
16.851 Assignment #1, 2003-09-17 

Problem Statement 

Motivation 
The design of a spacecraft power subsystem is an important driver for the mass, size, and 
capability of the spacecraft.  Every other spacecraft subsystem is affected by the power 
subsystem, and in particular, important issues such as communications bandwidth, 
thermal regulation, and structural design are largely influenced by the capabilities and 
limitations of the power system.  The motivation for this problem is the broad 
applicability of a power-system design tool to a wide range of future design problems. 

Requirements 
Given time histories of the power load and power source, design a power subsystem that 
optimizes with respect to some specified cost function.  The power source profile can be 
specified directly, or determined from constituent information such as time histories of 
the sunlight intensity and the changing angle of a solar panel as a spacecraft rotates with 
respect to the sun.  The design space for the power subsystem should contain several 
types of power generation devices, such as photovoltaic arrays and radioisotope 
thermoelectric generators; and several types of energy storage devices, such as batteries 
and flywheels.  From this design space, a system that minimizes the cost function should 
be selected. 

Problem Solution 
The approach taken to the problem is to create a set of modular functions that are 
combined to achieve a solution.  The primary advantage to using this approach is that 
small, simple blocks of code can be validated more easily than large, complex blocks. 

Inputs 
Required user inputs include the following quantities: 

- Load power as a function of time in Watts, sampled at constant time steps. 
- Source power as a function of time in Watts, sample at constant time steps.  This can 

be supplied either directly as a power profile, or indirectly as constituent data such as 
the time histories of incident sunlight intensity and angle of solar array with respect 
to the sun. 


- The length of the time step in seconds. 

- The initial life fraction of the energy storage device. 
- The energy initially stored in the energy storage device, in Joules. 

Outputs 
Outputs from the design module include the following quantities: 

- The mass of the power system in kilograms, including the mass of the energy storage 
system (batteries or flywheel) and power generation system (solar array or RTGs). 
This mass does not include other components of the system such as power 
conditioning electronics. 



- The cost of the energy storage and power generation systems in millions of dollars. 

- The time history of the state of charge of the energy storage system, in Joules. 

- The time indices at which the energy storage capacity was insufficient to meet


demand, if this has occurred. 

- The time history of excess thermal energy that must be dissipated, in Joules. 

- The remaining life in the storage system as a fraction of the original lifespan. 


Formulas and Constraint Equations 
When determining the state of charge for an energy storage device, two constraint 
equations must be satisfied at all times.  First, the integral of the load power must be less 
than the sum of the integral of the source power and the initial stored energy, as shown in 
the following equation. 

t t ( )Pload dτ ≤ ∫ P dτ + t E 0source 
t0 

∫t0 

Secondly, because it is impossible for an energy storage device to contain negative 
energy, the energy contained in the device is constrained by a lower bound at zero, and 
by an upper bound at the device maximum capacity Emax. 

Emax ( )≥ 0≥ t E 

The fraction of the lifetime lost due to a particular discharge/charge cycle on a chemical 
battery can be determined using the following formula, where ∆Li is the fraction lost, di is 
the depth of discharge, b is the intercept, and m is the slope.  This equation was derived 
from Fig. 11-11 in SMAD. 

⎛ di −b ⎞−⎜ ⎟ 
⎝ m ⎠∆Li = −10 

The remaining lifetime fraction as a function of time can then be determined by summing 
the fractions lost due to each cycle.  In the following equation, the lifetime fraction is L0 

at time t0. 
n 

(t L − t0 )= L + ∑∆Lin 0 
i =0 

These equations summarize many of the major interactions between elements of the 
power subsystem. 

Files 
The following files, listed in alphabetical order, are used in the calculation of the optimal 
power system and the validation of components of the power system model.  The main 
function is masterloop.m; all of the other functions, with the exception of the 
validation functions, are called from within the function masterloop.  A simplified 
flow diagram for the module is shown in Figure 1. 



= = 

× 

yes yes 

no no 

masterloop.m 

PowerDesignResult.m 

Design Vector 

Power Source 

Solar Array 

Power Source 

RTG 

SolarArrayPerArea.m 

Surface Area 

RTGPower.m 

battery_profile.m 

error 

Design Vector 

Figure 1.  Simplified flow diagram. 

battery_profile.m 

- Calculates the time profiles of the energy storage device state of charge and excess 

thermal energy.  Determines if the power and energy devices are sufficient to handle 
the applied load. 

- Calculates the cumulative effect of individual discharge/charge cycles on the device 
lifetime. 

- Inputs include the properties of the energy storage device and the time histories of 
the source and load power. 


- This file contains the functions battery_profile and delta_life. 

- Validated using MER_sol4.m. 


EffectivePowerIntensity.m 

- Used to compute the effective solar radiation intensity based on the incident angle 

between the line of radiation and a vector normal to the solar array surface. 



- As the incident angle is a function of time, the resulting effective power intensity is 
also a function of time. 

masterloop.m 
- The main function, from which the other functions are called.  Operates with a set of 

nested ‘for’ loops, which are used to test all possible combinations of designs. 

MER_sol4.m 

- Used to validate the model used in battery_profile.m. This function can be 

run from the command line without any additional inputs. 
- Reads in the source (solar array) and load (egress operations) power profiles for the 

Mars Exploration Rover egress scenario planned for sol 4, as reported in the MER 
Mission Plan. 

- Uses battery_profiles.m to recreate the battery state of charge history shown 
in the MER Mission Plan, and plots the recreated profile against the MER Missoin 
Plan profile. 

- Requires the Excel spreadsheet MER_sol4_input_data.xls. The accuracy of 
the input data is limited by the fact that the data points were eyeballed from the plot 
in the mission plan and copied to Excel point by point. 

- This file contains the functions MER_sol4, plot_results, corner_times, 
create_profile, and t2m. 

MER_sol4_input_data.xls 
- A spreadsheet containing data points from MER_sol4_power_profile.png. 

Used for validation of the function battery_profile. 

MER_sol4_power_profile.png 
- A bitmap screen capture of the energy balance plot for MER A sol 4 egress 

operations, taken from the MER Mission Plan.  Used for validation of the function 
battery_profile. 

plot_battery_dod_cycles.m 
- Used to visualize the effect of a single discharge/charge cycle on the lifetime of a 

battery.  Creates a plot of depth of discharge as a function of fraction of lifetime lost 
for all types of chemical batteries being considered.  This function can be run from 
the command line without any additional inputs. 

PowerDesignResult.m 
- Given the design requirements and the specification of the power source and energy 

storage devices, PowerDesignResult.m computes the overall mass and cost, 
the power available from the power source as a function of time, and the state of 
charge of the energy storage device as a function of time. 

- The function may also return a set of time instances at which the stored energy was 
insufficient to handle the power load.  Furthermore, it computes the energy storage 
device’s remaining life and required energy dissipation. 



