit for y(x) is 

ŷ(x) ≅ ĉ1sin(πx / L)+ ĉ2 sin(2πx / L)+⋅⋅⋅+ ĉ m sin(mπx / L) 
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