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A Control Algorithm Development (LS/AB) 

A.1 Control Requirements (LS) 
Electromagnets and reaction wheels are used to provide the forces and torques necessary 
to control position and attitude of the vehicles.  The interaction between electromagnets 
of different vehicles can be controlled to either attract or repel the vehicles.  The reaction 
wheels can rotate either clockwise or counterclockwise, providing control to either 
accelerate or decelerate the vehicles rotationally.  Varying the current through the 
magnets and changing the speed of the wheels control the actuators.  Controlling these 
accurately allows for maneuvering the vehicles and disturbance rejection. 
 

The responsibility of the control team was to build a robust controller for the project that 
will command maneuvers and provide disturbance rejection.  The controller is located on 
the avionics computer, and processes metrology inputs in order to calculate the necessary 
commands to send to the actuators.  This is depicted in the block diagram in   
  Figure A.1-A. 

 
 
 
 
 
 
 
 
 
 
 
 
 
    Figure A.1-A: Block Diagram of Controller 

 

The control team designed controllers to meet the following requirements, derived from 
the requirements document. 

 
1. Exhibit control in two modes 

a. Spin-up/spin-down 
b. Steady state 

2. Build a robust controller for two types of maneuvering 
a. Trajectory following 
b. Disturbance rejection 

3. Maximum allowable error in separation distance is 15 centimeters for a separation 
distance of 2 meters between vehicles 
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4. Maximum allowable error in angular position is 5 degrees for each vehicle’s 
orientation 

5. Rotation rate in steady state must be one revolution per minute 
 
The first requirement specifies the modes in which the test-bed operates.  This is derived 
from the test case in which two vehicles are at rest, spin-up to steady state, and then spin-
down to rest.  Spin-up consists of controlling two vehicles initially at rest and positioned 
so that the electromagnet of the first vehicle is perpendicular to that of the second, as 
shown in Figure A.1-B.  When the electromagnets are turned on, the vehicles rotate and 
shear in the directions of the arrows.  By controlling the electromagnets and reaction 
wheels, thereby applying appropriate forces and torques on the vehicles, the vehicles will 
follow the trajectory specified in Figure A.2-C, where the arrows point to the “north 
pole” of the magnets. 
 
This path will guide the vehicles to the steady state configuration, in which the 
electromagnets are aligned along a common axis, as show Figure A.1-D, and spinning at 
a constant rate, Ω, about their common center.  Finally, spin-down follows the same 
trajectory as spin-up but in reverse.  In spin-down, as the magnets rotate in the opposite 
direction relative to the radial line between the electromagnets to align perpendicularly, 
the test-bed comes to rest.  A controller has been designed for spin-up, but has not yet 
been tested. 
 
 
 

       

Figure A.1-B: Spin-up Mode    Figure A.1-C: Spin-up 
Trajectory  
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Figure A.1-D: Steady State Spin Mode 

   

To achieve a robust controller implies two responsibilities.  The test-bed must both reject 
disturbances as well as have the control authority to reposition the vehicles.  Rejecting 
disturbances implies both maintaining desired positions and desired angular rates, 
whether finite or zero in the presence of external disturbances. The controller was 
designed to demonstrate these capabilities in both the spin-up/spin-down as well as 
steady-state modes. Repositioning of the vehicles was to be used during the spin-up and 
spin-down maneuvers by following a user-supplied trajectory. 
 
Requirements three and four set the displacement and angular accuracies required for a 
successful controller.  When the controller determines the desired displacement and 
angular position for each vehicle, they must reach these states with a set accuracy for the 
controller to work.  These accuracies were derived from the accuracy of our system 
model.  The model was obtained by adding a perturbation to the non-linear system 
dynamics and linearizing the equations of motion.  In this process, higher order terms 
were neglected. 
 
To see when these higher order terms become negligible, further analysis was done by 
comparing the linearized model with the full non-linear model for different size 
perturbations.  The electromagnetic forces on each vehicle due to the electromagnetic 
interaction between the vehicles were calculated in the x direction for each model.  This 
calculation was done by creating a force balance, as shown in Figure A.1-D.  Holding all 
terms except separation distance constant, the results are as follows: 
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where r is the separation distance, δr is a perturbation added to the separation distance, 
and the µ terms are the magnetic moments for the different coils.  The ratio between the 
linearized forces and non-linear forces is defined as α, where 
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Substituting two meters for the separation distance r provides Figure A.1-E for α as a 
function of perturbation size, δr.  

 

Figure A.1-E: Alpha as a Function of Separation Distance Perturbation 

 
At alpha equal to one, there is no difference between the linear model and actual model.  
It was decided that a 10% difference between the models would still produce a functional 
controller.  This difference is shown in the graph by the horizontal lines at alpha equal to 
1.1 and 0.9.  Therefore, there is less than a 10% difference between models when the 
distance error is between -0.22m and 0.17m, as shown by the vertical lines.  To be 
conservative, the maximum separation distance error was set at ± 0.15m, guaranteeing 
less than a 10% difference between the linearized model used to calculate the control and 
the full non-linear system. 
 