- Depends on SolarPowerPerArea.m and battery_profile.m to compute 
the aforementioned information. 

power_read_xls.m 

- Reads in an Excel spreadsheet containing data on power generation and energy 

storage devices (e.g. RTGs, photovoltaics, batteries, fly-wheels, etc.), and saves the 
information to Matlab structures. 

RTGPower.m 

- Used to compute the power an RTG can generate.  The power an RTG can generate 

depends on the specific model of the RTG. 

slope_intercept.m 

- Given a particular set of energy storage device properties, calculates the slope and 

intercept of the plot of depth of discharge as a function of cycle life.  The slope is 
considered constant, based on the limited data available from SMAD and external 
sources. 

SolarPowerPerArea.m 

- Used to determine the amount of power that can be generated from a unit area of a 

solar array, based on the type of the solar array and the effective illumination 
intensity. It takes into account the degradation of the array over the time period, the 
efficiency of the solar array, and the inherent degradation (i.e. degradation of the 
solar array system due to the temperature and shadowing effects) [SMAD]. 

- Depends on EffectivePowerIntensity.m for computing the effective power 
intensity. 

TestPowerDesignResult.m 

- This function is used to validate the functionality of PowerDesignResult.m 

through a simplified LEO scenario. 

TestSolarArray.m 

- This function is used to validate the functionality of SolarPowerPerArea.m and 
EffectivePowerIntensity.m through a simplified LEO scenario. 

Module Validation 

Energy Storage for MER 
Several of the functions used in the module are validated individually.  Among these is 
the battery_profile function, which is validated using data from the MER Mission 
Plan, as shown in Figure 2.  The function MER_sol4.m reads the source and load power 
profiles from an Excel spreadsheet, parses the data, and passes the power profiles to 
battery_profile, which generates the Battery SOC and Excess Power profiles.  The 
top plot is taken from the MER Mission Plan, the middle plot shows the inputs to and 
outputs from the function battery_profile, and the bottom plot shows these inputs 



and outputs overlaid on the MER Mission Plan data.  Although some discrepancy can be 
seen in the battery state of charge profile, the shape of the profile is generally correct, and 
the beginning and ending values are accurate. 

Energy balance for MER A egress (Sol 4) from MER Mission Plan 

Load power 
Source power 
Excess power 
Battery SOC 

P
ow

er
 [

W
] 

Simulation data.  Outputs are battery SOC and excess power. 
140 100 

120 
80 

100 

6080 

60 40 

40 

20 
20 

B
at

te
ry

 s
ta

te
 o

f 
ch

ar
ge

 [
%

] 

0 0 
0 6 12 18 24 

Time [Mars hours] 

Simulation data overlayed on MER mission plan data 

0 

20 

40 

60 

80[W
] 

0 

20 

40 

60 

80 

] 

100 

120 

140 

P
ow

er

100 

B
at

te
ry

 s
ta

te
 o

f 
ch

ar
ge

 [
%

0 6 12 18 24 
Time [Mars hours] 

Figure 2.  Validation of battery_profile.m using MER Mission Plan data and MER_sol4.m. 



Depth of discharge and cycle lifetime 
The issue of battery lifetime dependence on depth of discharge and number of cycles is 
addressed by treating each discharge/charge cycle as an individual event, and tracking the 
cumulative effect of the individual events.  Data in SMAD and elsewhere were used to 
create the relationships between depth of discharge and degradation of lifetime shown in 
Figure 3.  The slopes of the lines are considered constant, based on data in SMAD.  This 
figure may be plotted using plot_battery_dod_cycles.m. 

D
ep

th
 o

f 
di

sc
ha

rg
e 

[%
] 

Depth of discharge vs cycle life for secondary batteries 
100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

i
Sil i

Nickel-Hydrogen IPV (RNH30-9) 
Lith um Ion (INCP77) 

ver Z nc (SZHR25) 
Nickel-Hydrogen CPV (RNHC4-1) 

0 -1 -2 -3 -4 -5 -6 -7 -8 
Fraction of life lost in one charge/discharge cycle [log10(x)] 

Figure 3.  Relationship between depth of discharge and reduction in lifetime for chemical batteries. 

Solar Arrays 
The test function TestSolarArray.m is used to validate SolarPowerPerArea.m 
and EffectivePowerIntensity.m within a specific scenario.  This scenario 
assumes a satellite in a low Earth circular orbit. The satellite has a fixed solar array, that 
is, the incident angle of the solar array with respect to the line of solar radiation varies in 
between -π and π.  We also assume that the solar array is double sided and is never 
eclipsed by Earth. Figure 4 is the output generated by TestSolarArray.m. 

Figure 4.  Solar array power intensity for a simulated low Earth orbit without an eclipse. 



The blue lines represent the solar radiation intensity, which is approximately 1367 W/m2. 
The green line is the effective radiation intensity the solar panels can absorb. Note that 
the effective solar radiation is periodic due to the periodicity of the incident angle.  The 
red line represents the total power generated by the solar array.  As shown by the plot on 
the left, this line tracks the effective solar radiation (green), but with lower magnitude due 
to the efficiency of the solar array.  The plot on the right with larger time scale exhibits 
the degradation of the solar array as expected.  Given a solar array, the power generated 
by the solar array is: 

� (P = η ⋅ Id ⋅ Ieff ⋅ A ⋅ (1 − (D + t D − t0 )))0 

where η is the efficiency, Id is the inherent degradation, Ieff is the effective radiation 
�intensity, A is the surface area exposed to the radiation, D0 is the initial degradation, D  is 

the rate of degradation, t is the current time, and t0 is the initial time. While the harsh 
environment (e.g. thermal cycling and micrometeoroid strikes) causes degradation/rate of 
degradation, the inherent degradation is caused by design inefficiencies (e.g. shadowing).  

Radioisotope Thermoelectric Generators 

The function RTGPower.m exhibits 
exponentially decaying power, as 
expected of a radioisotope 
thermoelectric generator. 

Figure 5. RTG power vs. time. 

We model the power generated by an RTG using an exponentially decaying function: 

P = P0 ⋅ e
−kt , 

where k is 1/87.74 [1/years] for Pu-238 that is typically used for an RTG. 

Module Results 
The module was run using the input power profile and incident angle profile shown in 
Figure 6 and Figure 7, respectively.  The profile was chosen to approximate a Low Earth 
Orbit to a very crude level.  The fraction of life span remaining at the start of the period 
was chosen to be one, and a maximum energy storage capacity of 161280 J was chosen, a 
factor of ten less than the capacity of the Mars Exploration Rover batteries.  The initial 
energy in the batteries was selected as 60% of this amount. 



Figure 6.  Input power profile. 

