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EMFFORCE Mission

Demonstrate the feasibility of
electromagnetic control for
formation flying satellites.
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Definition of 
Formation Flight

A cluster of cooperating satellites
flying in a desired formation.
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Applications of 
Formation Flight 

Large sensor apertures
Increased resolution

Servicing
Can replace failed formation elements
individually

Upgrade and Maintenance
Can work on individual components
without removing whole mission

Change formation geometry
Evolving mission sensing requirements
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Advantages of 
Formation Flight 

Large baselines to improve angular
resolution
Smaller vehicles

Ease of packaging, launch and deployment

Redundancy
Mission does not fail if one satellite fails

Reconfigurable
Replace individual space craft
Can integrate new technology during mission
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Challenges of 
Formation Flight

Command and Control
Control multiple vehicles’ absolute
positions/motion vs.. relative
positions/motion

Propellant Drawbacks
Fuel limits lifetime
Exhaust particulates contaminate
imaging instruments
Exhaust creates haze which limits
imaging
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Definition of 
Electromagnetic Control

Implement electromagnetic dipoles to
create forces and torques between the
vehicles
Dipoles can be controlled by varying the
amount of current through the
electromagnet coil.

Can provide steady forces and torques for
maneuverability
Can provide disturbance rejection for more
precise control
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Advantages of EMFF

No thrusters
Fewer consumables Longer life

Zero pollution
No contact contamination

No radiative contamination

Controls relative position/motion
vs.. absolute position/motion
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Challenges of EMFF

Control Problem
Unstable – not unique to EMFF
Coupled control

Each vehicles’ motion affects all other vehicles

Electromagnet Drawbacks
Ferromagnetic material is heavy
Electromagnetic force is weak

Force in the far-field drops of as the 4th power
of separation distance

Electromagnetic interference with other
electronic subsystems
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Customer Requirements
Multiple Vehicles
Representative Formation Flying
Vehicles
Control to replace thrusters
Control three degrees of freedom
(DOF), traceable to six DOF
Robust controller

Disturbance rejection
Reposition vehicles
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Constraints
Schedule
Budget
Limited human resources to CDIO
class and staff
Testing facility
No use of umbilical resources; power,
air supply, communications
Recorded test data
Safety of people, facility, and system
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System Functional 
Requirements

Musts:
Stability with at least three vehicles
Control in each relative DOF

Shoulds:
Representative 5 rotation maneuver

One rotation spin-up, 3 rotations steady state,
and one rotation spin-down

Operate in the far field
Separation distance at least 10x length of
electro-magnet
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System Operational 
Requirements

Test time 5 minutes

Identical interchangeable vehicles
Send/record test data

Respond to other satellites
Respond to user input

Demonstrate autonomy
Maintain safety
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EMFFORCE Testbed 
Development Approach
Conceive and Design EMFFORCE
testbed PDR May 7, 2002
Implement testbed CDR Nov.,
2002

Operate completed testbed AR
March, 2003

Operate at MIT
Operate at Lockheed Flat Floor Facility in
Denver
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PDR Purpose

To review the preliminary design
and identify and resolve high risk
elements of the system.
Have outside expert review of
current progress.
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Overview
Sub-System design

Actuation
Formation Flight
Electronics
Structure/Power

Operations
Implementation

Resource Tracking
Budgets
Verification & Validation
Schedules
Action Items

Conclusion
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Actuation

Melanie Woo

Electromagnet

Reaction Wheel
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Actuation
EM force induces spin-up of cluster from
initial perpendicular orientation
RW provides counter torque to balance
moments induced by electromagnets
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Actuation 
Requirements

Actuate control of vehicle cluster
Magnets must be controllable in
necessary DOF
No thrusters may be used

Electromagnets provide force
Reaction wheel provides torque

Minimize mass and power
consumption
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Trades – EM 
Configuration

Possible configurations:
Dipole, Y-pole, L-pole, X-pole

Eliminate:
L-pole: center of mass problem
X-pole: mass distribution to 4 dipole legs
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Dipole vs.. Y-pole

•Design
•Reaction Wheel
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Introduction

Trades – EM 
Configuration

Considerations:
Mass distribution: Force

Dipole generates greater force since it
energizes larger amount of core mass
Y-pole can vary direction of magnetic field
without being rotated by reaction wheel

Torque
Y-pole generates additional torque to be
countered by reaction wheel

Subsystems
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•Requirements
•EM

•Trades
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Trades – EM Core 
Material

Cost
Availability
Magnetic
Properties

B-H curve
Bsaturation

Permeability

Steel vs.. Iron

EM Core Material
Induced Field vs. Applied Field
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Modeling
EM Software:
Infolytica MagNet

Input EM configuration and
geometry to obtain forces
and torques

Example:
Y-pole configuration
Separation: 2 m
Core mass: 19.5 kg
Applied current: 10 Amps
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Modeling

Results:
Force on A and
B equal

Magnitude:
0.42 N

Torque greater
on B than A

A: 0.052 N-m
B: 0.848 N-m

A

B

Energized CoilsIntroduction
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Test Run Video
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EM Design

Operational Setup
Separation: 3m
Spin Rate: 1 RPM
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EM Design

Magnetic Force for Three
Vehicles

Set equal to centripetal force
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EM Design

Substituting in the following
relations

And solving for mcore

coreo
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EM Design

Substituting

Where
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EM Design
Substituting

