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EMFFORCE Mission

*Background &

Motivation Demonstrate the feasibility of

*Requirements

Summary electromagnetic control for

*Approach

PDR Purpose formation flying satellites.

Qverview

Subsystems
Operations

| mplementation
Conclusion
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Definition of
Formation Flight

*Mission

*Requirements

Summary A cluster of cooperating satellites

*Approach

‘PDR Purpose flying in a desired formation.

Qverview

Subsystems
Operations
|mplementation
Conclusion
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Applications of
Formation Flight

*Mission & Large sSensor apertures
e Increased resolution

Requi t . .

smmay . ® Servicing

< e Can replace failed formation elements
. urpose

@ Upgrade and Maintenance

Operations e Can work on individual components
Implementation without removing whole mission

Subsystems

Conclusion

@ Change formation geometry
e Evolving mission sensing requirements
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*Mission

*Requirements
Summary
*Approach
*PDR Purpose
*Overview

Subsystems
Operations
|mplementation
Conclusion
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Advantages of
Formation Flight

Large baselines to improve angular
resolution

» Smaller vehicles
e Ease of packaging, launch and deployment

Redundancy
e Mission does not fall if one satellite fails

Reconfigurable
e Replace individual space craft
e Can integrate new technology during mission
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Challenges of
Formation Flight

*Mission & Command and Control

e Control multiple vehicles’ absolute
*Requirements positions/motion vs.. relative

Summary oy }
-Approach positions/motion

*PDR Purpose ® Propellant Drawbacks

Qverview o _ )
e Fuel limits lifetime
Subsystems

Operations e Exhaust particulates contaminate
| mplementation Imaging instruments

Conclusion e Exhaust creates haze which limits
Imaging
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Definition of
Electromagnetic Control

*Mission
® Implement electromagnetic dipoles to
*Requirements create forces and torques between the

Summary

«Approach vehicles

“PDR P - -
‘ovevien . ® Dipoles can be controlled by varying the

amount of current through the
Subsystems ]
Operations electromagnet coill.

Impl?ﬂentation e Can provide steady forces and torques for
CERELEIET maneuverability

e Can provide disturbance rejection for more
precise control
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Advantages of EMFF

*Mission ® No thrusters
rSpr— e Fewer consumables - Longer life

Summary

*PDR Purpose . .
-Overview - NoO contact contamination

Subsystems - No radiative contamination
Operations

implementation  ® Controls relative position/motion
Conclusion .- .
vS.. absolute position/motion
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Challenges of EMFF

*Mission

@ Control Problem
-Requirements e Unstable — not unique to EMFF

Summary e Coupled control

*Approach : : :
.PDp% PUrpOSE e Each vehicles’ motion affects all other vehicles

rOverview @ Electromagnet Drawbacks
Subsystems e Ferromagnetic material is heavy

Operations e Electromagnetic force is weak
Implementation

Conclusion o Force in the far-field drops of as the 4" power
of separation distance

e Electromagnetic interference with other
electronic subsystems
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Customer Requirements

*Mission
*Background &
Moativation

*Approach
*PDR Purpose
*Overview

Subsystems
Operations

| mplementation
Conclusion
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@ Multiple Venhicles

® Representative Formation Flying
Vehicles

@ Control to replace thrusters

@ Control three degrees of freedom
(DOF), traceable to six DOF
® Robust controller

e Disturbance rejection
e Reposition vehicles
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Constraints

*Mission @ Schedule
*Background &

Motivation < Budget

@ Limited human resources to CDIO

*Approach
\PDR Purpose class and staff

«Overview ® Testing facility

gubsgftstems ® No use of umbilical resources; power,
eratons . - .
P air supply, communications

| mplementation

Conclusion ® Recorded test data
@ Safety of people, facility, and system
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*Mission
*Background &
Moativation

*Approach
*PDR Purpose
*Overview

Subsystems
Operations
|mplementation
Conclusion
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System Functional
Requirements

Musts:
e Stability with at least three vehicles
e Control in each relative DOF

Shoulds:

e Representative 5 rotation maneuver

e One rotation spin-up, 3 rotations steady state,
and one rotation spin-down

e Operate In the far field

e Separation distance at least 10x length of
electro-magnet
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System Operational
Requirements