Figure 7.  Input incidence angle profile (cosine of angle taken) 

The solar array input vector was chose to range from one to four meters in increments of 
one meter. After running masterloop, Figure 8 and Figure 9 were generated from the 
module outputs. Figure 8 illustrates the mass and costs for various designs in the design 



vector. The red dots indicate designs where the energy in the system dropped below zero, 
indicating that the energy storage capacity is insufficient.  These designs are therefore 
invalid, and are not considered part of the final answer.  The blue dots indicate designs 
where energy conditions were successfully met.  The data can be seen as 14 “columns” of 
data, which correspond to the 14 different storage designs.  The flywheel storage design 
is the 2nd column from the right.  The bottom four dots per column that are grouped 
diagonally represent the range of solar array sizes for a specific solar array type. 

Depending on the power input and incidence angle profiles, the number of valid and 
invalid designs can change.  For some profiles, all flywheel designs were determined to 
be invalid. Figure 8 shows an example outcome for a solar-array based system. 

Figure 8. Mass and Costs for Design vector according to the input Power profile for a solar array 
source system. 

Figure 9 illustrates the mass and cost for an RTG and storage system.  There are only 
eight discrete RTG designs, and this results in eight regions, each centered about one 
RTG design. If more RTG data were incorporated, a more distinct Pareto front could be 
achieved; however, the results show that for certain RTG designs, the higher-mass 
options become invalid. 



Figure 9. Mass and Costs for Design vector according to the input Power profile for an RTG source 
system 

Future Work 
There are several ways to expand this module.  The database of storage devices and 
source devices could be expanded.  We have included several types of secondary 
batteries and eight RTGs; however, the design space could benefit from a larger selection 
of solar array types.  The current module implemented only three types of solar arrays to 
keep computation times down while running the module.  One type of flywheel3 was 
included in the design space; however, if additional flywheel storage devices emerge, 
they should be added to the design space.  Additional storage and source types such as 
fuel cells, nuclear generators, and thermoelectric converters could add to the design space, 
but the more options added, the slower computation will be. 

Additional work includes incorporating the mass and power draw from power 
distribution systems, such as a Direct Energy Transfer (DET) or Peak Power Tracker 
(PPT) system. 

The spreadsheet of sources and storage devices includes the sizes of the storage units, 
however they were not used.  A future design could include this data and output the size 
of the storage units. This could be used by a possible structures module.  The heat 
generated by the power system consists of additional calculations that could be made to 
link up with a possible thermal subsystem. 



Subsystems which would act as inputs to this power module include orbits, and 
environment. Environment already has an input, the form of the Solar Intensity, but 
additional data could be added.  The Orbits subsystem has an effect on the Effective 
Intensity, and on the Power Input profile. 

References 
1.	 Wertz, J., and Larson, W., Space Mission Analysis and Design, Third Edition. 

Torrance, CA:  Microcosm Press, 1999. 
2.	 Ludwinski, J., et. al., “Mars Exploration Rover (MER) Project Mission Plan,” 

Pasadena, CA: Jet Propulsion Laboratory, April 24, 2002, JPL-D19659. 
3.	 Designfax, http://www.manufacturingcenter.com/dfx/archives/0701/0701fly.asp, 

Sept. 16, 2003. 
4.	 Eagle-Picher, http://www.epcorp.com/EaglePicherInternet/, Sept. 16, 2003 

Source Code 
Following are the full contents of the Matlab and Excel source code used in this 
assignment. 

battery_profile.m 

function [energy,invalid,dissipation,life] = battery_profile(nsteps, dt, load, source, e_init, e_max, life_init, efficiency, slope, intercept) 
%[ENERGY, INVALID, DISSIPATION, LIFE] 
% = BATTERY_PROFILE(NSTEPS,DT,LOAD,SOURCE,E_INIT,E_MAX,LIFE_INIT,EFFICIENCY,SLOPE,INTERCEPT) 
% 
% Inputs: 
%   NSTEPS   The number of uniformly-spaced time values 
%   DT [s] The separation between the time values 
% LOAD [W] The time profile of the power load 
%   SOURCE [W] The time profile of the power source 
% E_INIT [J] The initial stored energy in the storage device 
% E_MAX [J] The capacity of the energy storage device 
%   LIFE_INIT   The fraction of the device’s usable life as of the start of the period 
% EFFICIENCY  The fraction of the input energy that is recoverable 
%   SLOPE   The slope of the depth of discharge vs log life fraction plot 
%   INTERCEPT   The y-intercept of the depth of discharge vs log life fraction plot 
% 
% Outputs: 
% ENERGY [J] The time profile of the energy stored in the device 
% INVALID Indices of times at which the stored energy is negative (!) 
% DISSIPATION [W] The time profile of excess energy to be dissipated 
% LIFE        The fraction of the device’s usable life as of the end of the period 
% 
% Note that if LENGTH(INVALID)>0, the capacity of the energy storage device is insufficient 
% to meet demand, and this is an invalid design.  Any function calling BATTERY_PROFILE(...) 
% should verify that INVALID is empty before proceeding with further calculations. 
% 

% reject any invalid inputs 
if (nsteps<2)
    error(’Error!  NSTEPS must be at least two.’); 
end 
if (dt<=0)
    error(’Error!  Time step DT must be greater than zero.’); 
end 
if (length(load) ~= nsteps)
    error(’Error! Length of LOAD must be NSTEPS.’); 



end 
if (length(source) ~= nsteps)
    error(’Error! Length of SOURCE must be NSTEPS.’); 
end 
if (e_max<0) 
    error(’Error!  Energy capacity E_MAX must be non-negative.’); 
end 
if (e_init>e_max)
    error(’Error! Initial energy E_INIT is greater than max energy E_MAX.’); 
end 
if (life_init > 1 | life_init < 0)
    error(’Error! Initial life LIFE_INIT must be between zero and one.’); 
end 
if (efficiency > 1 | efficiency < 0)
    error(’Error!  Charge efficiency EFFICIENCY must be between zero and one.’); 
end 

% energy starts with e_init 
energy(1) = e_init; 

% invalid vector starts out with no indices 
invalid = []; 

% actual capacity is about 95% of e_max, based on MER battery profile 
e_cap = 0.95*e_max; 

% life begins at initial value 
life = life_init; 

% create a time index vector 
time = 0:length(load)-1; 

% allocate memory now to speed things up 
dissipation = zeros(size(time)); 

% integrate power and track energy storage profile 
for i=2:length(time)
    energy(i) = energy(i-1) + efficiency*dt*(source(i-1)-load(i-1)); 

% energy can’t go negative, so this should result in an invalid design 
if energy(i)<0

 % records the indices of invalid energy events
 invalid = [invalid i]; 


    end 


if energy(i)>e_cap
 % records the excess energy that won’t fit in the storage device
 dissipation(i) = (energy(i)-e_cap)/dt;

 % caps the stored energy at its maximum value 
 energy(i) = e_cap;

    end 
end 

% all the indices that have negative slope 
dec = find(sign(energy(2:length(energy))-energy(1:length(energy)-1)) == -1); 

% all the indices that have positive slope 
inc = find(sign(energy(2:length(energy))-energy(1:length(energy)-1)) == 1); 

% account for depth of discharge and cycles to track life expectancy 
i=1; 
while i<length(dec) 

