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OVERVIEW 

Description of the Effort 

The Massachusetts Institute of Technology Space Systems Lab (MIT SSL) and the 
Lockheed Martin Advanced Technology Center (ATC) are collaborating to explore the potential 
for an Electro-Magnetic Formation Flight (EMFF) system applicable to Earth-orbiting satellites 
flying in close formation. 

Progress Overview 

At MIT, work on EMFF has been pursued on two fronts: the MIT conceive, design, 
implement and operate (CDIO) class, and the MIT SSL research group. 

This report summarizes recent progress made in the MIT SSL research group with 
regards to analyzing the dynamics of a two-spacecraft electromagnetic formation flying system. 
It is a follow-up to the work presented in the October 2002 progress report, which introduced the 
nonlinear and linearized dynamics of such a system.  In this report, we summarize our recent 
findings about the controllability and stability of this system. 



1 Introduction 

1.  Introduction 

In this report, we sumarize the dynamics of the electromagnetic formation flying (EMFF) 

system of spacecraft introduced in the October 2002 progress report [1], and then continue 

by presenting results from recent controllability and stability analyses performed on simi­

lar EMFF systems.  In particular, we consider a formation of two spacecraft under no 

external forces and rotating about a common origin.  Each spacecraft contains a specified 

configuration of fixed electromagnets (EM) and reaction wheels (RW) for use as position 

and attitude actuators. 

We begin in Section 2 by reviewing the results presented in [1]. In Sections 3 and 4, 

respectively, we define and respond to certain questions pertaining to the controlla­

bility and stability of the system at hand.  We then summarize our results and draw con­

clusions in Section 5. 

2.  Background 

We begin by reviewing the linearized dynamics of a system similar to those considered in 

this exercise.  Reference [1] describes the dynamics of a two-spacecraft EMFF system, 

where each spacecraft has a single fixed electromagnet, nominally pointed along the line 

of sight between the two spacecraft.  Each spacecraft also has a single reaction wheel, 

nominally oriented perpendicular to the plane of rotation of the two spacecraft.  Such a 

system has nine degrees of freedom (or eighteen state variables): 

T 
x = (2.1)∆r ∆φ ∆ψ ∆α1 ∆α2 ∆α3 ∆β1 ∆β2 ∆β3 

where ∆r, ∆φ ∆ψ are the relative displacements of the vehicles in curvilinear coordi­, 

nates depicted in Figures 1 and 2, ∆α1, ∆α2, ∆α3  are the Euler angles of the first space­

craft (denoted spacecraft “A”) about its body-fixed z, y, and x axes, respectively, and 

∆β1, ∆β2, ∆β3 are the corresponding Euler angles of the second spacecraft (denoted 

spacecraft “B”) about its body-fixed coordinate axes. 
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Figure 1 Geometry of Two-Spacecraft Array 
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Figure 2 Local Curvilinear Coordinate Frame on Spacecraft A 

The linearized equations of motion for this system were presented in second-order form in 

[1] as: 
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 ∆α1 

 
  
 ∆α2 

 
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  
 ∆µB  
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, 
 

· 3µ0 , and 	c2 ≡ –φ0 ------------------	- (2.3)
332πmr0 

KT is the reaction wheel torque constant, and all remaining values are defined in [1]. 
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We recognize that, rather than deriving the linearized dynamics of the similar sys­

tems considered in the following sections from first principles, we can simply modify 

Equation 2.2 by removing the appropriate degrees of freedom from the dynamic 

matrices and altering the actuator coefficient matrix as necessary. 

3.  Controllability Analysis 

We begin by considering the linearized dynamics of two vehicles in two dimensions (a 

plane), where the total angular momentum of the system is zero (wheels plus spacecraft), 

but the rotational angular momentum of the two vehicles about a common origin is non­

zero. 

Part a) 

In this case, each spacecraft has a single dipole, fixed to the spacecraft and nominally 

pointed along the line of sight to the other spacecraft.  Each spacecraft also has a single 

reaction wheel, oriented perpendicular to the plane of rotation of the spacecraft. 