A similar approach of analyzing the linearized model was used to determine the 
maximum allowable angle error.  The forces were examined again holding all terms 
constant except the angle of the magnet with respect to the other magnet.  The 
Mathematica code (available in I.l) was used to try 
different size angular perturbations and compare the output forces from both the linear 
and non-linear models.  A perturbation of 5 degrees creates a difference of less than 10% 
between the two models, and therefore is used as the limit for accuracy. 
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Finally, there was a requirement setting the rotation rate in steady state.  It must be at 
least one revolution per minute.  This was to limit the duration of testing due to a limited 
CO2 supply and battery life, as well as to allow the controller to dominate over frictional 
forces and slopes in the flat floor.  At slower speeds, the frictional forces may become 
significant, creating errors in the system models that do not account for friction.  
Therefore, it was important to maintain a speed at which friction is not a factor so the 
system model remains accurate and the controllers are effective. 

A.2 Test Cases (LS) 
There were several steps to designing the controller.  The first was to break down the 
requirements into smaller test cases.  For each test case, the system was modeled, a 
controller was designed and then coded onto the processor and integrated into the final 
system.  These controllers were then tested and refined.  The test cases were defined as 
follows: 
 

1. One vehicle (only reaction wheel control) 
1a. Disturbance rejection 
1b. Trajectory following 

2. Two vehicles (reaction wheel and electromagnet control) 
2a. One vehicle fixed, disturbance rejection 
2b. One vehicle fixed, trajectory following and slewing 
2c. Both vehicles free, disturbance rejection 
2d. Both vehicles free, trajectory following and slewing 
2e. Spin-up to steady state, then spin-down. 

 
The first set of test cases uses only one vehicle, so there is no electromagnet control, 
since this requires a second vehicle with an electromagnet.  In Test Case 1a, disturbance 
rejection was demonstrated by maintaining both a zero rotation rate and finite rotation 
rate by commanding the reaction wheel.  In Test Case 1b, trajectory following was 
demonstrated by rotating the vehicle to a commanded angle.  
 
The second set of test cases adds another vehicle, as well as the use of the electromagnet 
actuators.  In the first two cases, one vehicle is fixed so it cannot move.  The other 
vehicle will demonstrate disturbance rejection as well as trajectory following by moving 
to commanded separation distances as well as commanded angular positions.  In the next 
two cases, both vehicles are free.   Therefore both vehicles can be disturbed as well as 
commanded to new positions.  Finally, a two vehicle spin-up, steady-state spin, and spin-
down maneuver must be performed. 
 
Originally, a Test Case 3 was designed in which three vehicles would have been 
controlled.  A third vehicle was never built, so the third test case was never tested.  
Controllers have been designed for this test case, however, and are therefore included as a 
reference for future work.  Test Case 3 was defined as: 

 
3. Three vehicles (reaction wheel and electromagnet control) 

3a. Central vehicle fixed, disturbance rejection 
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3b. Central vehicle fixed, trajectory following and slewing 
3c. All vehicles free, disturbance rejection 
3d. All vehicles free, trajectory following and slewing 
3e. Spin-up to steady state, then spin-down. 

 
The third test case is similar to Test Case 2, with the addition of one more vehicle.  In the 
first two parts of the test, the middle vehicle is fixed and the other two must demonstrate 
disturbance rejection and slewing.  Then all the vehicles are freed. In the final test case, 
three vehicles must perform the full spin-up, steady state, spin-down maneuver. 

A.3 System Model (LS) 
The design of the controller begins with a model of the system.  Because each vehicle has 
inputs from both an electromagnet and a reaction wheel, and there are different states that 
need to be controlled, a state space model of the system is used to model the system.  
Since the system has no inertial reference, a coordinate system will be fixed on a 
specified body.  In the diagram below (Figure A.3-A), the coordinate system is fixed on 
Vehicle A.  Here, the states of interest are the distance to the other vehicle (rAB), the angle 
to the other vehicle from a reference point (θAB), the angle rotated by each vehicle about 
its own center of mass (αA, αB) from the radial line between vehicles, the rates of these 
states, as well as the angular rate of the entire system (Ω). 

 

Figure A.3-A: Definition of States 

 
The states are organized into a vector x:  
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 Equation A.3-1 
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where the first six states are vectors representing states for each vehicle.  These states are 
named the Master State Array (MSA) and will be computed by metrology, transmitted by 
communications, and entered as inputs to the controller. 
 
By linearizing the equations of motion, system models were developed for each test case 
of the form: 

BuAxx +=     
 Equation A.3-2 

DuCxy +=     
 Equation A.3-3 

 
where x are the states, u are the inputs, and y are the measurements.  The A and B 
matrices were determined for each test case with variable system parameters.  Estimates 
were made and used to design the preliminary controllers, and were refined when new 
system information was known. 
 