% the first point in a descent (i.e. the local peak) 
top  = max([(dec(i)-1) 1]); 

% the indices in the next increasing section 
temp = inc(find(inc>top)); 

% if there are no more increasing sections 



if length(temp)==0 
 % depth of discharge 
 dod = (e_max-energy(dec(length(dec))))/e_max;

 % terminate the loop
 i=length(dec); 

% if there is an upcoming increasing section
    else

 % interested in the first index in the increasing section
 temp = temp(1);

 % depth of discharge 
 dod = (e_max-energy(temp))/e_max;

 % find the indices falling in later decreasing sections
 dec = dec(find(dec>temp));


    end 


% decrement the lifetime by some fraction due to this cycle 
    life = life - delta_life(dod, slope, intercept); 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Determines the fraction of the storage device lifetime lost

% due to a particular discharge cycle.


function dlife = delta_life(dod_frac, m, b)

if m==0 & b==0 

dlife = 0; 
else 

dlife = 10^-((dod_frac-b)/m); 
end 

MER_sol4.m 

function [t,L,A,E,W,life] = MER_sol4

%[T, L, A, E, W, LIFE] = MER_sol4

% 

% Reads in the solar array input power and the load power for the Mars Exploration Rover 

% egress scenario (data are from the MER Mission Plan, JPL/NASA).  Requires the Excel 

% spreadsheet ’MER_sol4_input_data.xls’ to be in the same directory.  Determines the  

% profile of the battery state of charge given the load and source power profiles,  

% and plots the results. 

% 

% Outputs:

% T [min] Time vector

% L [W] Power load profile

% A  [W] Power source profile

% E   Time profile of fraction of battery being used

% W [W] Power dissipation profile

%   LIFE    Fraction of remaining usable battery lifetime 

% 


% read in data from the Excel spreadsheet

[data,clocks] = xlsread(’MER_sol4_input_data.xls’);


% time history of the load power 

val    = data(:,1);

val  = val(find(val(:,1)>=0));

times = clocks(:,1);

times = times(1:length(val));

time = t2ms(times);

[tL,L] = create_profile(time, val, 4);


% time history of the array power 

val    = data(:,3);




val  = val(find(val(:,1)>=0));

times = clocks(:,3);

times = times(1:length(val));

time = t2ms(times);

[tA,A] = create_profile(time, val, 0); 


if (sum(tA-tL)~=0) 
    error(’Error! Load and input power profiles have different time vectors.’); 
end 

t = tA;  % common time profile 
dt = 60; % [s] chosen to simplify calculations 
life0 = 1.0; % fraction of life span remaining at start of period 
energy_max = 448*3600; % Joules 
energy_initial = 0.59*energy_max; 

% battery properties 
efficiency = 1.0; 
slope  = -0.28; 
intercept   = 1.67; 

% find the output 
[EE, invalid, W, life] = battery_profile(length(t), dt, L, A, energy_initial, ...

   energy_max, life0, efficiency, slope, intercept); 

% warn if energy drops below zero 
if length(invalid)>0 

disp(’Battery energy went negative; invalid design.’); 
end 

% change to a percentage 

E = EE/energy_max; 


% plot the data 

h=figure(1);

subplot(311)

plot_results(’original’, t/60, L, A, E, W); 

subplot(312)

plot_results(’ourdata’, t/60, L, A, E, W); 

subplot(313)

plot_results(’all’, t/60, L, A, E, W); 


% scale the plot

hmargin = 0; 

vmargin = 0;

orient tall;

set(h,’PaperPosition’,[hmargin vmargin (8.5-2*hmargin) (11-2*vmargin)]); 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

% Plots the time profiles of L, A, E, and W as functions of t.

% ’What’ tells which data are to be plotted. 


function plot_results(what, t, L, A, E, W)


if strcmp(what,’original’) | strcmp(what,’all’) 
ax(1) = newplot;

    set(gcf,’nextplot’,’add’) 

% read in and display the MER power profile image 
img = imread(’MER_sol4_power_profile.png’,’png’);

h1 = image(img); 


    set(ax(1),’visible’,’off’);

    set(ax(1),’box’,’off’) 


% rescale the width by 80% (left-justified) 
pos   = get(ax(1),’position’);

pos(3) = 0.8*pos(3); 


    set(ax(1),’position’,pos);

end 



if strcmp(what,’original’) 
% create a dummy axis on which to make a legend 
dummyax = axes(’position’,[1 1 1/0.8 1].*get(ax(1),’position’)); 

% make dummy plots with the colors we will use for the real data 
plot(-1,-1,’b-’,-1,-1,’g-’,-1,-1,’m-’,-1,-1,’r-’);

axis([0 1 0 1]);


    set(dummyax,’color’,’none’,’box’,’off’,’XTick’,[],... 

’XTickLabel’,[],’YTick’,[],’YTickLabel’,[]) 

% create the legend 
h=legend(’Load power’,’Source power’,’Excess power’,’Battery SOC’,-1);

title(’Energy balance for MER A egress (Sol 4) from MER Mission Plan’);


    return; 

end 

if strcmp(what,’ourdata’) 
ax(2)  = newplot; 
pos   = get(ax(2),’position’); 
pos(3) = 0.7*pos(3); 

    set(ax(2),’position’,pos); 
else 

ax(2) = axes(’position’,get(ax(1),’position’)); 
end 

if strcmp(what,’ourdata’) | strcmp(what,’all’) 
% the source, load and excess powers, and a line to make the top look nice 
h2 = plot(t, A, ’g-’, t, L, ’b-’, t, W, ’m-’, [0 24],[140 140],’k-’); 

if strcmp(what,’ourdata’)


 set(ax(2),’xgrid’,’off’,’ygrid’,’off’,’box’,’off’);

    else


 set(ax(2),’color’,’none’,’xgrid’,’off’,’ygrid’,’off’,’box’,’off’);

    end 

    set(gcf,’nextplot’,’add’)


axis([0 24 0 140]);

    set(ax(2),’XTick’,[]); 

    ylabel(’Power [W]’) 


% the battery state of charge percentage, with right-side axis 
ax(3) = axes(’position’,get(ax(2),’position’));

h2 = plot(t, 100*E, ’r-’);


    set(ax(3),’YAxisLocation’,’right’,’color’,’none’, ... 