*Mission ® Test time 5 minutes
*Background &

Motivation @ |dentical interchangeable vehicles

-Approach ® Send/record test data

PORAIOE @ Respond to other satellites

® Respond to user input
Operations ® Demonstrate autonomy

Implementation

Conclusion © Maintain Safety

Subsystems
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EMFFORCE Testhed
Development Approach

*Mission ® Concelve and Design EMFFORCE

*Background &

Motivation testbed - PDR May 7, 2002

*Requirements

Summry @ Implement testbed - CDR Nov.,
*PDR Purpose 2002

Qverview

® Operate completed testbed 2> AR
Subsystems March, 2003

Operations
Implementation e Operate at MIT

Conclusion N
e Operate at Lockheed Flat Floor Facility in
Denver
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PDR Purpose

-Mission ® To review the preliminary design

*Background &

Motivation and identify and resolve high risk

*Requirements

Summery elements of the system.

*Approach

Overview ® Have outside expert review of
ST current progress.

Operations
Implementation
Conclusion
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Overview

® Sub-System design
*Mission Actuation

*Background & : :
Motivation Formation Flight

Requirements Electronics
Summary Structure/Power

*Approach
Operatlons

Subsystems @ Implementation

Operations Resource Tracking
| mplementation
Budgets

Conclusion e .
Verification & Validation
Schedules
Action Items

® Conclusion
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| ntroduction

*Requirements

*EM

*Reaction Wheel

*| ssues

*Budget

Estimates
eFormation Control
*Electronics
Structure/Power

Operations
| mplementation
Conclusion
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Actuation

Melanie Woo0

Reaction Whesel
Electromagnet
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| ntroduction

*Requirements

*EM

*Reaction Wheel

o| ssues

*Budgets

Estimates
*Formation Control
*Electronics
Structure/Power

Operations
| mplementation
Conclusion
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Actuation

@ EM force induces spin-up of cluster from
Initial perpendicular orientation

@ RW provides counter torque to balance
moments induced by electromagnets
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Actuation

Requirements

@ Actuate control of vehicle cluster
® Magnets must be controllable In

| ntroduction

*EM

Reactionwhed  necessary DOF

*| ssues

-Budget @ No thrusters may be used

Estimates

~Formation Control e Electromagnets provide force

*Electronics

»Structure/Power e Reaction wheel provides torque
Operations

mplementation @ MInimize mass and power
Conclusion consumption

5/24/2002 CDIOS3 Class Project




| ntroduction

*Requirements

*Design
*Reaction Whedl
JESSIES
*Budget
Estimates

*Formation Control
*Electronics
«Structure/Power

Operations
| mplementation
Conclusion
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Trades - EM
Configuration

@ Possible configurations:
e Dipole, Y-pole, L-pole, X-pole
@ Eliminate:
e L-pole: center of mass problem
e X-pole: mass distribution to 4 dipole legs

— ’ 4“"'
.
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Introduction

*Requirements

*Design
*Reaction Whedl
ESSI[ES
*Budget
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Trades - EM
Configuration

@ Dipole vs.. Y-pole

@ Considerations:

e Mass distribution: Force

e Dipole generates greater force since it
energizes larger amount of core mass

e Y-pole can vary direction of magnetic field
without being rotated by reaction wheel

e Torque

e Y-pole generates additional torque to be
countered by reaction wheel

CDIOS3 Class Project




| ntroduction

*Requirements

*Design
*Reaction Whedl
| ssues
*Budget
Estimates
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Trades - EM Core
Material

EM Core Material
Cost Induced Field vs. Applied Field

Availability

Magnetic
Properties
e B-H curve

L Bsaturation
e Permeability

Steel VS . I rO n 5000 10000 15000 20000 25000 30000

H [Amps/m]

= AIS| 1010 steel ===Remko soft pure iron
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*Requirements

*Design
*Reaction Whedl
JESSIES
*Budget
Estimates

*Formation Control
*Electronics
«Structure/Power
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| mplementation
Conclusion
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Modeling

* EM Software:

Infolytica MagNet

e Input EM configuration and
geometry to obtain forces
and torques

® Example:

e Y-pole configuration

e Separation: 2 m

e Core mass: 19.5 kg

e Applied current: 10 Amps
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Modeling