Also, we assume the vehicles are free to rotate about any axis  passing through their center 

of mass (any “central” axis), and are not necessarily constrained to rotate about axes per­

pendicular to the plane of rotation.  Hence each spacecraft has three rotational degrees of 

freedom.  After analyzing this case, and before moving on to Part b, we will also consider 

a simplified version, in which rotations are constrained to axes perpendicular to the sys-

tem’s rotational plane, and each spacecraft thus has only one rotational degree of freedom. 

With these assumptions, we recognize that the only difference between this system and the 

system in [1] is that in the present system, the two spacecraft do not leave the nominal hor­

izontal plane of rotation (the X-Y plane in Figure 1).  Therefore, the system does not have 

a degree of freedom associated with the latitude, ∆ψ , and we modify Equation 2.2 by strik­

ing the third column of each square “coefficient” matrix, as well as the third row of the 

entire matrix equation.  This results in the following modified equations of motion: 
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Equation 3.1 is in second order form: 

Mx ·· Cx · Kx+ + Fu= (3.2) 

where: 

x ∆r ∆φ ∆α1 ∆α2 ∆α3 ∆β1 ∆β2 ∆β3 = 
T 

(3.3) 

u ∆µA ∆µB ∆iRW A , ∆iRW B , 
T 

= (3.4) 

· 2 
–5φ0 0 0 0 0 0 0 0 

0 0  0 0  0 0  

 ∆r  
  
 ∆φ  

c2 c2 0 0  
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and M, C, K, and F are the appropriate matrix coefficients. The control vector, u, contains 

four control variables: ∆µA and ∆µB , which represent the deviation of the EM mag­

netic dipole moments on spacecraft A and B, respectively, from their nominal, steady-state 

values, and , , which represent the deviation of the RW motor cur-∆iRW A and ∆iRW B, 

rents on spacecraft A and B, respectively, from their nominal values. 

To investigate the controllability of this system using linear control analysis tools, we 

recast Equation 3.1 in first order (state-space) form as: 

· 
x̃ = Ax̃ + Bu (3.5) 

where: 

· x̃ = [ x x ]
T 

(3.6) 

0 IA = (3.7) 
M 1– C–M 1– K – 

0B = (3.8) 
M 1– F 

n n nI represents an --- × --- identity matrix, where --- is the number of degrees of freedom of the2 2 2 
system (and n is the number of states). 

The system described in Equations 3.3-3.8 is represented by eight degrees of free­

dom, or 16 state variables.  This is expected, since we have removed one degree of free­

dom (∆ψ ) from the system described in [1]. 

To assess the controllability of the linearized dynamics in 3.5, we form the “controllability 

matrix,” defined as (See [4].): 
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C = (3.9)B AB A2B ... An 1 – B 

From linear control theory, we know that the system is only controllable if rank C( )  = n . 

Substituting A and B as defined by 3.7-3.8 and 3.1 into 3.9, we obtain the controllability 

matrix. Testing the rank using the Matlab “rank” command yields: 

rank C( )  = 8 < n (3.10) 

so that clearly the system at hand is not fully controllable. Since rank C( )  = 8  in this 

case, we see that only eight states (or four degrees of freedom) are controllable, and 

this system as a whole is not fully controllable. 

This result makes sense intuitively, since we have eight degrees of freedom (two transla­

tional degrees of freedom, ∆r and ∆φ , and six rotational degrees of freedom, 

∆α1, ∆α2, ∆α3, ∆β1, ∆β2, and ∆β3 ), but only four actuators (one EM and one RW on 

each spacecraft). 

It is also interesting to consider a simplified version of this geometry, in which the 

system has only four degrees of freedom, ∆r , ∆φ ∆α1 , and ∆β1 , and thus eight state 

variables.  In this case, the bodies are allowed to translate within a plane as before, but are 

now constrained to rotate only about axes perpendicular to the system’s plane of rotation. 

