
Fundamentals of
Systems Engineering

Prof. Olivier L. de Weck, Mark Chodas, Narek Shougarian

Session 3
System Modeling Languages

1

Reminder: A1 is due today !

2

3

Overview

Why Systems Modeling Languages?
 Ontology, Semantics and Syntax

OPM – Object Process Methodology

SySML – Systems Modeling Language

Modelica

What does it mean for Systems Engineering of today
and tomorrow (MBSE)?

4

Exercise: Describe the “Mr. Sticky” System
 Work with a partner (5 min)

 Use your webex notepad/white board

 I will call on you randomly

 We will compare across student teams

© source unknown. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

5

http://ocw.mit.edu/help/faq-fair-use/

Why Systems Modeling Languages?
 Means for describing artifacts are traditionally as follows:

 Natural Language (English, French etc….)
 Graphical (Sketches and Drawings)
 These then typically get aggregated in “documents”

 Examples: Requirements Document, Drawing Package  Technical Data
Package (TDP) should contain all info needed to build and operate system

 Advantages of allowing an arbitrary description:
 Familiarity to creator of description
 Not-confining, promotes creativity

 Disadvantages of allowing an arbitrary description:
 Room for ambiguous interpretations and errors
 Difficult to update if there are changes
 Handoffs between SE lifecycle phases are discontinuous
 Uneven level of abstraction
 Large volume of information that exceeds human cognitive bandwidth
 Etc….

6

System Modeling Languages
 Past efforts to create System Modeling Languages
 E.g. Bond Graphs (1960), IDEF (1981), etc…

 Regardless of the System Modeling Language being developed and
used they share the common features:

 Domain agnostic

 Ontology https://en.wikipedia.org/wiki/Ontology_engineering
 Defines the entities that are allowed to exist and be described
 How these entities can be grouped, related to a hierarchy and subdivided
 Constrains the universe of concepts that can be represented in the language

 Semantics https://en.wikipedia.org/wiki/Semantics
 Describes the meaning of the entities allowed by the ontology
 Relationship between signifiers (e.g. words, symbols …) and their denotation

 Syntax https://en.wikipedia.org/wiki/Syntax
 Set of rules, principles and processes that govern the structure of the

language and how correct “sentences” can be synthesized
 7

https://en.wikipedia.org/wiki/Ontology_engineering
https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/Syntax

Overview

Why Systems Modeling Languages?
 Ontology, Semantics and Syntax

OPM – Object Process Methodology

SySML – Systems Modeling Language

Modelica

What does it mean for Systems Engineering of today
and tomorrow (MBSE)?

8

Introduction to OPM

• UML 2.0

• http://www.omg.org/spec/UML/2.0/

• Mainly used for software architecting

• SysML 1.3
• http://www.omgsysml.org/

• Generalization to cyber-physical systems

• OPM
• Object-Process-Methodology

• 2002, Prof. Dov Dori, Technion

• ISO Standard 19450 (2015, new !)

In order to rigorously architect and design products need a language

to describe functions, form, concepts in a consistent way

9

http://www.omg.org/spec/UML/2.0/
http://www.omgsysml.org/

Motivation for OPM

Need for a Unified
Representation
 Show functions

 Show function attributes

 Show objects (operands,
system components,
consumables …)

 Show object attributes

 Show links

 Typical Product
Representations
 Sketches

 Engineering Drawings

 UML Diagrams
(Software)

Object Process Methodology is a generic

system modeling language that has

been successfully applied to Systems

Architecting of Complex Products

Example: Refrigerator

Kenmore 2.5 cu ft
© source unknown. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

10

http://ocw.mit.edu/help/faq-fair-use/

Ontology of Object Process Modeling

 Object: that which has the

potential of stable, unconditional

existence for some positive

duration of time. Objects have

states.

 Form is the sum of objects

 Process: the pattern of

transformation applied to one or

more objects. Processes change

states.

 Function emerges from processes

 All links between objects and

processes have precise semantics

Object

Process

State

11

OPM: Goods and Services

 Goods are objects

 Services are processes

 With every product
good object, there is
an implicit process
which is linked to value

 With every product
service process, there
is always an implicit
object

Service

process

Goods

object

Implicit

object

Products

Implicit

process

Product/systems always come in object-process pairs,

 and value is always linked to process

12

Structural Links in OPM

 Structural Links

 Link Objects to Objects

Is related to …

Tagged link (suppressed process)

Decomposes to, aggregates to

Is characterized by, exhibits

Specializes to, generalizes to

Instantiated to, belongs to the class

of

“powers”