Introduction Energized Coils
® Results:

*Requirements e Force on A and
B equal
*Design

*Reaction Wheel e Magnitude:

*Budget

Estimates e Torque greater
Formation Control on B than A
*Electronics o A 0.052 N-m

*Structure/Power
e B: 0.848 N-m

Shaded Plot |
ed |

Operations
| mplementation
Conclusion
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| ntroduction

*Requirements

*Design
*Reaction Whedl
ESSI[ES
*Budget
Estimates

*Formation Control
*Electronics
«Structure/Power
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Test Run Video

Llectromagnetic Formation
Flight

MIT Space Systems Lab
CDIO-EMFF

Proot of Concept
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*Requirements
*Trades

*Reaction Whedl

ESSI[ES

*Budget

Estimates
*Formation Control
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«Structure/Power
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EM Design

@ Operational Setup

e Separation: 3m
e Spin Rate: 1 RPM
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EM Design

| ntroduction

@ Magnetic Force for Three

*Requirements VGhiCleS
*Trades - — B'UO'UA'UB + B,UO;UA:UC

mag

Reaction Wheel 2 (2) 4 27 (S) )

ESST[ES
*Budget

oamae . ® Set equal to centripetal force

*Electronics

«Structure/Power . 2,95
] |:cent = Q) (_) mtot
Operations 2

|mplementation
Conclusion
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EM Design

| ntroduction

® Substituting Iin the following
*Requirements re|at|0n5

*Trades
— — - B Core Bnlore
*Reaction Wheel luA _/'lB _:uC i

*| ssues M Mo Prore

*Budget

-Folzrfwgt?g:]%ontrol S And SOIVIng for M

*Electronics

*Structure/Power 5
— Q/Ocore \/mtotﬂ;u oS

core

Operations M
| mplementation B
Conclusion
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| ntroduction

*Requirements
*Trades

*Reaction Whedl

| ssues

*Budget

Estimates
*Formation Control
*Electronics
Structure/Power

Operations
| mplementation
Conclusion
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EM Design

@ Substituting

rmot:more_l_rr(l,oil_l_m

2
_ pcoilﬂ. (4rncore0(2 )5 H
coil
& Where C00( pcoreﬂ.
L |
azz:ore CO:mmaZX rnO:7kg

core

m
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EM Design

|ntroduction
@ Substituting
*Requirements e B=2Tesla
e =10

e H=20000
*Reaction Wheel

oI ssues ® Solving numerically for m, yields

*Budget _
Estimates ¢ mcore =6.5 kg
eFormation Control

“Electronics @ Solving for core dimensions
«Structure/Power o L - 47m

=.02m

*Trades

: core
Operations

| mplementation
Conclusion

= rCOFG
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| ntroduction

*Requirements
*Trades

*Reaction Whedl

ESSI[ES

*Budget

Estimates
*Formation Control
*Electronics
«Structure/Power

Operations
| mplementation
Conclusion
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EM Design

@ The applied field is set by the number
of amp-turns in the coll

NI — H Lcore

e Current limited by the wire gauge

e Number of turns sets coil length and voltage
requirements

e Coil mass proportional to Ni

e More analysis needs to be done to optimize
number of turns

CDIOS3 Class Project




| ntroduction

*Requirements
*EM

*Design
| ssues
*Budget
Estimates
*Formation Control
*Electronics
«Structure/Power

Operations
| mplementation
Conclusion
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RW Trades

@ Build vs.. Buy

e Will build RW to specifications
e Cheaper
e Commercial RWs are spacecraft sized

@ Material: Steel vs.. Aluminum vs..
Plastic

e Use Aluminum
e Doesn'’t interfere with magnetic field

e Higher density than plastics — RW will not
have to be as large
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| ntroduction

*Requirements
*EM

*Trades

| ssues

*Budget

=S EES
*Formation Control
*Electronics
*Structure/Power

Operations
Implementation
Conclusion
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System Assumptions
for RW Analysis

® Cluster contains two vehicles

® Vehicles are modeled as uniform density
cylinders

@ Max Q,, = 2000 rpm ~ 210 rad/s

@ RW Is modeled as a ring with a thin plate
In the center

@ Ring has square cross section with
diameter t .