For Test Case 1, the desired states were defined as 
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 Equation A.3-4 

 
where θ is the angular position of the vehicle relative to its initial position, and  is its 
angular rate.  The driving dynamics of the system are the torque produced by the reaction 
wheel, τ, and the resultant torque on the vehicle, I .  The vehicle was approximated as a 
cylinder to determine the inertia, I.  The output of the system is the gyro reading, or .  
Putting these into state space form produces: 

θ

θ
θ

τ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=

I
xx 1

0

00
10

   

 Equation A.3-5 

[ ]xy 10=     
 Equation A.3-6 

 
For Test Case 2 the model is a bit more complex, thus we used Mathematica to compute 
it.  Our model of the system uses Figure A.3-B as a reference for the variables in the 
Mathematica script.   
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Figure A.3-B: Model of system for test case 2 

For the purpose of this paper we will only analyze test case 2.  The analysis for test case 3 
is done in the same way.  Figure A.3-B shows two vehicles, vehicles A and B, each with 
two electromagnets, magnets 1 and 2.  We will use body coordinates fixed on vehicle B, 
therefore vehicle B will not translate.  The angular position of vehicle A, Aθ , will be 
measured from the axis connecting vehicle A and vehicle B.  We start with the equations 
of motion where the forces and torques, T and F, are for each of the interactions between 
the coils – A1, A2, B1, B2 – in the direction indicated, x or y:   

xBAxBAxBAxBAA FFFFxm ,2/2,1/2,2/1,1/1 +++=   
 Equation A.3-7 

yBAyBAyBAyBAA FFFFym ,2/2,1/2,2/1,1/1 +++=   
 Equation A.3-8 

ARWBABABABAAZA TTTTTI ,2/21/22/11/1, ++++=θ  
 Equation A.3-9 

BRWABABABABBZB TTTTTI ,2/21/22/11/1, ++++=θ  
 Equation A.3-10 

 
By linearizing these equations and dropping the higher order terms, one can construct the 
state space model of the system.  The model for tests 2a and 2b, in the form uxx BA += , 
is shown in Figure A.3-C:   
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Figure A.3-C: State space equation for tests 2a and 2b 

And the model for tests 2c, 2d, and 2e is given in Figure A.3-D: 
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Figure A.3-D: State space equation for tests 2a, 2b, and 2c 

where 22
AA yxr += . 

The key difference between these models is the fact that for tests 2c, 2d, and 2e vehicle B 
is not fixed, allowing for the use of its reaction wheel for control.  The state space models 
for test case 3 are similarly found. The state space models above were computed using 
specific values for the field strengths of the magnets on the fixed vehicle.  The model will 
have to be recomputed to get the correct gains for different test case setups. 

A.4 Reaction Wheel Motor Model (AB) 
The reaction wheel assembly, which controls the attitude of the vehicle, is powered by a 
single motor mounted in the center of the vehicle.  The behavior of the motor is essential 
to overall vehicle dynamics.  The motor behavior was modeled to extract constants 
needed for the controller.  The controller used initially for the motor used proportional 
control.  The proportional controller did not provide precise enough control, so a first-
order model was derived, beginning with the relationships: 

Vk
k
R

bT e
t

a =++ ωω)(    Equation A.4-1 

 

ikT t=      Equation A.4-2 

 
where T is motor torque, b is a frictional constant, ω  is the rate at which the motor shaft 
spins,  is the armature resistance of the motor,  and  are torque constants, and V is 
the voltage required by the motor. 

aR tk ek

 
If you assume that the current supplied to the motor remains constant, only the frictional 
constant needs to be found.  The frictional constant, b was found experimentally.  The 
wheel was mounted on the motor and spun up to maximum speed.  The motor was then 
turned off and measurements of ω  were taken at regular intervals until the wheel came to 
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a complete stop.  The rate of rotation measurements were taken with the tachometer.  
Test data is shown in Table A.4-1 below.  The time shown is the time since the motor 
was turned off. 

Table A.4-1  Reaction wheel motor data 

Time (s) Trial 1 - ω  (Hz) Trial 2 - ω  (Hz) 
0 208 185 
5 185 161 
10 172 156 
15 155 135 
20 138 125 
25 122 111 
30 106 96 
35 102 87 
40 87 75 
45 75 64 
50 67 54 
55 57 43 
60 45 34 
65 34 26 
70 27 19 
75 20 12 
80 12 6 

 
The frictional constant b was derived from the relationship: 

ikbI twheel =+ ΘΘ
•••

   
 Equation A.4-3 

 
giving a value of b: 

000379.0−=b   
s

kgm 2

  

 Equation A.4-4 

 
We also tried to make a better model by taking out our constant current assumption.  We 
abandoned this as soon as the first order model was found to work but I will include the 
work here anyway. 
 
Integration of Equation A.5-3 gives: 
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)(    

 Equation A.4-5 
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Taking data on the motor and solving Equation A.5-4 graphically for inductance gives: 
51033.1 −×=aL   H   

 Equation A.4-6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A.5 Controller Design  (LS) 
The technique of control design used for the test-bed was the linear quadratic regulator, 
providing an optimal controller.  The LQR approach minimizes the cost equation: 

( )∫ += dtuRuxRxJ uu
T

xx
T   

 Equation A.5-1 

 
where J is the cost, x is the state, u is the control input, Rxx is the cost associated with 
state, and Ruu is the cost associated with the control.  When importance is placed on state 
accuracy, and the amount of control, or current to the actuators, is less important, Rxx is 
weighted high.  When minimizing the amount of control used is more important than the 
accuracy of the state, Ruu is weighted high.  To find the minimal cost J, the following 
equation must be solved for P: 

PBPBRPAPAR T
uu

T
xx

10 −−++=   
 Equation A.5-2 
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Substituting into Equation A.4-2, the closed loop A matrix can be determined, where 
 

BFAACL −=    
 Equation A.5-5 

 
This was calculated in Matlab using the LQR command.  After determining the A and B 
matrices, as well as the weightings for Rxx and Ruu, these values are entered as parameters 
for the LQR function.   