Standby Power

System

AC Unit

Main LVPS

Main Switch

Outlet PSW

AC Drive PWB

Reset Switch

Outlet

Inlet

13

Processes
 Defined: A process is the pattern of transformation

applied to one or more objects

 Cannot hold or touch a process - it is fleeting

 Generally creation, change, or destruction

 resultee object

 operand (its states are affected by the process)

 consumee

 A process relies on at least one object in the pre-

process set

 A process transforms at least one object in the pre-

process set

 A process takes place along a time line

 A process is associated with a verb

 Express processes in Gerund form: ____ing

Processing

AC Power

Switching

DC Power

Generating

Interlock Status

Detecting

14

Process and its Links

 A process is associated with

a verb and stateless

 There is a family of 7 types of

links from process to object

 A process can change the

states of its operand(s)

through input and output

links

 Transporting Person
Here

There

Transporting changes a

person from here to there

Switching

Operator Main Switch

Main Switch
State

on off

main switch

15

Summary Object-Process Links

 P changes O (from state A to B).

 P affects O (affectee)

 P yields O (resultee)

 P consumes O (consumee)

 P is handled by O (agent)

 P requires O (instrument)

 P occurs if O is in state A

Transporting Person
Here

There

Transporting Person

Transporting Emissions

Transporting Energy

Transporting Operator

Transporting Vehicle

Purchasing Money
Enough

None
*

* conditional link also shown as c

16

High Level OPM of a Car
 Passengers Cargo Driver

Location

Transporting

Automobile

Powertrain

Body

Chassis

Wheels

Propelling

Housing

Towing
x(1): FC

x(2): ED

x(3): WT

x(4): WB

x(5): GC

x(6): HT

x(7): LT

x(8): TW

x(9): TD

Design
Variables

Parts and
Assemblies

Fuel

Emissions

Government

Regulations

Safety

A B

f(2): CV

f(1): PV

Internal
Functions

Owner

f(3): TC

Valuing

Value

f(4): FE

f(5): AC

Functional
Attributes

Price

This view shows all main

elements of the car as a

product system:

-objects

- operands

- instruments

- consumees,

resultees

- operator

-processes

-attributes

-x: design variables

-f: functional behavior

17

Managing Complexity in OPM

 OPM has three mechanism for managing system

complexity:

 unfolding/folding is used for refining/abstracting the structural

hierarchy of an object;

 in-zooming/out-zooming exposes/hides the inner details of a process

within its frame;

 state expressing/suppressing exposes/hides the states of an object.

zooming

out-zooming

18

OPM of
Refrigerator

Operator

Food

Refrigerator

Operating Exterior Air

Electrical

Power

Waste

Heat

Temperature

21oF

Convecting

Temperature

70oF

Shelf Life

7 days

Extending

Thermostat

Setting

21oF

se
ts

Owner

owns

derives
value

from

operand

operator

product system

primary value
delivering process

value-related
attribute

primary operating
process

consumee
resultee

super-system

beneficiary

“Level 0”

Interior

Air

19

Sub-Functions from Carnot

Cycle

expansion

valve

Compressing

Expanding

Evaporating

Condensing

Internal Processes

are governed by

Physics.

© source unknown. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

20

http://ocw.mit.edu/help/faq-fair-use/

Refrigerator: Functional

Decomposition

 Powering
 Grounding

 Protecting

 Supplying

 Regulating
 Sensing

 Switching

 Setting

 Cooling
 Expanding

 Evaporating

 Compressing

 Condensing

 Absorbing

 Supporting
 Opening

 Closing

 Retaining

 Connecting

Operating

Level -1 (4)

Level -2 (15)

21

OPM of Refrigerator Level -1

Door

Condenser

Power
Supply

Hinge

Cabinet

Thermostat
Refrigerant

Evaporator

Freezer
Door

Compressor

Convecting

Supportin
g

Powering

Regulating

Food

Exterior
Air

Interior
Air

Waste
Heat

Pressure

Temp

Value

Operand

Internal

Operand

Cooling

Power

on off

Temp

Convecting

Heat

Temp

Electrical
Power

Temp

System Boundary

22

Generic System OPM

OPMs of most complex opto-mechanical systems look like this

Power

Powering

Connecting

Controlling

Operator

Beneficiary

(Customer)

Raw Inputs

Specialized

Processes

Outputs

Operand

Value-generating

Attributes

Non-Value-

Added

Outputs

Supporting

Processes

Value-Delivering

Processes

Value-Related

Output

23

How to generate a System OPM

Top-Down
 Start with the stakeholder(s) (customer in mind)

 Map value delivery process(es) at Level 0

 Get to greater levels of detail in layers

 This is system/product architecting !

 Reduce Ambiguity

 Focus Creativity

 Manage Complexity

Bottom-Up
 Decompose form of existing product or design (product dissection):

 Parts List/BOM

 Generate an initial product decomposition

 Assign processes to elements of form

 Complete initial OPM and iterate

 This is reverse engineering !