ring

ring
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*Requirements
*EM

*Trades

| ssues

*Budget

Estimates
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Structure/Power
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System Dynamics

® RWSs provides counter torque to
balance system: 2H_ =-H

cluster

@ Cluster angular momentum
(Hcluster): H = | Q)

cluster

@ Cluster moment of inertia (I):

=1, (3]
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*Requirements
*EM

*Trades

| ssues

*Budget

Estimates
*Formation Control
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RW Dynamics

® Moment of inertia of RW (Iy):

5 2
| oy = M My +§mRW(rRW _tring)

@ RW angular momentum (Hxy):

N
H v = (meerz +%mRW (rR\N _tring )ZJQRW

® RW mass (Mgy):

2
m,, =1 2w P

ring
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*Requirements
*EM

*Trades

ESSI[ES

*Budget

Estimates
*Formation Control
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*Structure/Power

Operations
| mplementation
Conclusion
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RW Mass vs.. RW
Radius

0.0077

2
2 My 1
ew +0.9 rgy —2
w S[RW \/27007z 2er}

Moy =

M, =15kg
Q=0.105ad/s
Q,,,=210rad/s
P =2700kg/n?

s=2m

BT radius

0.5 (m)
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RW Mass Estimate

| ntroduction

@ RW has a mass of 0.16 kg given
*Requirements a rad|us Of 02 m

*EM

Tades @ RW Assembly will not exceed 1
I ssues kg - Includes motor

*Budget

Estimates
*Formation Control
*Electronics
«Structure/Power

Operations
| mplementation
Conclusion
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RW Power Analysis

| ntroduction

& RW uses power mainly when
Requirements g nplying torque — during spin up

*EM

*Trades PRW = TmagQRW

) ® Torque Induced by dipole (t

Estimates
«Formation Control Tmag = U A X B
*Electronics

Sawebover @ Relationship for B-field:

Operations
| mplementation
Conclusion

mag)-
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| ntroduction

*Requirements
*EM

*Trades

| ssues

*Budgets
eFormation Control
*Electronics
Structure/Power

Operations
| mplementation
Conclusion
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® RW power estimate:

RW Power Estimate

® Magnetic moment (uL,):

Bvcore
Mp =

My

® Power required by RW (Pgy,):

_ Mo ﬂAﬂB
P Qo
W o X8

Im
=0.5m
=0.02m

X=
Lo
leo
PRW = 13W \g/2 = 6.3x107*m’

v = 2000 rpm = 210 rad /s

CDIOS3 Class Project 41




| ntroduction

*Requirements
*EM
*Reaction Wheel

*Budget

Estimates
eFormation Control
*Electronics
«Structure/Power

Operations
| mplementation
Conclusion
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Actuation Issues

® System may not be able to
operate In the far field
@ Total mass Is large (~15 kg)

e Magnet core mass increases
rapidly with vehicle mass

@ Magnet temperature must be
monitored during operation
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| ntroduction

*Requirements
*EM

*Reaction Wheel
JESSIES

eFormation Control
*Electronics
*Structure/Power

Operations
| mplementation
Conclusion
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Budgets Estimates

Part

Cost
($US)

Mass (kg)

Power (W)

lron Core

100

6.5

Copper
Wire

50

1.5

>120

RW
Assembly

Total
(vehicle)
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| ntroduction

*Actuation

*Requirements
*Design
*Trades
| ssues
*Budgets
Estimates
*M etrology
*Electronics
«Structure/Power

Operations
| mplementation
Conclusion
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Control

Will Fournier

Control
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Requirements

| ntroduction

@ Counteract disturbances

@ Reposition satellites to perform
| maneuvers
*Design

“Trades e One rotation spin-up

| sSues

*Budgets e Three rotations steady state

Estimates

*Metrology e One rotation spin-down

*Electronics

srewrepover & Control tolerance to 1/10
Operations separation distance

| mplementation
Conclusion

*Actuation
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| ntroduction

Two modes:
@ Steady state

*Requirements

*Actuation

*Trades

s ® Spin-up/De-Spin
Estimates
*M etr ology

*Electronics
*Structure/Power

Operations
| mplementation
Conclusion
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| ntroduction