We modify the dynamic equations in 3.1 by striking the appropriate rows and columns 

from the matrices M, C, K, and F, as well as from the state vector: 
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·· ∆r  
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  

·· 
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 · 
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  

· 

· 
 ∆β1  

· 2 
–5φ0 0 0 0 

0 0  c1 c1 

0 0 –2c0 –c0 

0 0 –c0 2 – c0 

 ∆r  
  
 ∆φ  
 
 ∆α1 

 
 

 
 ∆β1 

 
 

(3.11) 

c2 c2 0 0  

0 0 0  0  = 
0 0  KT 0 

0 0  0  KT 

  
 ∆µA  
  
 ∆µB  
  
 ∆iRW A  
 

, 
 

 ∆iRW B  
 

, 
 

We then assemble the A and B matrices using 3.7 and 3.8 and form the controllability 

matrix using 3.9.  Finally, the rank test of the controllability matrix yields: 

rank C( )  = 8 = n (3.12) 

Hence this simplified system is, indeed, fully controllable.  This result is quite inter­

esting: it tells us that we can fully control a two-spacecraft “planar” system (with 

degrees of freedom ∆r , ∆φ , ∆α1 , and ∆β1 ) using only four actuators (one EM and 

one RW on each spacecraft). 

Part b) 

The geometry in this case is similar to the more complicated system in Part a, with the 

exception that each spacecraft has one additional electromagnet, oriented perpendicular to 

the first and still in the plane of rotation of the two spacecraft. 

Since the system geometry is identical to that in Part a, the non-actuated dynamics (and 

hence the A matrix) from 3.1 remain the same.  However, because the actuator configura­

tion has changed, the control vector, u, and the linearized actuator coefficient matrix, B, 

will change.  We define the new control vector as: 

T 
u = (3.13)∆µA1 ∆µA2 ∆µB1 ∆µB2 ∆iRW A ∆iRW B , , 
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where ∆µA1 and ∆µB1  represent the original EM dipole moments from Part a, and

∆µA2 and ∆µB2  represent the dipole moments of the new orthogonal EMs on each 

spacecraft. 

With two orthogonal electromagnets on each spacecraft, the net electromagnetic force on 

spacecraft A may now be represented as a sum of the interactions between the individual 

electromagnets on A and B: 

⁄ ⁄FA B = FA1 ⁄ B1 + FA1 ⁄ B2 + FA2 ⁄ B1 + FA2 ⁄ B2 = –FB A (3.14) 

where FAi Bj ( i = 1 2  and j = 1 2 ) represents the force on the ith EM on spacecraft A , ,⁄ 

due to the jth EM on spacecraft B.  Note that the force on B is equal in magnitude and 

opposite in direction to that on A. 

Similar expressions yield the torque on each spacecraft due to the electromagnetic interac­

tions with the other spacecraft: 

⁄TA B = TA1 ⁄ B1 + TA1 ⁄ B2 + TA2 ⁄ B1 + TA2 ⁄ B2 (3.15) 

⁄TB A = TB1 ⁄ A1 + TB1 ⁄ A2 + TB2 ⁄ A1 + TB2 ⁄ A2 (3.16) 

Unlike the forces, the torques on A and B are not equal in magnitude and opposite in 

direction. 

The resulting nonlinear force and torque expressions may be written as functions of the 

EM dipole strengths, the separation distance between the spacecraft, and the Euler-angle 

attitude representations of the spacecraft, as described in detail in [1].  This yields compli­

cated expressions for the resultant forces and torques.  These expressions are calculated 

using the “symbolic toolbox” in Matlab. 