24

OPCAT Demo

OPCAT is a Java-based software to generate OPM Models

© Dov Dori. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

25

http://ocw.mit.edu/help/faq-fair-use/

Overview

Why Systems Modeling Languages?
 Ontology, Semantics and Syntax

OPM – Object Process Methodology

SySML – Systems Modeling Language

Modelica

What does it mean for Systems Engineering of today
and tomorrow (MBSE)?

26

MBSE System Modeling Scope

System model must capture information

about all aspects of system.

27

The Systems Modeling Language

SysML diagrams capture different types of system

information. Diagrams can be linked together

SysML created starting in 2001 by OMG/INCOSE.
28

Applications of SysML

 Requirements engineering

 Implement requirements as constraints on the
model, instead of as text statements within the
model

 System Description

 Using SysML allows study of potentially more mission
concepts within the same timeframe

 Integration with Analysis Tools

 Graph transformations to support dynamic analysis in
Simscape™

 Integration with Phoenix ModelCenter® allows
analysis in a range of tools

 29

SysML Diagram Hierarchy

The types of SysML diagrams

30

SysML Interface Modeling

System Engineering Ontology SysML Ontology

Part

Interface

Port

Connector

Part Property

© source unknown. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 31

http://ocw.mit.edu/help/faq-fair-use/

Case Study: REXIS
 One of five instrument on the OSIRIS-

REx asteroid sample return mission
scheduled for launch in 2016

 Measures X-rays that are fluoresced
from Bennu

 Fluorescent line energies depend on
the electronic structure of the matter

 Provides a unique elemental
signature

 Line strengths reflect element
abundance

Spectrometer

SXM

These images are in the public domain.

These images are in the public domain.

32

REXIS Design History Overview

• SysML models created at SRR, SDR, and PDR

• From Fall 2011 through Spring 2012, REXIS team
composed primarily of undergraduates
– With grad students and faculty mentors

• From Summer 2012 to present, REXIS team
composed primarily of grad students
– With faculty mentors and undergraduate volunteers

SysML Models created for SRR,

SDR, and PDR

2014

33

REXIS Design History

SRR - January 2012 SDR - April 2012

PDR - January 2013 CDR - February 2014

These images are in the public domain. 34

Design History Statistics

Parts per Assembly

All assemblies experienced parts growth
35

Design History Statistics

Ports per Assembly

All assemblies experienced interface growth
36

Design History Statistics

Ports Per Part in each Assembly

Slightly fewer interfaces per part than other

systems in the literature

Interfaces per part
from Whitney [14]

37

SySML – System Modeling Language
 SysML Demo (Mark Chodas)

38

Overview

Why Systems Modeling Languages?
 Ontology, Semantics and Syntax

OPM – Object Process Methodology

SySML – Systems Modeling Language

Modelica

What does it mean for Systems Engineering of today
and tomorrow (MBSE)?

39

Introduction to Cyber-Physical System

Modeling in Modelica

40

Modelica Language

Declarative

Equations and mathematical functions allow acausal modeling, high level specification
and increased correctness (define the problem rather than how it needs to be solved)

Multi-domain modeling
Combines components from electrical, mechanical, thermodynamic, hydraulic,

biological, control, event, real-time and custom domains etc...

Everything is a class
Strongly typed object-oriented language with a general class concept, Java &

MATLAB-like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, non-proprietary
Efficiency comparable to C; advanced equation compilation,

e.g. 300 000 equations, ~150 000 lines on standard PC

Taken with permission from Professor Peter Fritzson

Modelica is a language designed to enable mathematical

modeling of cyber-physical systems

41

Acausal Modeling

Linking components via energy, mass, information flows

etc. without specifying the directionality of connections.

Assignments

F=ma: Variable P assigned value of

ρRT

Equations

F==ma: Variable P must equal ρRT

Need to know R.H.S.

Execution Order Fixed

Solve Simultaneous Equations

Execution Order Not Fixed

42

Acausal Modeling

A component model generally consists of:

1. Connection points or “Ports” in mechanical,
thermal, electrical or custom domains
(connections can only be made between
ports of the same domain).

1. Variables and Parameters

1. Governing Equations

43

Modelica Language
Capacitor

Example

connector Pin

Real v;

flow Real i;

end Pin;

model Capacitor

parameter Real C;

Pin p, n;

Real u;

equation

0 = p.i + n.i;

 u = p.v – n.v;

C*der(u) = p.i;

end Capacitor;

Create Port Type Pin That

Carries Current and Voltage

Variables.