B = 2 Tesla

α = 10
H = 20000

Solving numerically for mcore yields
mcore = 6.5 kg

Solving for core dimensions
Lcore = .47m
rcore = .02m
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EM Design
The applied field is set by the number
of amp-turns in the coil

Current limited by the wire gauge
Number of turns sets coil length and voltage
requirements
Coil mass proportional to Ni
More analysis needs to be done to optimize
number of turns

coreHLNi =
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RW Trades

Build vs.. Buy
Will build RW to specifications

Cheaper
Commercial RWs are spacecraft sized

Material: Steel vs.. Aluminum vs..
Plastic

Use Aluminum
Doesn’t interfere with magnetic field
Higher density than plastics – RW will not
have to be as large
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System Assumptions 
for RW Analysis 

Cluster contains two vehicles
Vehicles are modeled as uniform density
cylinders
Max ΩRW = 2000 rpm ~ 210 rad/s
RW is modeled as a ring with a thin plate
in the center
Ring has square cross section with
diameter tring

rRW
tring
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System Dynamics

RWs provides counter torque to
balance system:

Cluster angular momentum
(Hcluster):

Cluster moment of inertia (I):

Ω= IH cluster

clusterRW HH −=2
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RW Dynamics

Moment of inertia of RW (IRW):

RW angular momentum (HRW):

RW mass (mRW):
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RW Mass vs.. RW 
Radius
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RW Mass Estimate

RW has a mass of 0.16 kg given
a radius of 0.2 m
RW Assembly will not exceed 1
kg - includes motor
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RW Power Analysis

RW uses power mainly when
applying torque – during spin up

Torque induced by dipole (τmag):

Relationship for B-field:

RWmagRWP Ω= τ

BAmag ×= µτ

3
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2 x
B Bµ

π
µ=
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RW Power Estimate
Magnetic moment (µA):

Power required by RW (PRW):

RW power estimate:
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BA
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Actuation Issues

System may not be able to
operate in the far field
Total mass is large (~15 kg)

Magnet core mass increases
rapidly with vehicle mass

Magnet temperature must be
monitored during operation
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Budgets Estimates

1.550Copper
Wire

1331339911501150TotalTotal
(vehicle)(vehicle)

1000

100

Cost
($US)

131RW
Assembly

>1206.5Iron Core

Power (W)Mass (kg)Part

Introduction
Subsystems
•Actuation

•Requirements
•EM
•Reaction Wheel
•Issues
•Budget
Estimates

•Formation Control
•Electronics
•Structure/Power

Operations
Implementation
Conclusion



5/24/2002 CDIO3 Class Project 44

Control

Will Fournier

Control
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Requirements
Counteract disturbances
Reposition satellites to perform
maneuvers

One rotation spin-up
Three rotations steady state
One rotation spin-down

Control tolerance to 1/10
separation distance
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Design

Two modes:
Steady state

Spin-up/De-Spin
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Steady State

Must model axial dynamics
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Steady State Derivation of 
Poles for Three Vehicles
Force Balance
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Perturbation Analysis

Introduction
Subsystems
•Actuation
•Formation Control

•Control
•Requirements
•Design
•Trades
•Issues
•Budgets
Estimates

•Metrology
•Electronics
•Structure/Power

Operations
Implementation
Conclusion



5/24/2002 CDIO3 Class Project 49

State Space Analysis

Where Rxx describes what states the
controller penalizes. Ruu describes the
“cost” of actuation.
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State Space Analysis 
Continued

Choosing:
ρ=uuR
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Now solve for the closed loop matrix
where

Evaluate as increases from 0

State Space Analysis 
Continued

[ ] xxuxx CLABFABA =−=+=&
xu F−=

ρ
α ∞

Therefore the closed
loop poles for the most
efficient controller lie along
this curve
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Steady State Stable 
Test Setup

i
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Stable mode poles at:
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16.62X Uncontrolled 
System

Step response
of plant

Negligible
damping
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16.62x Controlled 
System

Phase lead
controller
Damping ratio:
0.11 ± 0.01

Error caused
by distance
sensor noise
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Steady State 
Unstable Test Setup
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Unstable mode poles at:
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Controller for
Unstable Test Setup

Phase Lead Controller

p = -20, z = -3, k = 30

Damping = 0.68
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Spin-up/De-spin Modes

More
complex
Need to
model
translational
forces and
torques
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Initial Spin-up Forces

Results in a force and a torque on each
magnet
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Response to 
Translational Forces

Three regimes of
motion

Two equilibrium
points
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Due to the configuration,
when α + β = 0, thus when d = s

Response to 
Translational Forces
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Spin-up Configuration 
Trade

A closer look at the resultant forces
on the two dipole configuration
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Spin-up Configuration 
Trade

α=0, β=90
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Spin-up Configuration 
Trade

Configuration options:

• Favors a larger
center vehicle

• Favors equally
sized vehicles
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Control Location 
Trade

Centralized
All information communicated to a hub
which calculates a control solution

Independent Control
Vehicles collect and process their own
information and derive a control solution
for their own vehicle

Hybrid control
Certain systems are controlled
independently while other systems are
controlled by the hub’s control solution
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Hysteresis and Saturation

Hysteresis
Experimental data

for curve

Saturation of electromagnets and
torque wheels
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Budget Estimates

No mass
No power
Cost for maintenance of lab
equipment
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Metrology

Metrology

Oscar Murillo
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