In order to append these new forces and torques into our linearized dynamics, we must lin­

earize them about nominal values.  The nominal separation distance is r0, and the nominal 

Euler angles are zero, as in previous linearizations.  Also, the line-of-sight-EM dipole 
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moments on A and B are linearized about the same nominal values as before, in order to 

provide the necessary centripetal acceleration for nominal steady-state spin of the system: 

· 2
32πmr0 

5φ0 ------------------------- (3.17)= =µA1 0 µB1 0, , 3µ0 

so that:

µA1 = µA1 0 + ∆µA1  , µB1 = , + ∆µB1 (3.18), µB1 0

Hence we have only to specify nominal values for the “new” EMs (orthogonal to the line-

of-sight EMs) on spacecraft A and B. In order to avoid nonhomogeneous forces and 

torques due to interactions between the nominal magnetic moments of the new EMs and 

those of the line-of-sight EMs, we must linearize the new EMs about zero. Hence: 

µA2 0 = µB2 0 = 0 (3.19), , 

so that:

µA2 = ∆µA2  , µB2 = ∆µB2 (3.20) 

The new actuator coefficient matrix, F, resulting from the linearized forces and torques is: 

c2 0 c2 0 0 0 
–c2 –c20 -------- 0 -------- 0 02 2 

2mr0c2 mr0c2
0 ------------------ 0 --------------- KT 0
3 3 
F = (3.21)0 0 0 0 0 0


0 0 0 0 0 0


mr0c2 2mr0c2
0 --------------- 0 ------------------ 0 KT
3 3


0 0 0 0 0 0


0 0 0 0 0 0




----- ------

----------------- --------------

--------------- -----------------
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where the six columns correspond to the six control variables in Equation 3.13. 

Note that the dynamic matrices, M, C, and K, are unchanged from Part a, since only the 

actuator configuration has changed. Hence the A matrix is also unchanged. We proceed 

by recalculating B using Equation 3.8, and substituting the new F matrix from 3.21. We 

then form the controllability matrix for this configuration using Equation 3.9, and using 

the Matlab “rank” command, we find: 

rank C( )  = 8 < n (3.22) 

where we recall that n = 16 for this geometry. Hence, again, only four degrees of free­

dom (or eight state variables) are controllable in this case, so this actuator configura­

tion does not improve upon that of Part a. 

Finally, we consider adding two additional reaction wheels to each spacecraft, with spin-

axes fixed in the plane of rotation and orthogonal to each other and to the existing RW. In 

this case, the control vector is: 

T 
u = (3.23)∆µA1 ∆µA2 ∆µB1 ∆µB2 ∆iRW A1 ∆iRW A2 ∆iRW A3 ∆iRW B1 ∆iRW B2 ∆iRW B3, , , , , , 

and the linearized actuator coefficient matrix is: 

c2 0 c2 0  0 0  0 0 0 0  

0 
–c2 
2 

- -- 0 
–c2 
2 

- - 0 0  0 0 0 0  

0 
2mr0c2 

3 
- 0 

mr0c2 
3 

- KT 0  0 0 0 0  

F = 0 0 0 0 0 KT 0 0 0 0  (3.24) 
0 0 0 0 0 0 KT 0 0 0  

0 
mr0c2 

3 0 
2mr0c2 

3 
- 0 0  0  KT 0 0  

0  0  0  0  0 0  0 0  KT 0 
0  0  0  0  0 0  0 0 0  KT 
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Substituting 3.24 into 3.8 to solve for B, then forming the controllability matrix and testing 

the rank, we find: 

rank C( ) = 16 = n (3.25) 

This is an important result; it tells us that if each spacecraft in two dimensions has 

two orthogonal EMs within the plane of rotation, as well as three orthogonal RWs 

(two in the plane of rotation and one orthogonal to that plane), then the system will 

be fully controllable in two dimensions.  Note that this includes not only translation 

within the plane and rotation about axes orthogonal to the plane, but also rotation about 

arbitrary axes passing through the spacecraft center of mass! 

A useful extension of this will be to check the controllability of such a system in three 

dimensions.  A reasonable conjecture is that such a system will be uncontrollable, but if a 

third EM is added to each spacecraft and oriented orthogonal to the plane of rotation, then 

the system may be fully controllable.  This conjecture will be investigated in the near 

future. 

4.  Stability Analysis 

We now consider the linearized dynamics of two spacecraft in three dimensions, rotating 

about a common origin as before (in a plane), with a total system angular momentum of 

zero as before (spacecraft plus reaction wheels).  We will examine the linearized open-

loop dynamics of this system. 