[ ] ( )uuxx RRBAlqrESF ,,,,, =   
 Equation A.5-6 

 

A.5.1 Test Case 1a 
The angular rate of the vehicle was controlled through a simple feedback gain, using a 
rate gyro for feedback.  This gain was determined using LQR techniques.   
 
For this disturbance rejection case, the weightings were set to 

4
1               

10
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=⎥
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⎡
=

−

uuxx RR   

 Equation A.5-7 

 
In the actual code, the matrix entries of zero were replaced with finite numbers due to the 
fact that singularities were being created in the LQR function.  The higher weighting on 

 in Rθ xx compared to the Ruu weighting indicates that it is more important to have an 
accurate  than it is to conserve control energy.  The weightings along the diagonal of 
R

θ
xx place more importance on the second state, , than on the first state.  This is because 

in disturbance rejection, the actual position is not controlled.  The rate of change of 
position is driven to zero, and therefore the rate is weighted more heavily.  These 
weightings were used in Matlab with the A and B matrices from Equation A.4-5.  For an 
inertia of 1 kg*m

θ

2, the optimal gains are: 
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where A and B are the same matrices found in modeling the system.  The value of P can 
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The optimal control is then, The optimal control is then, The optimal control is then, The optimal control is then, 

Fxu Fxu −=    
 Equation A.5-4 

   
 Equation A.5-4 
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[ ]20063.0=F    
 Equation A.5-8 

 
This inertia estimate includes the weight of the LN2.  If the test was run without the coils 
filled, the inertia estimate lowers to 0.9 kg*m2 but the gains remain unaffected at  

[ ]20063.0=F    
 Equation A.5-9 

The controller was tested on a vehicle by giving manual disturbances.  The vehicle 
successfully returned to a zero position, as shown in Figure A.5-A. 

 
Figure A.5-A: Vehicle response to manual disturbances 

A.5.2 Test Case 1b 
A controller was designed for Test Case 1b, a tracking problem.  The same system model 
was used for this problem.  However, different costs were assigned, as shown below: 

4
1               

100
01

4 =⎥
⎦

⎤
⎢
⎣

⎡
= − uuxx RR  

 Equation A.5-10 
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In this case, the weightings along the diagonal of Rxx place more importance on the first 
state, θ .  In a tracking problem, the specific position is more important than the rate of 
change of the position.  The accuracy of the state is still more important than the amount 
of control used, as shown in the difference in magnitude between Rxx and Ruu.  The new 
gains for were found to be: 

[ ]898.1000.2=F  I = 0.9 kg*m2  
 Equation A.5-11 

[ ]001.2000.2=F   I = 1 kg*m2  
 Equation A.5-12 

 
Comparing these gains to those calculated for Test Case 1a shows how the relative gain 
on θ  increases in the slewing case of 1b, reflecting the shift in importance of position.     
 
This controller was tested by providing inputs, commanding the vehicle to rotate to 
different angles.  There was a fairly significant time lag, which can be improved by 
tweaking the gains.  The results of this test are shown in Figure A.5-B. 

 
Figure A.5-B: Vehicle response to commanded inputs 

A.5.3 Test Cases 2 and 3  
Optimal gains were determined for Test Cases 2 and 3 in the same manner using the 
system models described above.  Weightings were chosen in a similar fashion to the ones 
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chosen for test case one, with the rates weighted more for disturbance rejection, and the 
positions weighted more for trajectory following.  In all cases the states were weighted 
more heavily than the control.  Sample gains for Test Case 2a are shown below in Table 
A.5-1.  A vehicle mass of 15 kg was used, with an inertia of 1 kg*m2 for both vehicles. 
 

Table A.5-1: Optimal Gains for Test Case 2a 

Ax  Ay  Aθ  Ax  Ay  Aθ   

-0.0063 0.0004 -0.0000 -23.9293 1.9237 -0.0000 1Aµ  

0.0004 0.0063 -0.0000 1.9237 33.7807 -0.0003 2Aµ  

0.0000 0.0000 0.0089 0.0001 0.0060 2.8316 ARW ,τ  

 

There is a gain associated with each state and input pair.  Only the states and inputs of 
vehicle A are used in Test Case 2a because the other vehicle is fixed.  The states of 
interest are listed across the top row with the subscript A referring to vehicle A, and the 
inputs are listed in the last column.  Here, x and y are the rectangular decomposition of 
the position r described in Table A.5-1 above.  The inputs µA1 and µA2 refer to the current 
needed to drive the two electromagnet coils per vehicle, and τRW,A is the torque required 
from the reaction wheel.  Because Test Case 2a is a disturbance rejection problem, the 
gains associated with the rates are higher.   
  
