
Christopher Hynes
Kathryn Weiss
16.851 – Satellite Engineering
Due: Wednesday, October 1, 2003

Problem Set #2: Final Report

Subject: Orbit Maneuvering and Power

Motivation: Many of today’s spacecraft use solar panels to power their various subsystems.
There are a variety of factors that influence the size and type of solar panels to be used.
Depending on the altitude and inclination of the spacecraft’s orbit, the surface of the solar array
may be eclipsed for some time. In addition, there are three types of solar cells (Gallium
Arsenide, Multijunction and Silicon) that provide varying amounts of power. The surface area of
a solar array must be adjusted so that the power requirements of the spacecraft’s subsystems can
be fulfilled given these constraints.

Problem Statement: What is the surface area of a solar panel needed to produce enough power to
fulfill the power requirements of a given spacecraft? How does this surface area vary given the
spacecraft’s altitude and inclination? How does this surface area vary given the type of the solar
cells, i.e. Gallium Arsenide, Multijunction or Silicon? How does this surface area vary given the
type of power regulation, i.e. direct energy transfer or peak power tracking?

Approach: We will write a Matlab program to find solar array size needed to fulfill the power
requirements for a spacecraft given a particular orbit. The program user will input the power
needed during eclipse and daylight, the altitude and inclination of the spacecraft’s orbit and the
lifetime of the spacecraft. It is assumed that the orbit will be fixed throughout the lifetime of the
spacecraft. Given the orbital parameters, the time the satellite is in eclipse and in daylight will
be calculated using STK. The program will then determine the size of the solar array for three
different solar cell types in the two power regulation systems. The results for the six
combinations will be displayed in Matlab. The orbit and ground track will be displayed in STK.

Solution:

A. Requirements Specification

The SolarArraySize program shall allow the user to:

1. Choose their desired combination of power requirements and orbital elements,
2. Enter all parameters needed through an easy-to-use graphical user interface (GUI),
3. Display the results of the calculations numerically, and

 4. Easily compare and contrast the results obtained from various solar cell materials.

1. Choose their desired combination of power requirements and orbital elements.

To achieve this requirement, the user must input the following information:
� Pe Æ Power needed during eclipse
� Pd Æ Power needed during daylight
� Orbit altitude
� Orbit inclination
� Mission duration

The applicable formulas can be found in chapter 11.4 of SMAD. The eclipse and daylight
periods were calculated using STK. These calculations are also documented in the comments
of the code.

2. Enter all parameters needed through an easy-to-use graphical user interface (GUI).

The input and output values of the SolarArraySize program are illustrated in the blackbox
behavior diagram of Figure 1. More specifically, all calculations require power needed
during eclipse and daylight (measured in Watts), orbit altitude (measured in kilometers), orbit
inclination (measured in degrees) and mission duration (measured in years). The following
outputs were calculated for both direct energy transfer and peak power tracking: total power
needed (measured in watts) and surface area (measured in meters squared) for Gallium
Arsenide, Multijunction and Silicon.

The parameters are entered into Matlab through a GUI as shown in Figure 2. The output
fields are dynamically updated to reflect the entries input by the users.

Figure 1. Blackbox Behavior Diagram

Figure 2. Graphical User Interface

3. Display the results of the calculations numerically.

The numerical output is also displayed through the GUI after the SolarArraySize program
calculates the total power needed and the sizes of the three solar cells for the two different
power configurations. The orbit as well as the ground track is displayed in STK in a separate
window. An example screen capture of the outputs to the user interface as well as the
animation in STK are shown in Figure 3.

4. Easily compare and contrast the results obtained from various solar cell materials.

The numerical outputs of the SolarArraySize can be compiled in tabular form (as done in
Table 2) in order to perform trade-off analyses between the various materials.

B. Assumptions

a. Only circular orbits are handled by the SolarArraySize program.
b. Inherent degredation of the three materials is 0.77, the nominal value as stated on

page 414 of SMAD.
c. The Sun incidence angle, theta, is set at a 23.5° angle, the worst-case Sun angle as

stated on page 417 of SMAD.

C. Sample Test Runs

One example test run was executed using the data provided by SMAD for the FireSat satellite.
Table 1 contains the information entered into the program through the GUI for test run.

Test Power Needed
Eclipse (W)

Power Needed
Daylight (W)

Orbit
Altitude (km)

Orbit Inclination
(deg)

Mission
Duration

(yrs)
FireSat 110 110 700 0 5

Table 1. Inputs for Example Test Run

The outputs can be compared with one another to determine which materials and/or power
regulation configuration best suits the needs of the project. Figure 3 is a screen capture of the
GUI and STK interface during the execution of the test run.