*Actuation

*Requirements

*Trades
| ssues
*Budgets
Estimates
*M etrology
*Electronics
«Structure/Power

Operations
| mplementation
Conclusion
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Steady State

Must model axial dynamics

CDIOS3 Class Project




Steady State Derivation of
Poles for Three Vehicles

| ntroduction

@ Force Balance
eActuation mv2

2 2
Fcent —_ 7 mZS: ml; FEM _ COa:/g + Q)ﬂa\;g
S S S (29)

@ Perturbation Analysis

*Requirements

*Trades

. 2 2
JEElEs . CO/uavg n COlaavg 2

-Budgets ms " —mQ2°s

Estimates S (29)*
*M etrology
*Electronics IT(S) n &) _ 17C0(/uavg+5luavg)2 + mh?
«Structure/Power 16(33 + &)4 (% n &)3
Operations 2
Implementation M — mfl B=— COﬂaZg Ol
Conclusion S 4s, poles at
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State Space Analysis
o

| ntroduction

O 1| s 0 |0, o
eActuation . | = |:QZ O:| 5_% +|: :| ILl 2 X — AX_l_ Bu

2
2Q° | U4y

| So |

*Requirements 5
Trades  PUsing the Cost Function: J = j [xT R, X+Uu' Ryu ]dt

o 0]
.;?fets ®And knowing that cost, J, is minimized when

e 0=R +PA+A'P-PBR'B'P
*Electronics

Structure/Power O — Rj' BT PX — — FX

Operations ® Where Rxx describes what states the
|mplementation controller penalizes. Ruu describes the
Conclusion “cost” of actuation.
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| ntroduction

eActuation

*Requirements

*Trades
| ssues
*Budgets
Estimates
*M etrology
*Electronics
Structure/Power

Operations
|mplementation
Conclusion
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State Space Analysis
Continued

@ Choosing:

=lo o Ru=p

|

R | _

Ry
P

P
P22

@ And using: p:{

®@Feedback iIs then:

1 [O 2Q2:1:P11
D

F=R!B'P== i
12
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State Space Analysis
Continued

| ntroduction

® Now solve for the closed loop matrix
Actuation Where u=-Fx

X = AX+Bu=|A-BF [x= A x

*Requirements

a .
@ Evaluate as » Increases from 0> <°

*Trades
JESST[ES
*Budgets

Etimates & Therefore the closed
*M etrology

+Electronics loop poles for the most

. ef o :

SuaurErone - atficient controller lie along |—_e
Operations p

| mplementation this curve
Conclusion
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Steady State Stable
Test Setup

| ntroduction

*Actuation

*Requirements

*Trades
JESSIES
*Budgets
Estimates
*Metrology ‘Root Locus

*Electronics Stable mode poles at:
«Structure/Power

2
Operations 6 Holl g .
| mplementation T |
Conclusion 7X,m

RealA\m
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16.62X Uncontrolled
System

| ntroduction

«Actuation < Step response
Of p I ant | Undamped System Time Response

*Requirements
'h[ ‘J /\Il\ H‘} lJ
I ]!
& 0. | | AN ||l \‘ l ’,.,,,,\J\l ’
oBUdgetS - $ ’ l | J | ‘ \ } \ ’ )\ V r \L |' \| |
Estimates damplng = \ / I‘.{ \ j | | \ |
*M etr ology 5o 1 \ J M
*Electronics 2 o ” ' \
Structure/Power

*Trades

. . | i m‘}
I ssuies ® Negligible | i Kl

| M VT

H It } IR

A f'l | H“ I
SRa w \u W y | o \H

Operations o ‘q

| mplementation

Conclusion Time (seconds)

5/24/2002 CDIOS3 Class Project




16.62x Controlled
System

@ Phase lead
controller

Requirements ® Damping ratio:

| ntroduction

*Actuation

System Response, p=-20, z=-2, Gain = 0.5

*Trades

0.11 £0.01
| Ssues

Budges © EITOr caused

Estimates '
ety oty by distance

Electronics Sensor noise

*Structure/Power

Operations
| mplementation
Conclusion
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Steady State
Unstable Test Setup

| ntroduction

*Actuation

*Requirements

*Trades
| ssues
*Budgets
Estimates
*M etrology
*Electronics
«Structure/Power

2
Operations 6 Mol g
| mplementation T

Conclusion 7X,m

Coil 2 : Free’