The rest of the gains are given in section A.9.  For Test Case 3, a vehicle mass of 15 kg 
was used and an inertia of 1.0547 kg*m2 was used.  There are no optimal gains listed for 
Test Cases 2e and 3e.  This is due to the fact that the gains necessary for these maneuvers 
were already calculated in Test Cases 2c, 2d, 3c, and 3d.  To perform Test Case 2e, a 
trajectory following controller should be implemented using the gains from Test Case 2d 
during spin-up and spin-down, while a disturbance rejection controller should be 
implemented using the gains from Test Case 2c during the steady state spin.  In the same 
way, the gains from Test Case 3d should be used in a trajectory following controller 
during the spin-up and spin-down of Test Case 3e, while the gains from Test Case 3c 
should be used in a disturbance rejection controller during the steady state spin.   
 

A.5.4 Spin-up  
 
Input trajectories are necessary to dictate the spin-up and spin-down processes.  While 
several approaches have been explored for Test Case 2e, no trajectory has been calculated 
for Test Case 3e.  Three initial approaches to performing spin-up case 2e were explored 
by specifying a magnet current profile and determining the necessary reaction wheel 
profiles to perform spin-up.   
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The first approach was to turn on the magnets to the current necessary to hold the 
vehicles in place during steady state spin.  A reaction wheel profile was then determined 
to rotate the vehicles to align for steady state.  The current necessary for this maneuver 
was calculated by solving the following force equation for the magnetic moment µ = µA 
= µB: 

rm
r

F BA
radEM

2
4

0
, )2(4

3 θ
µµµ

π
=

−
=   

 Equation A.5-13 

 
where µ0 = 4πe-7, r is the 1 meter distance between vehicles, m is the mass of each 
vehicle at 20 kg, and  is the rotation rate of the array, set to 1 rpm. The value for µ was 
then plugged into the equation:  

θ

niA=µ    
 Equation A.5-14  

 
where n, the number of wraps in the coil, is 100 and A is the area of the coil, using 0.83 
meters for the diameter.  The steady state current necessary using these values was found 
to be 44.7 amps. 
 
To find the torque profile, the following equations of motion were used: 

mrθ)θθθθ(
r

µµµ
π

mrθFθmr BAAB
BA

EM,TAN 2cossincossin
4
32 4

0 −+=−=  

 Equation A.5-15 

rm)θθθθ(
r

µµµ
π

rθmFrm ABBA
BA

EM,RAD
2

4
02 sinsincoscos2

4
3 θ+−−=+=

 Equation A.5-16 

 

They were discretized to the form: 

0

0
0,0,0,0,5

0

0
0

2
cossincossin

4
31

r
rθ

)θθθθ(
r

µµµ
πn

θ BAAB
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 Equation A.5-17 

0
2

00,0,0,0,4
0

0
0 sinsincoscos2

4
31 r)θθθθ(

r
µµµ

πn
r ABBA

BA θ+−−=  

 Equation A.5-18 

The initial conditions used to find the torque profile were: 

• θA,0 = θA = 0, from keeping the coordinate system fixed on vehicle A, 
• θB,0 = 90o, starting the magnet for vehicle B perpendicular to the magnet of 

vehicle A, 
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• r0 = r = 1m, keeping the radius between vehicles constant, 
•  = θ0θ 0 = 0 
• r  = r  = 0. 
 
The final conditions were: 

• θB,final = 0o 

• sradfinal /
60
2πθ =  

 
The following process is then iterated to find the torque profile: 

dt001 θθθ +=     
 Equation A.5-19 

mrFRAD 1
2

11, θ=     
 Equation A.5-20 
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 Equation A.5-21 
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BB
B
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1,

θθ
θ
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=    

 Equation A.5-22 

( )1,1,4
1

1, cossincossin
)2( BAABTAN r

kF θθθθ +=  

 Equation A.5-23 

mr
FTAN 1,=θ     

 Equation A.5-24 

where 
π

µµµ
4

3 0 BAk −= , a constant for this method. 

The torques on the electromagnets are calculated from the following equations: 

))cos()sin(2)sin()(cos(
)2( 3, BABAzAEM r

k θθθθτ +=  

 Equation A.5-25 

))cos()sin()sin()cos(2(
)2( 3, BABAzBEM r

k θθθθτ +=  

 Equation A.5-26 
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The torques on the reaction wheels are calculated from the following equations: 

xAEMARW Imr ,
2

, )( τθτ ++−=    
 Equation A.5-27 

xBEMBBRW IImr ,
2

, )( τθθτ +++−=   
 Equation A.5-28 

 

The profiles are shown in Figure A.5-C and Figure A.5-D: 

 

 

Figure A.5-C: EM and Angular Profiles for Constant EM Spin-up 
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Figure A.5-D: Torque Profiles for Constant EM Spin-up 

 
As shown in the graphs, this spin-up approach takes 25 seconds.  The spike towards the 
end of the torque profile for reaction wheel B is due to a numerical error from a 
differentiation and does not reflect an actual physical occurrence.  To test that this is true, 
the time step was changed and examined.  The spike remained the same number of time 
steps from the end, indicating there was a numerical problem, not a physical problem.   
 