The results of the example test run are listed in Table 2. The results include the total power
needed and the array sizes of the three types of material for both direct energy transfer and peak
power tracking. As seen in Table 2, the Multijunction material provides the total power needed
with the smallest amount of surface area. Next are the Gallium Arsenide and lastly the Silicon.
The total power needed using direct energy transfer is nearly 15 Watts less than the peak power
tracking configuration.

 Output Data
Total Power Needed 224.023

Gallium Arsenide 1.44214
Multijunction 1.08165

Direct
Energy

Transfer
Silicon 1.89828

Total Power Needed 239.996
Gallium Arsenide 1.54496

Multijunction 1.15877

Peak
Power

Tracking
Silicon 2.03363

Table 2. GUI Output from the Seven Test Runs

Figure 3. Screen Capture of SolarArraySize Program

D. User’s Guide

a. Setup: To run the SolarArraySize program, first open both Matlab and STK. Note
that STK Version 5 must be used to run the program. To initialize Matlab, the agiInit
routine should be run to setup the appropriate paths, and the default port (‘5001’)
should be accepted along with default hostname ‘localhost’. Before running
SolarArraySize, you must type ‘stkinit’ at the Matlab prompt to set up the connection
between Matlab and STK software packages.

Before running the program, make sure that the following three files are all in the
Matlab working directory:

SolarArraySize.m
SolarArraySize.fig
SolarArraySize.asv.

b. Running the Program: The SolarArraySize is run from the Matlab command prompt

by entering the command SolarArraySize. This opens the GUI window, and you will
have access to the solar array sizing program as shown in Figure 2.

c. Entering Parameters: Start by entering the requirements for your power system and
your desired orbit. The required initial data for all solar array sizing includes: power
needed during daylight in Watts, power needed during eclipse in Watts, the orbit
altitude in kilometers, the orbit inclination angle in degrees and the mission duration
in years. Enter the desired values for these parameters in the text boxes in place of
the label “Edit Text”.

d. Calculating Results: When all the necessary parameters have been entered, click the

Calculate! button to calculate the total power needed and the solar array sizes of the
three materials for the two power configurations. The program will perform the
necessary calculations to output the orbit to STK for graphical display and the
numerical data to the GUI. A short waiting time is required.

e. Displaying Results: The output parameters are displayed in the output window for

the two power configurations as follows: Total Power Needed, Gallium Arsenide
Size, Multijunction Size and Silicon Size. For sample output from both STK and the
Solar Array Sizing Environment (Matlab window), see Figure 3.

E. Code

function varargout = SolarArraySize(varargin)
% Begin initialization code - DO NOT EDIT
 gui_Singleton = 1;
 gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @SolarArraySize_OpeningFcn, ...
 'gui_OutputFcn', @SolarArraySize_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
 if nargin & isstr(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
 end

 if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
 else
 gui_mainfcn(gui_State, varargin{:});
 end
% End initialization code - DO NOT EDIT

% Executes just before SolarArraySize is made visible.
function SolarArraySize_OpeningFcn(hObject, eventdata, handles, varargin)
 handles.output = hObject;
 guidata(hObject, handles);

 clear global daylight_power_needed;

 clear global eclipse_power_needed;
 clear global altitude;
 clear global inclination;
 clear global mission_lifetime;

 global daylight_power_needed;
 global eclipse_power_needed;
 global altitude;
 global inclination;
 global mission_lifetime;

% Outputs from this function are returned to the command line.
function varargout = SolarArraySize_OutputFcn(hObject, eventdata, handles)
 varargout{1} = handles.output;

% Executes on button press in calculate_button.
function calculate_button_Callback(hObject, eventdata, handles)
 global daylight_power_needed;
 global eclipse_power_needed;
 global altitude;
 global inclination;
 global mission_lifetime;

 daylight_power_needed = str2num(daylight_power_needed{1,1});
 eclipse_power_needed = str2num(eclipse_power_needed{1,1});
 altitude = str2num(altitude{1,1});
 inclination = str2num(inclination{1,1});
 mission_lifetime = str2num(mission_lifetime{1,1});