’xgrid’,’off’,’ygrid’,’off’,’box’,’off’);


axis([0 24 0 100]);

    set(ax(3),’XTick’,[0 6 12 18 24]);

    ylabel(’Battery state of charge [%]’)

end 

set(gcf,’nextplot’,’replace’); 
xlabel(’Time [Mars hours]’); 

if strcmp(what,’ourdata’) 
title(’Simulation data.  Outputs are battery SOC and excess power.’); 

else 
title(’Simulation data overlayed on MER mission plan data’); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

% translates corner value hh:mm to minutes


function corner_times = t2ms(times)

for i=1:length(times) 

corner_times(i) = t2m(times{i}); 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% 



% creates a power profile given corner values.  corner_times must be integers. 

function [t,L] = create_profile(corner_times, corner_values, initial) 

% check for validity of inputs 
if length(corner_times) ~= length(corner_values) 
    error(’Error! Invalid input to create_profile()’); 
end 
if sum(corner_times==round(corner_times))~=length(corner_times)
    error(’Error! Input to create_profile() ’’corner_times’’ must contain only integers.’); 
end 

% make sure there is a time zero 
t = 0:corner_times(length(corner_times)); 
if (corner_times(1) ~= 0) 

corner_times = [0 corner_times]; 
corner_values = [initial corner_values]; 

end 

% fill in the time profile with equal steps 
for i=1:length(corner_times)-1 

t0 = corner_times(i); 
t1 = corner_times(i+1); 
dt = t1-t0; 

    L(t0+2:t1+1) = (corner_values(i+1)-corner_values(i))/dt*(1:dt)+corner_values(i); 
end 

L(1) = initial;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

% changes hh:mm to number of minutes since midnight


function [min] = t2m(time)

div = find(time==’:’);

if length(div)~=1 

    error(’Error! Invalid input to function t2m().’); 
end 
min = str2num(time(1:div-1))*60 + str2num(time(div+1:length(time))); 

plot_battery_dod_cycles.m 

function plot_battery_dod_cycles(varargin) 
% PLOT_BATTERY_DOD_CYCLES 
% PLOT_BATTERY_DOD_CYCLES(FIGNUM) 
% PLOT_BATTERY_DOD_CYCLES(AXES_HANDLE) 
% 
% Plots the depth of discharge (DOD) as a function of cycle repetition lifetime 
% Creates a new figure, or plots to figure number FIGNUM. 

% read the data from the Excel spreadsheet 
[storage, generation, solar] = power_read_xls(’power_design_vector.xls’); 

% check if any data were found 
slen = length(storage); 
if slen==0 

disp(’Warning.  No energy storage device data found.’); 
    return; 
end 

% check to see where it is supposed to plot 
if nargin>0 
    var = varargin{1}; 

if var-fix(var) == 0
 % set the figure
 figure(varargin{1});


    else

 % set the axes
 axes(var) 



    end 
else 

% create a new figure
    figure; 
end 

% record hold state

washold = ishold; 


% set up plotting properties for easy access later

colors = ’bgrmcy’; 

colors = [colors colors colors colors colors colors colors];

points = ’ox+sd<>’; 

points = [points points points points points points points]; 


% initialize 

types{1} = ’’;

legstr = []; 

count = 0; 


% look at all elements in the storage structure 

for i=1:slen


% check to see if we have seen this type yet 
if ~ismember(storage(i).Type, types) 

 % add the newly found type to the list of known types 
 count = count+1;

 types{count+1} = storage(i).Type;


 % get the line properties from the battery characteristics
 [slope, intercept] = slope_intercept(storage(i).DOD, storage(i).Cyclelife);

 % ignore the case when fatigue is not a factor
 if slope==0 & intercept==0


  continue; 


 else
  % add on the the string that we will eval for the legend 
  legstr = [legstr ’,’’’ storage(i).Type ’ (’ storage(i).PartNumber ’)’ ’’’’];

  % offset the points so we can see overlapping data sets
  x=[-1:7] + count/8;

  y=slope*x+intercept; 


  % plot the line 
plot(x,100*y,[colors(count) points(count) ’-’]);


 end 

 hold on; 


    end 
end 

% return the hold state to its previous value 
if ~washold 

hold off; 
end 

% set nice axis limits and turn on the grid 
axis([0 8 0 100]); 
grid on; 

% negatize the x ticks, since we’re looking at the inverse of the plotted value 
h=gca; 
ticks = str2num(get(h,’XTickLabel’)); 
set(h,’XTickLabel’,num2str(-ticks)); 

% label the plot 
title(’Depth of discharge vs cycle life for secondary batteries’); 
xlabel(’Fraction of life lost in one charge/discharge cycle [log_{10}(x)]’); 
ylabel(’Depth of discharge [%]’); 

% create a legend 



legstr = legstr(2:length(legstr)); 
eval([’legend(’ legstr ’)’]); 

power_read_xls.m 

function [storage, generation, solar] = power_read_xls(filename) 
%[STORAGE, GENERATION, SOLAR] = POWER_READ_XLS(FILENAME) 
% 
% Reads in data from the Excel file FILENAME, and parses it into 
% data structures.  The file must contain sheets named ’Storage’, 
% ’Generation’, and ’Solar’, and the sheets must be arranged in 
% a particular format, or an error will result.  See the file 
% ’power_design_vector.xls’ for an example of proper format. 
% 

storage    = []; 
generation = []; 
solar = []; 

% read in the energy storage info 
[num, txt] = xlsread(filename,’Storage’); 

% add on new field names one by one 
for i=1:size(txt,1)
    storage = setfield(storage, txt{i,1}, []); 
end 

names = fieldnames(storage); 
i_offset = size(txt,1) - size(num,1); 
j_offset = size(txt,2) - size(num,2); 

for i=1:size(txt,1)
    for j=3:size(txt,2)

 if i<=i_offset
  eval([’storage(j-2).’,names{i},’= ’’’,txt{i,j}, ’’’;’]);

 else
  eval([’storage(j-2).’,names{i},’= num(i-i_offset,j-j_offset);’]);

 end 
    end 
end 

% read in the power generation info 
[num, txt] = xlsread(filename,’Generation’); 

for i=1:size(txt,1)
    generation = setfield(generation, txt{i,1}, []); 
end 

names = fieldnames(generation); 
i_offset = size(txt,1) - size(num,1); 
j_offset = size(txt,2) - size(num,2); 

for i=1:size(txt,1)
    for j=3:size(txt,2)

 if i<=i_offset
  eval([’generation(j-2).’,names{i},’= ’’’,txt{i,j}, ’’’;’]);

 else
  eval([’generation(j-2).’,names{i},’= num(i-i_offset,j-j_offset);’]);

 end 
    end 
end 

% read in the solar array info 
[num, txt] = xlsread(filename,’Solar’); 

for i=1:size(txt,1)
    solar = setfield(solar, txt{i,1}, []); 
end 



names = fieldnames(solar); 
i_offset = size(txt,1) - size(num,1); 
j_offset = size(txt,2) - size(num,2); 

for i=1:size(txt,1)
    for j=3:size(txt,2)

 if i<=i_offset
  eval([’solar(j-2).’,names{i},’= ’’’,txt{i,j}, ’’’;’]);

 else
  eval([’solar(j-2).’,names{i},’= num(i-i_offset,j-j_offset);’]);

 end 
    end 
end 

slope_intercept.m 

function [slope, intercept] = slope_intercept(dod, cycles)

%[SLOPE, INTERCEPT] = SLOPE_INTERCEPT(DOD, CYCLES) 

% 

% Returns the slope and intercept of a plot of the depth of discharge as a function

% of the log10 of the number of cycles in the device lifetime.