To slow down spin-up, a second approach was explored.  A ramp input was chosen for 
the electromagnet.  The code written allows variable lengths for the ramp.  For this case, 
a ramp time of 70 seconds was chosen to bring the electromagnet currents from 0 amps to 
the steady state value 44.7 amps.  This whole approach takes 85 seconds to complete, as 
shown in Figure A.5-E and Figure A.5-F. 
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Figure A.5-E: EM and Angular Profiles for Ramped EM Spin-up 

 
Figure A.5-F: Torque Profiles for Constant EM Spin-up 

 
Once again, a numerical error caused the spike in reaction wheel B.  The final approach 
explores a quicker spin-up profile by ramping the current in the electromagnets to twice 
the amount needed for steady state spin, and then ramping back down to the steady state 
current.  The code for this case also allows variable ramp times.  In the following graphs 
(Figure A.5-G and Figure A.5-H), the electromagnetic current is ramped up to twice the 
steady state value in one second, held at that value for another 8 seconds, and then 
ramped down to the steady state value in another second.  
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Figure A.5-G: EM and Angular Profiles for Double Ramped Approach 

 

 
Figure A.5-H: Torque Profiles for the Double Ramped Approach 

 
All three options present feasible electromagnet and reaction wheel profiles (with the 
exception of the numerical errors).  Depending on the time constraints of spin-up and 
torque limits, one of these spin-up profiles could be chosen.  However, examining the 
profiles for the angle of spacecraft B shows that the vehicle would quickly rotate towards 
a 90-degree turn and need to abruptly stop.  This would require a lot of effort from the 
torque wheels to prevent overshoot in the turns.  For this reason, another approach to 
spin-up was explored using a pre-determined angular profile for vehicle B to determine 
the required electromagnet and reaction wheel profiles.  In this approach, a profile for the 
angle of vehicle B (Figure A.5-I) is modeled as a section of a cosine wave, so the angle 
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slowly approaches its end value.  Differentiating this, an initial and final acceleration are 
specified, despite the fact that the initial and final angular velocities are zero. 
 

 
Figure A.5-I: Profiles for Spacecraft B 

 
The initial acceleration will be created when the electromagnets are turned on.  The final 
acceleration can be counteracted with the reaction wheels.  It seems more feasible to 
counteract this acceleration with the reaction wheels than to counteract the increasing 
rotational velocity of the spacecraft from the first approach due to the fact that the 
velocity is approaching zero in the second case.  Electromagnet and reaction wheel 
profiles have not been determined due to an error in the code.  However, the approach to 
calculate them is described in the following equations. 
 
The same initial conditions will be used for this approach.  The angle of spacecraft B is 
specified by the following equation: 

4
cos

4
)( πππθ +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= t

t
t

f
B   

 Equation A.5-29 

 
FRad1 is calculated using equations A.5-19 and A.5-20.   
 
Then, the magnetic moments can be calculated. 
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Then use 

)cos()sin()cos()(sin( 1,1,1,1,11, BAABBATan kF θθθθµµ +=  
 Equation A.5-31 

mr
FTan 1,

1 =θ     

 Equation A.5-32 

 
along with Equations A.5-25 through A.5-28 to determine the reaction wheel profiles.  
The electromagnet current profiles can be calculated using Equations A.5-14 and A.5-30. 
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A.6 Interfacing (LS) 
The main interfacing of the control team is with avionics, due to the fact that the 
controller will be located on the avionics computer.  Preliminary discussions regarding 
the size and amount of the computations done by the controller helped decide what 
processor the avionics team chose. 
 
Interfacing with metrology is necessary to determine the accuracy of the metrology 
sensing.  Also, the interfacing determines which inputs the control team needs from 
metrology, and which inputs the metrology team is capable of providing.  This also 
includes the communications team, who decides how this information is transmitted.  The 
final decision for this interfacing includes a Primary Vehicle Array (PVA) that consists of 
the data from the metrology sensors, and a MSA, which consists of the state information 
to be inputted into the controller.  Each vehicle will send its PVA to the other vehicles.  
The three PVAs can then be compiled by each vehicle into an MSA, which will be sent to 
the controller. 
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A.7 Coding Controllers in C (AB) 
The next step in creating a controller was to code it into C.  An advantage to using an 
LQR controller was the fact that all we needed to do was multiply the states by the gains, 
a simple matrix multiplication, to generate control output values. 
 
For Test Case 1 our states are angle and angular rate.  For the one vehicle case, however, 
we could only sense angular rate.  Therefore to solve for the angle we integrated our 
angular rate over time.  This was easily handled in the code.  For Test Case 1b, we also 
had to add in a desired state and have this state change over time so that the vehicle 
would perform a preprogrammed maneuver.  Since the controller is a Linear Quadratic 
Regulator it is constantly trying to keep a state at its nominal value.  To make the vehicle 
move then one must “trick” the vehicle into thinking it is not at its nominal value and 
wait for the vehicle to correct to the new nominal value.  To accomplish this we simply 
subtracted the desired state from the input we received.  For example, say the nominal 
angle value was zero.  If you wanted to move the vehicle 30 degrees you would subtract 
30 degrees from the input.  This makes the vehicle think it’s at -30 degrees thus the 
controller works to bring it back to the nominal. 
 