Root Locus

Unstable mode poles at:

Imag Axis
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| ntroduction

*Actuation

*Requirements

*Trades
| ssues
*Budgets
Estimates
*M etrology
*Electronics
«Structure/Power

Operations
| mplementation
Conclusion
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Controller for
Unstable Test Setur

Root L.ocus

Step Response

1 I
0.4 a5

Time (sec)

Phase Lead Controller
p=-20,z=-3,k=30
Damping = 0.68
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Spin-up/De-spin Modes

| ntroduction

€ More
complex

*Requirements € Need tO
*Trades model

*| ssues translational
*Budgets

Estimates forces and

*Metrol
*El ectroil?ccs)gy to rgues

*Structure/Power

*Actuation

Operations
| mplementation
Conclusion
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Initial Spin-up Forces

| ntroduction

*Actuation

*Requirements

*Trades
| ssues
*Budgets
Estimates
*M etrology
*Electronics
«Structure/Power

Operations
Implementation - Resylts in a force and a torque on each

Conclusion
magnet
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Response to
Translational Forces

Three regimes of
motion

| ntroduction

*Actuation

*Requirements

S EIIE SO translated
eTrades TWO e q ul I | b rium n l distance, d

| ssues l
Budgets pomts

Estimates
*M etrology
*Electronics
«Structure/Power

Operations
| mplementation
Conclusion
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Response to
Translational Forces

| ntroduction

3:” O:u avg [
Ars®

-Requirements  Due to the configuration, F.s =
Trades when o + 3 = 0, thus when d =

eActuation Ftrans

| ssues
*Budgets
Estimates
*M etrology
*Electronics
«Structure/Power

Translated
Velocity (m/s)

. — - . [ranslated
Operations : — | ' ; :Distance (m)
| mplementation - :

Conclusion
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Spin-up Configuration
Trade

| ntroduction

A closer look at the resultant forces
on the two dipole configuration

*Actuation

*Requirements
*Design

| ssues
*Budgets
Estimates
*M etrology
*Electronics
«Structure/Power

Operations
| mplementation
Conclusion
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Spin-up Configuration
Trade

| ntroduction

0=0, $=90

*Actuation

*Requirements 7, = ﬂ;ﬂavg |Sn(a— B)+3(a+ )]
7T

*Design

e| SSUES /uO:uavg
s =g lSn(B-a)+3(B+ )]

Estimates
*M etrology

e “‘g‘avg Sin(er-§)+ 3@+ )]

Operations

eon Ts K Cg‘ 9 [Sn( 3 — a)+3(,6+a)]
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Spin-up Configuration
Trade

Configuration options:

| ntroduction

*Actuation

*Requirements X X  Favors equally
Desgn g ] sized vehicles

| ssues
*Budgets
Estimates
*M etrology
*Electronics
«Structure/Power

* Favorsalarger

Operations center vehicle

| mplementation
Conclusion
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| ntroduction

*Actuation

*Requirements
*Design

| ssues
*Budgets
Estimates
*M etrology
*Electronics
«Structure/Power

Operations
| mplementation
Conclusion
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Control Location
Trade

@ Centralized

e All Information communicated to a hub
which calculates a control solution

@ Independent Control

e Vehicles collect and process their own
Information and derive a control solution
for their own venhicle

@ Hybrid control

e Certain systems are controlled
Independently while other systems are
controlled by the hub’s control solution
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Hysteresis and Saturation

| ntroduction o

@ Hysteresis
e Experimental data
e for curve

*Trades

*Actuation

*Budgets

Esimates @ Sgturation of electromagnets and

*M etrology

*Electronics torque Wheels

*Structure/Power

Operations
| mplementation
Conclusion
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Budget Estimates

| ntroduction

©® NOo mass
® No power

*Requirements

-Design ® Cost for maintenance of lab

*Trades

| ssues equipment

*Actuation

*M etrology
*Electronics
*Structure/Power

Operations
| mplementation
Conclusion
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| ntroduction

*Actuation
*Control

*Requirements
*Trades
*Design
JISSTES
*Budget
Estimates
*Electronics
«Structure/Power

Operations
| mplementation
Conclusion
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Metrology

Oscar Murillo

Metrology
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