% 

% Inputs:

%  DOD   Depth of discharge.  Fraction of the energy discharged.

% CYCLES  Number of cycles possible at given depth of discharge.

% 

% Outputs:

%   SLOPE   Slope of plot of DOD as a function of log10 of the cycle life.

%   INTERCEPT   DOD-axis intercept of plot.

% 

% If CYCLES=0, SLOPE=0 and INTERCEPT=0 will be returned.  Otherwise, SLOPE=-0.28

% and INTERCEPT corresponding to the DOD, CYCLES pair will be returned.

% 


% check for invalid inputs

if (dod>1 | dod<0)

    error(’Error!  Depth of discharge must be between zero and one.’); 
end 
if (cycles<0)
    error(’Error!  Number of cycles must be non-negative.’); 
end 

% any device that does not exhibit changes in lifetime with depth of discharge. 
if cycles==0 
    slope = 0; 

intercept = 0; 

% any other device 
else 

% from SMAD III, p.421
    slope = -0.28; 

% from y = m * log10(x) + b 
intercept = dod-slope*log10(cycles); 

end 



8:01 124 11:45 132
MER_sol4_input_data.xls 

0:0 3 0:0 0 9:00 124 12:00 132 
4:38 3 5:50 0 9:01 58 12:15 132 
4:39 59 6:15 6 10:25 58 12:30 131 
4:53 63 6:30 13 10:26 67 12:45 130 
4:54 124 6:45 18 10:55 67 13:00 126 
4:59 124 7:00 26 10:56 58 13:15 123 
5:00 63 7:15 32 10:59 58 13:30 120 
5:01 59 7:30 45 11:00 124 13:45 117 
5:02 3 7:45 53 11:57 124 14:00 111 
6:42 3 8:00 60 11:58 58 14:15 105 
6:43 75 8:15 70 13:19 58 14:30 100 
6:49 75 8:30 78 13:20 67 14:45 94 
6:50 22 8:45 85 13:45 67 15:00 86 
7:15 22 9:00 90 13:46 58 15:15 80 
7:16 98 9:15 100 13:50 58 15:30 70 
7:17 98 9:30 105 13:51 124 15:45 65 
7:18 76 9:45 110 14:47 124 16:00 55 
7:24 76 10:00 115 14:51 3 16:15 50 
7:25 59 10:15 119 16:00 3 16:30 40 
7:29 59 10:30 123 16:01 64 16:45 30 
7:30 112 10:45 125 16:15 64 17:00 21 
7:56 112 11:00 127 16:16 124 17:15 13 
7:57 56 11:15 130 16:21 124 17:30 6 
8:00 56 11:30 131 16:22 3 17:45 3 
8:01 124 11:45 132 24:00 3 18:00 0 
9:00 124 12:00 132 24:00 0 

PowerDesignVector.xls 


PartNumber text RNH30-9 RNH81-5 RNH160-3 INCP77 MSP01 INCP95 SZHR25 SZHR25 
Company text Eagle-Picher Eagle-Picher Eagle-Picher Lithion Lithion Lithion Eagle-Picher Eagle-Picher 
Device text SecondaryBattery SecondaryBattery SecondaryBattery SecondaryBattery SecondaryBattery SecondaryBattery SecondaryBattery SecondaryBattery 
Type text Nickel-Hydrogen IPV Nickel-Hydrogen IPV Nickel-Hydrogen IPV Lithium Ion Lithium Ion Lithium Ion Silver Zinc Silver Zinc 
Name  text  1.1  1.2  1.3  3.1  3.2  3.3  4.1  4.2  
SpecificEnergy W hr/kg 144432 172800 181440 468000 522000 522000 324000 324000 
EnergyDensity W hr/L 116172000 254160000 304920000 1116000000 1166400000 1206000000 882000000 882000000 
RatedCapacity A hr 108000 291600 576000 37800 90000 126000 90000 144000 
NominalVoltage V 1.25 1.25 1.25 14.4 28 3.6 1.5 1.5 
Mass kg 0.997 2.55 4.18 1.5 17.8 0.87 0.5 0.55 
Diameter m 0.0892 0.0902 0.1178 0.075 0.1 0.05 0.015 0.054 
Length m 0.2286 0.32 0.307 0.025 0.129 0.12 0.05 0.085 
MaxCycles num 20000 20000 20000 2100 900 800 5000 5000 
CoulombicEfficiency % 0.95 0 0 0.99 0.99 0.99 0 0 
FadeRate %/cycle 0.5 0.5 0.5 0.02 0.02 0.02 0.5 0.5 
Life  years  2  2  2  0  0  0  0.5  0.5  
Cost  $  0  0  0  0  0  0  0  0  
TRL  num  9  9  9  9  9  9  9  9  
DOD fraction 0.55 0.55 0.55 0.8 0.8 0.8 0.5 0.5 
Cyclelife num 10000 10000 10000 1500 1500 1500 200 200 

Name UniqueNameTBD UniqueNameTBD UniqueNameTBD UniqueNameTBD UniqueNameTBD UniqueNameTBD UniqueNameTBD UniqueNameTBD 
Device RTG RTG RTG RTG RTG RTG RTG RTG 
Type SNAP-19 Viking1 Cassini MMRTG SRG GPHS SNAP-3B7 SNAP-27 
Company 
Reference 16.89CDR 16.89CDR 16.89CDR 16.89CDR 16.89CDR 16.89CDR 16.89CDR 16.89CDR 
Power W 40.3 43 285 140 110 290 2.7 73.4 
Mass kg 13.6 15.4 56 32 27 56 2.1 42 
Diameter m 0.508 0.58 0.41 0.41 0.27 0.097 0.61 0.58 
Length m 0.23 0.4 1.12 0.6 0.89 0.093 0.865 0.4 
Life years 15 6 15 14 14 15 15 8 
Cost $ 21850000 22020000 35000000 25000000 20000000 38290000 19370000 24020000 
TRL  9  9  9  7  4  9  9  9  

Name text Silicon GaAs Multijunction 
Ref text class class class 
Device text Solar Array Solar Array Solar Array 
Efficiency 0.148 0.185 0.22 
InherentDegradation 0.77 0.77 0.77 
InitialDegradation 0 0 0 
DegradationRate 1/sec 1.1883E-09 7.92202E-10 7.92202E-10 
Density kg/m^2 0.55 0.85 0.85 
K constant 0.5 0.185 0.22 
CostPerArea $/m^2 10000 70000 90000 



masterloop.m 

clear all 

%take in the design vector 
[storage, generation, solar] = power_read_xls(’power_design_vector.xls’); 

%storage type   Number

%Nickel-Hydrogen IPV  1 

%Nickel-Hydrogen CPV 2 

%Lithium Ion    3 

%Silver Zinc   4 

%Fly Wheel  5 


[ENV]=environmentfun;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%INPUTS$$$$$$$$$$$$$$$$%%%%%%%%%%%%%%%%%%%% 