 [output_data] = calculatePSA(daylight_power_needed, eclipse_power_needed, altitude,
inclination, mission_lifetime);

 set(handles.total_power_needed_direct_energy_transfer_output, 'String', output_data(1));
 set(handles.silicon_direct_energy_transfer_output, 'String', output_data(2));
 set(handles.multijunction_direct_energy_transfer_output, 'String', output_data(3));
 set(handles.gallium_arsenide_direct_energy_transfer_output, 'String', output_data(4));
 set(handles.total_power_needed_peak_power_tracking_output, 'String', output_data(5));
 set(handles.silicon_peak_power_tracking_output, 'String', output_data(6));
 set(handles.multijunction_peak_power_tracking_output, 'String', output_data(7));
 set(handles.gallium_arsenide_peak_power_tracking_output, 'String', output_data(8));

% Executes during object creation, after setting all properties.
function daylight_power_needed_inputbox_CreateFcn(hObject, eventdata, handles)
 if ispc
 set(hObject,'BackgroundColor','white');
 else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
 end

function daylight_power_needed_inputbox_Callback(hObject, eventdata, handles)
 global daylight_power_needed;
 daylight_power_needed = get(handles.daylight_power_needed_inputbox, 'String');

% Executes during object creation, after setting all properties.
function mission_duration_inputbox_CreateFcn(hObject, eventdata, handles)
 if ispc
 set(hObject,'BackgroundColor','white');
 else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
 end

function mission_duration_inputbox_Callback(hObject, eventdata, handles)
 global mission_lifetime;
 mission_lifetime = get(handles.mission_duration_inputbox, 'string');

% Executes during object creation, after setting all properties.
function eclipse_power_needed_inputbox_CreateFcn(hObject, eventdata, handles)
 if ispc
 set(hObject,'BackgroundColor','white');
 else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
 end

function eclipse_power_needed_inputbox_Callback(hObject, eventdata, handles)
 global eclipse_power_needed;
 eclipse_power_needed = get(handles.eclipse_power_needed_inputbox, 'String');

% Executes during object creation, after setting all properties.
function inclination_inputbox_CreateFcn(hObject, eventdata, handles)
 if ispc
 set(hObject,'BackgroundColor','white');
 else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
 end

function inclination_inputbox_Callback(hObject, eventdata, handles)
 global inclination;
 inclination = get(handles.inclination_inputbox, 'String');

% Executes during object creation, after setting all properties.
function altitude_inputbox_CreateFcn(hObject, eventdata, handles)
 if ispc

 set(hObject,'BackgroundColor','white');
 else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
 end

function altitude_inputbox_Callback(hObject, eventdata, handles)
 global altitude;
 altitude = get(handles.altitude_inputbox, 'String');

function [output_data] = calculatePSA(daylight_power_needed, eclipse_power_needed, altitude,
inclination, mission_lifetime)
 Xe_direct_energy_transfer = 0.65; % Efficiency during eclipse for direct energy transfer
 Xd_direct_energy_transfer = 0.85; % Efficiency during daylight for direct energy transfer
 Xe_peak_power_tracking = 0.6; % Efficiency during eclipse for peak power tracking
 Xd_peak_power_tracking = 0.8; % Efficiency during daylight for peak power tracking
 Id = 0.77; % Nominal value for inherent degredation
 theta = 0.4101; % The solar array is at worstcase Sun angle between equatorial and ecliptic
planes
 material_degradation_GA = .0275; % Gallium Arsenide degrades at 2.75% per year (worst
case)
 material_degradation_multijunction = .005; % Multijunction Solar cells degrade at 0.5% per
year (worst case)
 material_degradation_Si = .0375; % Silicon degrades at 2.75% per year (worst case)

 [periods] = calculatePeriods(altitude, inclination);
 [periods] = [periods] / 60; % Convert seconds to minutes

 output_data(1) = ((eclipse_power_needed * periods(1)) / Xe_direct_energy_transfer +
(daylight_power_needed * periods(2)) / Xd_direct_energy_transfer) / periods(2);
 output_data(5) = ((eclipse_power_needed * periods(1)) / Xe_peak_power_tracking +
(daylight_power_needed * periods(2)) / Xd_peak_power_tracking) / periods(2);

 power_output_Si = 202.316; % 14.8% * 1,367 W/m^2 (incident solar radiation)
 power_BOL_Si = powerBeginningLife(power_output_Si, Id, theta);
 power_EOL_Si = powerEndLife(power_BOL_Si, material_degradation_Si, mission_lifetime);

 power_output_multijunction = 300.74; % 22% * 1,367 W/m^2 (incident solar radiation)
 power_BOL_multijunction = powerBeginningLife(power_output_multijunction, Id, theta);
 power_EOL_multijunction = powerEndLife(power_BOL_multijunction,
material_degradation_multijunction, mission_lifetime);