Part a) 

We are now working in three dimensions, so we return to the configuration in reference 

[1]. The A matrix is formed using Equation 3.7, based on the three-dimensional dynamics 

in Equation 2.2. Using the “eig” command in the Matlab symbolic toolbox with the A 

matrix as a function input, we find the eigenvalues of this system to be: 
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= 0 (4.1)λ1 2 3  4 5 6, , , , ,  

· = ±φ0 (4.2)λ7 8, 

· = ±iφ0 (4.3)λ9 10, 

· 
, , 2 Irr s + Irr wλ11 12 = ±i-( 

---
I
-----

, 
---
r
---0---

φ 
---0----------- m mr0 + --------------3

-------------
 (4.4), )  rr s + Irr w, 

· 
( 2 = ±i-------------------------------­ m mr0 + I , ) (4.5), )

λ13 14 (I , 

r0φ0 
rr s + Irr w, 

rr s + Irr w, 

· m= ±ir0φ ------------- (4.6)λ15 16 0, 3Izz s, 

· m= ±ir0φ --------- (4.7)λ17 18 0, Izz s, 

A pole-zero map based on sample geometric and mass values is shown in Figure 3. 

Part b) 

We now compare the poles of this system to the poles of the 1-dimensional airtrack system 

used in the CDIO class to demonstrate EM control. Please see references [2] and [5] for a 

detailed description of the airtrack hardware, dynamics, and experimental results. 

From reference [5], we recall that the poles of the 1-D airtrack system in its unstable con­

figuration are: 

Unstable = ± 4-----c---µ---
2
- (4.8)λ1 2, 5 mr0 
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Figure 3 Pole-Zero Map for System in Question 2, Using Sample Geometric Values 

where µ 2 is the product of magnetic dipole moments of the two EMs, r0 is their nominal 

separation distance, m is the mass of the sliding (non-fixed) EM, and c is a constant: 

3µ0c = --------- (4.9)
2π 

By comparing these poles with the those of our three-dimensional formation flying sys­

tem, we find that the airtrack poles are of the same form as λ7 and λ8 in Equation 4.2. In 

both cases, the poles are real, one positive and one negative, and mirror each other about 

the imaginary axis in the complex plane as shown in Figure 3. 

In the airtrack case, the pair of real poles is expected. We know the configuration to be 

inherently unstable, as described in [5], and this is confirmed by the fact that one of the 

system poles is in the right-half complex plane. As discussed in [5], the eigenmode corre­

sponding to this eigenvalue represents a divergence of the dynamics; in particular, it repre­

sents the fact that the “sliding” magnet tends to fall away from the fixed magnet if the 
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attractive force is slightly too weak, but to accelerate toward the fixed magnet if the force 

is slightly too strong. We see the same unstable physics occurring in the formation flying 

system. The attractive force between the two magnets maintains the centripetal accelera­

tion necessary for the system to spin; if the force is slightly too weak, the magnets will 

quickly “fall” away from one another. If, however, the force is slightly too strong, the 

magnets will accelerate toward each other.  Hence we see very similar physics between the 

two situations, and our intuition is confirmed by the fact that the system poles are of the 

same mathematical form. 

Next, we consider the poles of the airtrack system in its neutrally stable configuration: 

Stable 4cµ 2 
= ±i ------------ (4.10)λ1 2, 5 mr0 

These are of the same form as λ9 and in Equation 4.3. In both cases, there are twoλ10 

imaginary poles, one positive and one negative, that mirror each other about the real axis 

in the complex plane as shown in Figure 3. 