%take in data file 

%[data,clocks] = xlsread(’MER_sol4_input_data.xls’); %sample data file

%[time, L, A]=parseinputdata(data,clocks); 


%time vector 

t_f = 5 * 24 * 60;

dt=60; 

time = dt*[0:1:t_f];


% Orbital Period [sec]

op = 90 * 60;


% Incident Angle [rad] 

%incident_angle = 0:2*pi/op*dt:time(length(time))*2*pi/op;

%incident_angle = mod(0:2*pi/op*dt:time(length(time))*2*pi/op,pi) - pi/2*ones(1,length(time));

incident_angle = mod(0:2*pi/op*dt:time(length(time))*2*pi/op,pi) - pi/2*ones(1,length(time)); 
for i = 1:length(incident_angle) 

if mod(i,91) > 41
 incident_angle(i) = pi/2; 

    end 
end 
%power_load requirement(W) 
%power_load = 75 + 25 * sin(time); 
power_load(1:length(time)) = 100 + 50*round(sin(time*3*pi/3600)); 

life_init = 1.0; % fraction of life span remaining at start of period 
energy_max = 44.8*3600;  % Joules 
energy_initial = 0.59*energy_max;% Joules 

%solar array vector 
SA_area=1:1:4; %m^2 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

storage_design_length=length(storage); %find max length of storage design 
generation_design_length=length(generation);%find max length of generator design 
solar_design_length=length(solar);%find max length of solar design 
SA_design_length=length(SA_area); 
stcnt=1;%storage counter 
socnt=1;%solar cnt 
gecnt=1;%generator cnt 
SAcnt=1; 

%debug code 

for stcnt=1:storage_design_length 

    storage(stcnt).InitialCharge=energy_initial; 
% storage(stcnt).InitialCharge=0;

    storage(stcnt).RemainingLife=life_init; 



 ’solar cycle’ 

%Pick either SOlar or RTG (generation)
    for socnt=1:solar_design_length 


 for SAcnt=1:SA_design_length 

  %outside loop
  solar(socnt).IncidentAngle =  incident_angle; 

  solar(socnt).SurfaceArea =  SA_area(SAcnt); 


  SAResult(stcnt,socnt,SAcnt)= PowerDesignResult({solar(socnt)}, storage(stcnt), power_load,ENV,time);
 end 

    end %done with Solar options

 ’RTG cycle’ 

%try RTG options 
    for gecnt=1:generation_design_length

 RTGResult(stcnt,gecnt) = PowerDesignResult({generation(gecnt)}, storage(stcnt), power_load,ENV,time);
    end 
end 

EffectivePowerIntensity.m 

function effective_power_intensity = EffectivePowerIntensity(illumination_intensity, incident_angle); 
%EFFECTIVEPOWERINTENSITY Effective Power Intensity. 
% 
%  I_EFF = EFFECTIVEPOWERINTENSITY(SI, IA) computes the time profile 
%  of the effective illumination intensity SI due to the illumination 
%  incident angle IA. The unit of I_EFF is [W/m^2]. 
% 
%  The powerIntensity(t) is a vector that represents the time profile 
%  of the illumination intensity [W/m^2]. 
% 
%  The incidentAngle(t) is a vector that represents the time profile 
%  of the illumination incident angle (i.e the angle between the vector 
%  normal to the surface and the line of illumination) [radians]. 
% 

effective_power_intensity = illumination_intensity .* cos(incident_angle); 

environmentfun.m 

function [ENV] = environmentfun 
% ENVIRONMENT MODULE 
% 
% ------------------------------------------------------------------- 
% Global INPUT VARIABLE NAME UNIT 
% 
% ------------------------------------------------------------------- 
% CONSTANTS VARIABLENAME UNIT 
% 
% ------------------------------------------------------------------- 
% INTERNAL OUTPUTS VARIABLE NAME UNIT 
% ------------------------------------------------------------------------- 
% OUTPUTS  VARIABLE NAME UNIT 
% 
% Sun Illumination Intensity   illuminationIntensity  W/m^2  
% ------------------------------------------------------------------------- 

ENV.IlluminationIntensity = 1367; 



PowerDesignResult.m 

function R = PowerDesignResult(power_source, energy_storage, power_load, environment, t); 

% R = POWERDESIGNRESULTS(POWER_SOURCE, ENERGY_STORAGE, POWER_LOAD, ENVIRONMENT, T)

% 

% Inputs:

% POWER_SOURCE  Design specification of the power source.  

% ENERGY_STORAGE  Energy storage device design specification.

% POWER_LOAD    Power load requirement. 

% ENVIRONMENT   Environment specification. 

% T    Time. 

% 

% Outputs:

% R  Struct of the results:

% .Mass    Total power subsystem mass [Kg]. 

% .Cost   Total cost of the power subsystem [US$].

% .AvailablePower    Power availble from the power source [W].

% .AvailableEnergy  Energy available from the energy storage [J].

% .EnergyStorageInvalid   Time at which the enery was insufficient.

% .EnergyDissipation   Required energy dissipation. 

% .EnergyStorageLifeRemaining Remaining life on the energy storage.


% Initialize the mass of the design. 

R.Mass = 0;

% Initialize the cost of the design. 

R.Cost = 0;

% Initialize the available power.

R.AvailablePower = zeros(1,length(t));

% Initialize the available engergy.

R.AvailableEnergy = zeros(1,length(t));


% For each power source:

for i = 1:length(power_source)


% The power source is a solar array: 
if strcmp(power_source{i}.Device,’Solar Array’)

 %if not(isfield(enviornment,’illumination_intensity’))

 %    error(’To use a solar array, the illumination intensity "illuminationIntensity" must be specified within the environment") 

 %end


 % Compute the effective illumination intensity given the

 % illumination intensity and the incident angle of of the

 % illumination. 

 effective_intensity = ... 


  EffectivePowerIntensity(environment.IlluminationIntensity, ... 

power_source{i}.IncidentAngle); 


 % Compute the power generated pwer area of the solar array.
 power_per_area = SolarPowerPerArea(power_source{i},effective_intensity,t);
 % Compute the power available.
 R.AvailablePower = R.AvailablePower ... 

+ power_source{i}.SurfaceArea * power_per_area; 
 % Compute the mass of the solar array.
 R.Mass = R.Mass ... 

  + power_source{i}.Density * power_source{i}.SurfaceArea; 

 R.SAMass=power_source{i}.Density * power_source{i}.SurfaceArea; 

 R.RTGMass=0;

 R.MassINV=0; 


 R.CostINV=0; 
 % Compute the cost of the solar array.
 R.Cost = R.Cost ... 

  + power_source{i}.CostPerArea * power_source{i}.SurfaceArea; 
% The power source is an RTG:

    elseif strcmp(power_source{i}.Device,’RTG’)
 % Compute the power availble. 
 R.AvailablePower = R.AvailablePower + RTGPower(power_source{i},t);

 % Lookup the mass of the RTG.