The code for Test Case 2 is pretty straightforward.  It runs off the same basic framework 
stated above.  It reads the variables in to a state array, multiplies this array by the gains 
matrix, and writes the results into an output commands array.  Trajectory following is 
handled just like in Test Case 1b, where the vehicle is tricked into thinking that it is not at 
the nominal state. 
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A.8 Controller Concerns and Mitigations (LS) 
The control team has several concerns that have arisen during the design process.  These 
include near field effects, the time constant of the electromagnets, and coding of the 
controllers. 
 
The first concern arises because the system models were made using equations that are 
valid for the far field approximation of the electromagnet effects.  The far field 
assumption is determined by the size of the electromagnets and their separation distances.  
If the electromagnets move closer into the near field, the model becomes less accurate. 
 
The time constant of the electromagnet determines how quickly the current in the 
electromagnet and therefore the field produced by the electromagnet can be changed.  
The time constant required by the control team to successfully control the electromagnet 
is determined by the rotation rate of the system.  If the time constant of the electromagnet 
proves to be slower than what is needed to control effectively, the rotation rate of the 
system must be slowed.  The electromagnetic field must be able to be changed faster than 
the controller requires a change to perform maneuvers. 
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A.9 Optimal Gains (LS, AB) 

A.9.1 Test Case 1 
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Figure A.9-A: Test case 1a weightings 

 
Table A.9-1: Gains for Test Case 1a, I = 0.9 kg*m2 

θ  θ   

0.0063 2.003 RWτ  

 

Table A.9-2: Gains for Test Case 1a, I = 1 kg*m2 

θ  θ   

0.0063 2.003 RWτ  
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Figure A.9-B: Test Case 1b Weightings 

 

Table A.9-3: Gains for Test Case 1b, I = 0.9 kg*m2 

θ  θ   

2.000 1.898 RWτ  

 

Table A.9-4: Gains for Test Case 1b, I = 1 kg*m2 

θ  θ   

2.000 2.001 RWτ  
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A.9.2 Test Case 2 
 

Table A.9-5: Constants used to calculate gains for Test Case 2 

µB,1 µB,2 mA IA= IB r 

1767.1 A*m2 176.71 A*m2 15 kg 1 kg*m2 2 meters 

 

 

Figure A.9-C: Test Case 2a weightings 
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Table A.9-6: Gains for Test Case 2a 

Ax  Ay  Aθ  Ax  Ay  Aθ   

-0.0063 0.0004 -0.0000 -23.9293 1.9237 -0.0000 1Aµ  

0.0004 0.0063 -0.0000 1.9237 33.7807 -0.0003 2Aµ  

0.0000 0.0000 0.0089 0.0001 0.0060 2.8316 ARW ,τ  
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Figure A.9-D: Test Case 2b weightings 
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Ax  Ay  Aθ  Ax  Ay  Aθ   

-1.9956 0.1330 -0.0000 -424.0485 34.1238 -0.0000 1Aµ  

0.1330 1.9956 -0.0002 34.1239 599.6666 -0.0002 2Aµ  

0.0000 0.0004 2.8284 0.0023 0.1063 2.3784 ARW ,τ  
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Figure A.9-E: Test Case 2c weightings 

 

Table A.9-8: Gains for Test Case 2c 

Ax  Ay  Aθ  Bθ  Ax  Ay  Aθ  Bθ   

-

0.0063 

0.0004 -0.0000 -0.0000 -23.9293 1.9237 -0.0000 -0.0000 1Aµ  

0.0004 0.0063 -0.0000 -0.0000 1.9237 33.7807 -0.0003 -0.0001 2Aµ  

0.0000 0.0000 0.0089 -0.0000 0.0001 0.0060 2.8316 -0.0000 ARW ,τ

-

0.0000 

0.0000 -0.0000 0.0089 -0.0003 0.0030 -0.0000 2.8316 BRW ,τ
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Figure A.9-F: Test Case 2d weightings 
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-1.9956 0.1330 -0.0000 -0.0000 -424.0485 34.1238 -0.0000 -0.0000 1Aµ  

0.1330 1.9956 -0.0002 -0.0001 34.1238 599.6666 -0.0002 -0.0001 2Aµ  

0.0000 0.0004 2.8284 -0.0000 0.0023 0.1063 2.3784 -0.0000 
ARW ,τ  

-0.0000 0.0002 -0.0000 2.8284 -0.0045 0.0536 -0.0000 2.3784 
BRW ,τ  

A.9.3 Test Case 3  

Table A.9-10: Constants used to calculate gains for Test Case 2 

µB,1 µB,2 mA= mB= mB IA= IB= IC rAB=rBC

1767.1 A*m2 176.71 A*m2 15 kg 1 kg*m2 2 meters 
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Figure A.9-G: Test Case 3a weightings 