In this configuration, we know the linear airtrack to be neutrally stable; once the sliding 

magnet is perturbed, it will oscillate indefinitely with respect to the fixed magnet. (In real­

ity, this configuration is stable because the small amount of friction between the sliding 

magnet and the track adds damping to the system and moves the poles slightly into the 

left-half complex plane.)  Since the formation flying system has poles of the same form, it 

must have a corresponding neutrally stable eigenmode. By studying the eigenvectors pro-
· duced in Matlab, we see that the ψ and ψ components of this eigenvector are 90 degrees 

out of phase from one another, indicating that this mode corresponds to a sinusoidal “tilt­

ing” of the entire plane of rotation of the two spacecraft. This tilting occurs about an axis 

located in the global X-Y plane and passing through the origin of the global frame. 
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One encouraging aspect of the pole-zero map in Figure 3 is that only one pole is strictly 

unstable.  Hence if we can design a controller that will stabilize this mode, we have a good 

chance of controlling the entire system. 

Part c) 

As a final exercise, we investigate how the formation flying system’s poles in Equations 

4.1-4.7 change as a function of the angular momentum of the vehicles about the origin of 

rotation. 

First we recognize that the first six poles, λ1 – λ6 , are equal to zero and thus are not 

affected by the angular momentum of the spinning vehicles or any other geometric 

properties of the system.  These poles represent the six rigid-body modes of the system. 

· Next, we see that λ7 - are directly proportional to the nominal spin rate, φ0 , of the λ10 

system.  Hence as the nominal spin rate varies from zero to infinity, these four poles 

move out from the origin, each along a different axis of the complex plane.  Since the 

positive-real eigenvalue, λ7 , moves further into the right-half complex plane as the 

nominal spin rate increases, we see that the system becomes increasingly unstable. 

Hence the larger the angular momentum of the vehicles spinning about the origin, 

the more unstable the system will be. 

· All the remaining poles, both real and imaginary, grow in magnitude with increasing φ0 , 

m, and r0.  Hence as the angular momentum, mass, and separation distance of the space­

craft increase, these poles move further out from the origin toward infinity.  Note that 

since all the arguments of the radicals in 4.1-4.7 are necessarily positive, there is no com­

bination of values that can change the sign of any argument, so that it is not possible for 

real poles to become complex or imaginary for certain geometries, or vice versa.  The 
· result is that as φ0 , m, or r0 increase, the poles move toward infinity along λ11 – λ18 

the axes on which they lie, so that the positive-real poles move further to the right along 

the positive-real axis, and so forth.  This makes sense, since we expect the system to 
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become increasingly unstable as the angular momentum, mass, and separation distance 

increase. 

5.  Conclusions 

The results presented in this report are summarized here. 

•	 In Section 3, Part a, we discovered that if we retain all of the rotational 
degrees of freedom of each spacecraft in the two-dimensional configuration, 
only four of the eight system degrees of freedom will be controllable.  How­
ever, if we eliminate spacecraft rotations about axes within the system’s 
plane of rotation, then we have only four degrees of freedom, all of which 
are controllable. 

•	 In Section 3, Part b, we find with only one RW (oriented perpendicular to the 
plane of rotation) that only four of the eight degrees of freedom are control­
lable. If, however, we append two RWs per spacecraft (perpendicular to 
each other and lying in the system’s plane of rotation), then all eight degrees 
of freedom of the system will be controllable. 

•	 In Section 4, Part a, we determined the 18 eigenvalues of the three-dimen-
sional system.  We assumed sample mass and geometric properties and plot­
ted the resulting numerical values of the poles in the complex plane.  Six 
poles lie at the origin, two poles lie on the real axis, and ten poles lie on the 
imaginary axis. 

•	 In Section 4, Part b, we compare the system’s poles to those of the airtrack 
used for the CDIO class.  We found two of the EMFF system’s poles were 
similar in form to the airtrack’s poles in its stable configuration, and two oth­
ers were similar in form to the airtrack’s poles in its unstable configuration. 

•	 In Section 4, Part c, we examined the behavior of the system’s poles as a 
function of the angular momentum of the two spacecraft spinning about the 
common origin.  We found that as the nominal angular momentum increases, 
all the non-zero poles move toward infinity along the axes on which they lie. 
Eight of these poles behave in a similar manner when the spacecraft mass or 
separation distance increases. 
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