 R.Mass = R.Mass + power_source{i}.Mass;

 R.MassINV=0; 

 R.CostINV=0; 

 R.SAMass=0; 

 R.RTGMass=power_source{i}.Mass;




 % Lookup the cost of the RTG.
 R.Cost = R.Cost + power_source{i}.Cost; 

% Do not recognize the power source type:
    else

 error(’Unrecognized power source was defined.’);
    end 
end 

[slope, intercept] = slope_intercept(energy_storage.DOD, energy_storage.Cyclelife); 

% Compute energy available from the energy storage device. 
[R.AvailableEnergy, R.EnergyStorageInvalid, ... 
 R.EnergyDissipation, R.EnergyStorageLifeRemaining] = battery_profile(... 

 length(t), ...   % Number of time steps
 t(2) - t(1), ...  % Time increment
 power_load, ... 
 R.AvailablePower, ...  
...%energy_storage.InitialCharge, ...   % Initial energy available

   energy_storage.SpecificEnergy * energy_storage.Mass * 0.6, ... % Initial energy available
  energy_storage.SpecificEnergy * energy_storage.Mass, ... % Max chargin capacity

    energy_storage.RemainingLife, ...  % Remaing Life

 energy_storage.CoulombicEfficiency, ...   % Efficiency

 slope, ... 

 intercept); 


if (length(R.EnergyStorageInvalid) > 0) 
%disp(’Invalid energy storage device.’) 

R.MassINV=R.Mass + energy_storage.Mass; 
R.CostINV=R.Cost + energy_storage.Cost; 

R.Mass=NaN;

R.Cost=NaN; 

R.STMass=NaN; 


else


% Compute the mass if the energy storage device.

R.Mass = R.Mass + energy_storage.Mass;

R.STMass=energy_storage.Mass;

% Cost of the power subsystem design. 

R.Cost = R.Cost + energy_storage.Cost; 

R.MassINV=NaN;

R.CostINV=NaN;

end 


RTGPower.m 

function P = RTGPower(RTG, t); 
% P = RTGPOWER(RTG, T) 
% 
% Inupts: 
%  RTG  Specification of the RTG 
% t    Time length in a finite discret increments 

initial_power = RTG.Power;  % initial Power 
P = initial_power * exp(-1/(87.74*365*24*3600)*t);  % assume Pu238 half life 

SolarPowerPerArea.m 

function P = SolarPowerPerArea(solar_array, effective_intensity, t); 

% P = SOLARPOWERPERAREA(SOLAR_ARRAY, EFFECTIVE_INTENSITY, T)

% 

% Inputs

%  SOLAR_ARRAY    Specifies the type and the specificatution of solar array 
%  EFFECTIVE_INTENSITY Effective power intensity due to incident angles. 
% T    Time sequence. 



% Outpus 
% P   Power per area of a solar array. 

if (length(t) ~= length(effective_intensity))
    error(’The length of the vectors of effective intensity and time do not match.’); 
    P = 0; 
else 

t_0 = t(1); 
    for i = 1:length(t) 

 P(i) = CurrentPowerPerArea(solar_array, effective_intensity(i), t_0, t(i));
    end 
end 

function P_current = CurrentPowerPerArea(solar_array, effective_intensity, t_0, t) 
P_current = solar_array.Efficiency * solar_array.InherentDegradation ...
  * (1 - (solar_array.InitialDegradation + solar_array.DegradationRate ... 

* (t - t_0))) * effective_intensity; 

TestPowerDesignResult.m 

clear; 
close all; 
% Initial Time [sec] 
t_0 = 0; 

% Final Time [sec] 
t_f = 5 * 24 * 3600; 

% Time Increment [sec] 
dt = 50; 
t = t_0:dt:t_f; 

environment.IlluminationIntensity = 1367*ones(1,length(t)); 

[storage, generation, solar] = power_read_xls(’power_design_vector.xls’); 

% Obital Period [sec] 
op = 90 * 60; 

% Incident Angle [rad] 
incident_angle = 0*t; 

% Power Load 
power_load = 100 * sin(t/t_f*pi); 

power_source{1} = solar(1); 
power_source{1}.IncidentAngle = incident_angle; 
power_source{2} = solar(3); 
power_source{2}.IncidentAngle = incident_angle; 
power_source{1} = generation(1); 

energy_storage = storage(1); 
energy_storage.InitialCharge = 30; 
energy_storage.RemainingLife = 1; 

area = [1 2 3 4 5]; %[m^2] 

for i=1:length(area) 
power_source{1}.SurfaceArea = area(i); %[m] 
power_source{2}.SurfaceArea = area(i); %[m] 
design(i) = PowerDesignResult(power_source, energy_storage, power_load, environment, t); 

end 

for i=1:length(area)
    figure(1) 

hold on 
plot(area(i),design(i).Mass,’o’); 

    figure(2) 



hold on

plot(area(i),design(i).Cost,’o’); 


    figure(3) 

hold on

plot(t,design(i).AvailablePower);


    figure(4) 

hold on

plot(t,design(i).AvailableEnergy);


end 

TestSolarArray.m 

clear;

close all;

[storage, generation, solar] = power_read_xls(’power_design_vector.xls’)


% eta:  efficiency

% d_0:  initial degradation  

% d_dot: degradation rate

% I_eff: effective power intensity

% P_profile: profile of power per unit area

% P_current: currently available power per unit area


solar_array.Device = ’Solar Array’;

solar_array.Efficiency = 0.185;

solar_array.InherentDegradation = 0.77; 

solar_array.InitialDegradation = 0.01;

solar_array.DegradationRate = 0.0275/365.25/24/3600;


% Initial Time [sec]

t_0 = 0; 


% Final Time [sec]

%t_f = 365.25 * 24 * 3600;

%t_f = 5 * 24 * 3600;

t_f = 50000;

%t_f = 1000000000;

% Time Increment [sec]

%dt = 24 * 3600;

dt = 5; 

%dt = 1000000;

t = t_0:dt:t_f;


% Power Intensity [W/m^2] 

power_intensity = 1367*ones(1,length(t));


% Obital Period [sec] 

op = 90 * 60;


% Incident Angle [rad] 

incident_angle = mod(0:2*pi/op*dt:t(length(t))*2*pi/op,pi) - pi/2*ones(1,length(t)); 
for i = 1:length(incident_angle) 

if mod(i,1082) > 541
 incident_angle(i) = pi/2; 

    end 
end 

effective_power_intensity = EffectivePowerIntensity(power_intensity, incident_angle); 
available_power_per_area = SolarPowerPerArea(solar_array, effective_power_intensity, t); 

plot(t, power_intensity, t, effective_power_intensity, t, available_power_per_area); 
legend(’Solar Radiation’,’Effective Radiation’,’Available Power Intensity’); 

rtg_power = RTGPower(generation(1),t); 
rtg_power_final=min(rtg_power); 

figure(2) 
plot(t,rtg_power) 