 power_output_GA = 252.895; % 18.5% * 1,367 W/m^2 (incident solar radiation)
 power_BOL_GA = powerBeginningLife(power_output_GA, Id, theta);
 power_EOL_GA = powerEndLife(power_BOL_GA, material_degradation_GA,
mission_lifetime);

 silicon_area_direct_energy_transfer = output_data(1) / power_EOL_Si;
 multijunction_area_direct_energy_transfer = output_data(1) / power_EOL_multijunction;
 gallium_arsenide_area_direct_energy_transfer = output_data(1) / power_EOL_GA;

 silicon_area_peak_power_tracking = output_data(5) / power_EOL_Si;
 multijunction_area_peak_power_tracking = output_data(5) / power_EOL_multijunction;
 gallium_arsenide_area_peak_power_tracking = output_data(5) / power_EOL_GA;

 output_data(2) = silicon_area_direct_energy_transfer;
 output_data(3) = multijunction_area_direct_energy_transfer;
 output_data(4) = gallium_arsenide_area_direct_energy_transfer;
 output_data(6) = silicon_area_peak_power_tracking;
 output_data(7) = multijunction_area_peak_power_tracking;
 output_data(8) = gallium_arsenide_area_peak_power_tracking;

% determines the beginning of life power production
% theta - Sun incidence angle between the vector normal to the surface in degrees
% output - power at beginning of life (W/m^2)
function power_BOL = powerBeginningLife(power_output, inherent_degradation, theta)
 power_BOL = power_output * inherent_degradation * cos(theta);

% determines the end of life power production
% output - power at end of life (W/m^2)
function power_EOL = powerEndLife(power_BOL, material_degradation, lifetime) %lifetime in
years
 power_EOL = power_BOL * ((1 - material_degradation) ^ lifetime);

function [periods] = calculatePeriods(altitude, inclination)
 stkinit;

 remMachine = stkDefaultHost;

 % Open the Connect to STK
 conid = stkOpen(remMachine);

 % first check to see if a scenario is open
 % if there is, close it
 scen_open = stkValidScen;

 if scen_open == 1
 stkUnload('/*')
 end

 % set up scenario
 cmd = 'New / Scenario maneuver_scenario';
 stkExec(conid, cmd);

 % put the satellite in the scenario
 cmd = 'New / */Satellite sat1';
 stkExec(conid, cmd);

 % set the scenario epoch
 epochDate = '"28 Sep 2003 00:00:00.00"';
 startDate = epochDate;
 stopDate = '"2 Oct 2003 00:00:00.00"';
 cmd = ['SetEpoch * ' epochDate];
 stkExec(conid, cmd);
 stkSyncEpoch;

 % set the time period for the scenario
 stkSetTimePeriod(startDate, stopDate, 'GREGUTC');

 % set the animation parameters
 rtn = stkConnect(conid,'Animate','Scenario/maneuver_scenario','SetValues "28 Sep 2003
00:00:00.0" 60 0.1');
 rtn = stkConnect(conid,'Animate','Scenario/maneuver_scenario','Reset');

 % set up initial state
 % STK expects fields in meters NOT kilometers
 cmd = ['SetState */Satellite/sat1 Classical J2Perturbation ' startDate ' ' stopDate ' 60 J2000 '
epochDate ' ' num2str(altitude*1000+6378000) ' 0 ' num2str(inclination) ' 0 0 0'];
 stkExec(conid, cmd);

 % get eclipse duration from STK
 [secData, secNames] = stkReport('*/Satellite/sat1', 'Eclipse Times')
 eclipse_duration = stkFindData(secData{1}, 'Total Duration');

 % set eclipse duration in seconds
 eclipse_duration = unique(eclipse_duration);
 x = length(eclipse_duration);
 eclipse_duration = eclipse_duration(2 : (x-1));
 eclipse_duration_average = mean(eclipse_duration);

 % get sunlight duration from STK
 [secData, secNames] = stkReport('*/Satellite/sat1', 'Sun')
 sunlight_duration = stkFindData(secData{1}, 'Duration');

 % set sunlight duration in seconds
 y = length(sunlight_duration);
 sunlight_duration = sunlight_duration(2 : (x-1));
 sunlight_duration_average = mean(sunlight_duration);

 % return eclipse and sunlight periods in seconds
 periods(1) = eclipse_duration_average;
 periods(2) = sunlight_duration_average;

 % close out the stk connection
 stkClose(conid)

 % this closes any default connection
 stkClose

	Figure 1. Blackbox Behavior Diagram