“flow” indicates that the sum or all

currents into a node is 0. Kirchhoff’s

Current Law Holds. Mass flow is also a

“flow” variable

Capacitance

p and n hold current and voltage

information at the capacitor’s ports

Voltage across capacitor (internal

variable)

Governing Equations

44

Modelica Language

Pressure Loss

Example

model PressureLoss

import SI = Modelica.SIunits;

...

parameter SI.MassFlowRate m_flow_nominal;

parameter SI.Pressure dp_nominal "Nominal pressure drop";

SI.Density rho "Upstream density";

SI.DynamicViscosity lambda "Upstream viscosity";

equation

...

m_flow = homotopy(actual = turbulentFlow_dp(dp, rho, lambda),

simplified = dp/dp_nominal*m_flow_nominal);

...

end PressureLoss;

Nominal mass flow

Nominal pressure drop

Initialize with nominal linear

calculation and then

transform to full nonlinear

45

Modelica Environments

Open Modelica

SystemModeler (Wolfram)

Dymola (Dassault Systèmes)

MapleSim (MapleSoft)

OPTIMICA Studio (Modelon AB)

One Language

Many Different Environments

46

Modelica Environments

Dymola (Dassault Systèmes)

Vertex (deltatheta)

Converge (deltatheta)

Modelica SDK (deltatheta)

MOSILAB (Fraunhofer FIRST)

SimulationX (ITI GmbH)

LMS Imagine.Lab AMESim (LMS)

MapleSim (MapleSoft)

MathCore (MathModelica)

SystemModeler (Wolfram)

OPTIMICA Studio (Modelon AB)

JModelica.org

Modelicac

SimForge

OpenModelica

Commercial Free

47

Matlab/Simscape Environment
The Matlab based Simscape Physical Modeling Environment (Language Similar To

Modelica)

 Built in foundation libraries of Electrical, Hydraulic, Magnetic,

Mechanical, Physical Signal, Pneumatic and Thermal components.

 There are also extensions which allow some more detailed simulation

of gearing, hydraulic, mechanical/robotic and power systems.

 The facilities exist to generate custom components and domains.

 Models have almost 1-1 mapping to the physical systems they describe and

generally are easily reconfigurable making the tool very intuitive (RLC circuit)

Voltage

Source

Voltage

Sensor

Display

48

Idealized Turbojet:

Simscape

This image is in the public domain.

49

Rotational Spring

Damper

For Shaft

Flexible Shaft Turbojet:

Simscape

This image is in the public domain.
50

1

1.05

1.1

1.15

1.2

1.25

0 2 4 6 8 10 12

N
o

rm
a

li
ze

d
 S

p
e

e
d

Time (s)

Turbojet Fuel Step Response

Normalized Speed Ideal

Normalized Speed Flexible

Compressor-Turbine Shaft Vibration

Comparing Rigid and Flexible Engines: Simscape

51

SystemModeler (Wolfram)

• User Friendly

• Integrated with Mathematica and Wolfram Alpha.

• Not open source

Simple Suspension Example

Force Step

© Wolfram Research. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 52

http://ocw.mit.edu/help/faq-fair-use/

OpenModelica
Simple Suspension Example

• Open Source

• Very similar to SystemModeler from Wolfram

Force Step

53

Modelica Demo
 Modelica Demo by Narek Shougarian

 OpenModelica Installation

 https://www.openmodelica.org : OpenModelica for

Windows,

 MAC and Linux platforms

 https://modelica.org : Modelica and Modelica Association

website. Documentation, tutorials, user uploaded libraries

and publications.

54

https://www.openmodelica.org
https://modelica.org

Overview

Why Systems Modeling Languages?
 Ontology, Semantics and Syntax

OPM – Object Process Methodology

SySML – Systems Modeling Language

Modelica

What does it mean for Systems Engineering of today
and tomorrow (MBSE)?

55

Concept Question 5

Which of the system modeling languages seems
most useful to you?

A – OPM

B – SysML

C – Modelica

D – None of them

Answer Concept Question 5

 (see supplemental files)

56

Model-Based Systems Engineering

Descriptive models, instead of documents, are

the information storage and communication

medium

57

Session 3 Summary
 Traditional Systems Engineering produces documents
 E.g. Requirements Document, Interface Control Document etc…
 Written in natural language
 Many downsides: changes do not propagate easily, ambiguous

interpretations

 Model-based Systems Engineering (MBSE)
 Replace Documents with (executable) models
 Need rigorous System Modeling Languages
 Ontology, Semantics, Syntax
 Object-Process Methodology (OPM) – Excellent for pre-Phase A
 SysML – Widely used in some industries, 9 diagram types
 Modelica – Declarative language, able to execute models in the time

domain to simulate steady-state and transient behavior

 Field is in transition currently …

58
58

MIT OpenCourseWare
http://ocw.mit.edu

16.842 Fundamentals of Systems Engineering
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