 
Table A.9-11: Gains for Test Case 3a 

Ax  
Bx  Ay  By  Aθ  Bθ  Ax  Bx  Ay  By  Aθ  Bθ   

-
0.0063 0 0.0004 0 0 0 -23.9293 0 1.9237 0 0 0 1Aµ  

0.0004 0 0.0063 0 0 0 1.9237 0 33.7807 0 
-

0.0003 0 2Aµ

0 -0.0063 0 0.0004 0 0 0 -23.9293 0 1.9237 0 0 1Bµ  

0 0.0004 0 0.0063 0 0 0 1.9237 0 33.7807 0 -0.0003 2Bµ

0 0 0 0 0.0089 0 0.0001 0 0.006 0 2.8318 0 ARW ,τ

0 0 0 0 0 0.0089 0 0.0001 0 0.006 0 2.8318 BRW ,τ
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Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d Table A.9-9: Gains for Test Case 2d 
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Figure A.9-H: Test Case 3b weightings 

 
Table A.9-12: Gains for Test Case 3b 

Ax  Bx  Ay  By  Aθ  Bθ  Ax  Bx  Ay  By  Aθ  Bθ   
-

1.9956 0 0.133 0 0 0 
-

424.049 0 34.1238 0 0 0 1Aµ  

0.133 0 1.9956 0 
-

0.0002 0 34.1238 0 599.6666 0 
-

0.0002 0 2Aµ  

0 
-

1.9956 0 0.133 0 0 0 
-

424.049 0 34.1238 0 0 1Bµ  

0 0.133 0 1.9956 0 
-

0.0002 0 34.1238 0 599.6667 0 
-

0.0002 2Bµ  

0 0 0.0004 0 2.8284 0 0.0023 0 0.1063 0 2.4426 0 ARW ,τ

0 0 0 0.0004 0 2.8284 0 0.0023 0 0.1063 0 2.4426 BRW ,τ
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Figure A.9-I: Test Case 3c weightings 
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Ax  Bx  Ay  By  Aθ  Bθ  Cθ  Ax  Bx  Ay  By  Aθ  Bθ  Cθ   

-0.0063 0 0.0004 0 0 0 0 
-

23.9293 0 1.9237 0 0 0 0 1Aµ  

0.0004 0 0.0063 0 0 0 0 1.9237 0 33.7807 0 -0.0003 -0.0001 0 2Aµ  

0 
-

0.0063 0 0.0004 0 0 0 0 
-

23.9293 0 1.9237 0 0 0 1Bµ  

0 0.0004 0 0.0063 0 0 0 0 1.9237 0 33.7807 0 -0.0001 -0.0003 2Bµ  

0 0 0 0 0.0089 0 0 0.0001 0 0.006 0 2.8318 0 0 ARW ,τ

0 0 0 0 0 0.0089 0 -0.0003 -0.0003 0.003 0.003 0 2.8318 0 BRW ,τ

0 0 0 0 0 0 0.0089 0 0.0001 0 0.006 0 0 2.8318 CRW ,τ
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Figure A.9-J: Test Case 3d weightings 

 
Table A.9-14: Gains for Test Case 3d 

Ax  Bx  Ay  By  Aθ  Bθ  Cθ  Ax  Bx  Ay  By  Aθ  Bθ  Cθ   

-1.9956 0 0.133 0 0 0 0 -424.049 0 34.1238 0 0 0 0 1Aµ  

0.133 0 1.9956 0 -0.0002 0.0001 0 34.1238 0 599.6666 0 -0.0002 -0.0001 0 2Aµ  

0 -1.9956 0 0.133 0 0 0 0 -424.049 0 34.1238 0 0 0 1Bµ  

0 0.133 0 1.9956 0 0.0001 -0.0002 0 34.1238 0 599.667 0 -0.0001 0.0002 2Bµ  

0 0 0.0004 0 2.8284 0 0 0.0023 0 0.1063 0 2.4426 0 0 ARW ,τ

0 0 0.0002 0.0002 0 2.8284 0 -0.0045 -0.0045 0.0536 0.0536 0 2.4426 0 BRW ,τ

0 0 0 0.0004 0 0 2.8284 0 0.0023 0 0.1063 0 0 2.4426 CRW ,τ

 
Spin-up 
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R rr =  m Ω n dcoil iss, EM AA θθ =0,  0,Bθ  finalB ,θ  I 

1 
meter 

0 20 
kg 

1 rpm 100 
wraps 

0.83 
m 

44.7 
Amps 

0 90o 0o 1 
kg*m2
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Table A.9-15: Constants used to calculate gains for spin-up Table A.9-15: Constants used to calculate gains for spin-up Table A.9-15: Constants used to calculate gains for spin-up Table A.9-15: Constants used to calculate gains for spin-up Table A.9-15: Constants used to calculate gains for spin-up Table A.9-15: Constants used to calculate gains for spin-up Table A.9-15: Constants used to calculate gains for spin-up Table A.9-15: Constants used to calculate gains for spin-up Table A.9-15: Constants used to calculate gains for spin-up Table A.9-15: Constants used to calculate gains for spin-up Table A.9-15: Constants used to calculate gains for spin-up Table A.9-15: Constants used to calculate gains for spin-up Table A.9-15: Constants used to calculate gains for spin-up 
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