
16.851 - SATELLITE ENGINEERING MEMORANDUM

TO: 16.851 FACULTY

FROM: STUDENTS

SUBJECT: PROBLEM SET #4 FINAL REPORT

DATE: 6/21/2004

Subject: Telemetry, Communications, and Power

Motivation: A satellite being able to communicate with the ground station is
an essential part of the spacecraft mission. The telemetry, communication, and
power subsystem collectively establish the satellite’s communication link.
Various design parameters of Telemetry and Communication impose requirements
on the Power subsystem. We will therefore create a tool that aids in making
design decisions about optimum frequency and optimum data rate requirements.

Problem Statement: Determine the optimum communication frequency
and optimum data rate that minimizes the combined mass requirements of
telemetry, communications, and power subsystems.

Approach:

We will perform the following trade-offs:

1. Given frequencies and data rates calculate transmitter power required.
Assuming a particular power system, derive total power subsystem mass
associated with the required power output. Choose antenna type and size to
minimize power required.

2. Assuming a particular power system, derive total power subsystem mass
associated with the required power output. Choose the optimum power subsystem
that minimizes mass.

3. Given coverage duration and varying data rates determine the mass of the data
storage components. Choose data rate that minimizes mass.

Some of the intermediate steps in our study will be:

- Choose a particular power system and determine relationship between power
output and power mass.

- Given a particular data mass storage technology that is space-ready, determine
the relationship between data storage capacity and its mass.

Data Mass Storage Design Trade-Off

Approach

The aim of this trade-off is to show the relationship between the data rate chosen (if
given frequency, data rate can be calculated for the link design equation 13-4 in
SMAD) and mass of the data storage needed to hold the data until it can be
transmitted down to Earth. We will allow the data rate and coverage time to vary to
calculate mass of the data storage and visualize the relationships.

Calculation of Quantity of Data Transmitted:
D = R(FTmax – Tinit)/M (1)

It is assumed that all data collected is transmitted down to the ground station,
therefore the data rate specifies how much data the satellite can collect and how much
data mass storage is needed to accomplish that size. Equation (1) is from 13-2 in
SMAD. As discussed in SMAD, F, the fractional reduction in viewing time, is
assumed to be the average value of 80% for satellites in a circular LEO orbit. It is
also assumed that Tinit = 120 seconds, a reasonable value for most satellites. In (1),
M, the margin needed to account for missed passes due to ground station down time,
is assumed to be a conservative value of 2.

Calculation of Mass of Data Storage:
m = Dwf (2)

The wf, weighting factor, for the relationship between data storage and mass, was
estimated from the current technology in hard drives. Current estimates from Seagate
Corporation for wf = 0.397 nanograms/bit assuming we choose a hard-drive disk
technology.

Module Description

Inputs
The table and equation numbers in parenthesis refer to SMAD.

• Data rate: [Mbps] - data rate required
• T_max [seconds] – coverage time (amount of time satellite can transmit to

ground station)
• weight factor [kg/bits] – constant related to data storage device

Outputs
The chart outputted from datamassstorage_sizing:

0 10 20 30 40 50 60 70 80 90 100
200

400

0

1

2

3

4

5

6

Mass (g)

Data Rate (Mbps)

Coverage Time (s)

Mass of Data Storage vs. Data Rate and Coverage Time

Results:
The mass increases as the data rate is increased. Thus a design that would incorporate
this trade would want to use a small data rate to minimize mass. Since frequency and
data rate are directly proportional, this means if there is a choice in choosing
frequency, one would want to choose a smaller one to minimize mass.

Validation:
The masses calculated are very small. However, we made the assumption we could
use the newest hard drives available. In most cases, this can not be used since these
technologies have not been space tested and may not be reliable in a space
environment. If a data storage technology such as bubble memory is used (which can
be considered to be much heavier) on the order of wf = 50 nanogram/bit, then data
storage would have a mass of 2.1 kg for 100 Mbps and 1200 s coverage time. This is
within the ranges of mass for C&DH weight for the Firesat example used in Table 11-
29 in SMAD.

Transmitter Antenna Design Trade-Off

Approach
The aim of this trade-off is to choose the optimal transmitter antenna design (type and
size), minimizing the transmitter power (and hence, the battery and solar array
masses). We will allow the link frequency to vary, and compare transmitter powers
for different antenna designs of a given mass.

The module first creates a search space, where each search vector represents the
performances of the communication system (transmitter power, antenna mass and
beamwidth) based on a given frequency and a given antenna type and dimensions.
The various antenna designs considered by the module are taken from Table 13-14 in
SMAD; they are the following:

• Parabolic reflector
• Helix
• Horn

• Biconical horn.
Note that whereas the dimensions of parabolic reflectors and horns (simple or
biconical) are completely defined by the value of one parameter (the diameter), the
dimensions of the helixes depend on two parameters: their length (usually referred as
their “dimension”) and their diameter, which can vary within a given range depending
on the frequency.

The module then calculates the performances of each combination of frequency and
antenna design, using the method described as follows.

Calculation Of The Bandwidth
The same table in SMAD (Table 13-14) gives the formulae that are used in the model
to calculate the half-power bandwidth. They are not repeated here; please refer to
SMAD.

Calculation Of The Transmitter Gain
The equations to derive the peak gain from transmitter antenna specifications are also
given in Table 13-14 in SMAD. Provided this gain must be within the range of the
maximal achievable gain presented in the same table, the actual peak gain will be the
minimum between the previously calculated value and the value for the maximum
gain corresponding to the given antenna design. To obtain the net transmit antenna
gain, we must add to this peak gain (in dB) the losses (in dB) due to a pointing offset:

Lθ = −12 e
θ()2

where θ is the antenna half-power beamwidth, and e is the pointing offset.
For biconical horns, whose beamwidth is noncircular, we have used the following
equation, suggested by Eq. 13-20 in SMAD:

2

12 ⎟
⎠
⎞

⎜
⎝
⎛−=

yx

eL θθθ

where xθ and yθ are the two angles characterizing the beamwidth.

Calculation Of The Transmitter Power
To derive the transmitter power from the gain, we used Eq. 13-6 in SMAD, repeated
here:

2

2

16S
DLGPLC ratl η

=

where C is the power received by the ground antenna, P is the transmitter power we
are to calculate, Ll is the transmitter line loss (NOT in dB), Gt is the transmitting
antenna gain (NOT in dB in this equation), La is transmission path loss (NOT in dB),
Dr is the diameter of the receive antenna, η is the receive antenna efficiency, and S is
the propagation path length. We can then solve this equation in P:

P =
16S2C

LlGtLaDr
2η

To avoid dividing two small numbers (Matlab produced many “Dividing by zero”
warnings when testing this equation), and also because many of the variables in the
equation are given in dB, the equation was converted to the following:

η1010101010 log10log20log10log2016log10 −−−−−++= ratl DLGLCSP

where this time Ll, Gt and La are in dB, and so is P. P is then converted back into
Watts.

Calculation of the mass
To determine the mass equation for each antenna design, we interpolated the data
presented in Table 13-16 in SMAD. To do so, the mass m of an antenna has been
assumed proportional to the antenna surface A, not taking into consideration extra
mass due to more complex feed networks:

m∝A
• Parabolic reflector:

m ∝ A∝D2
where D is the diameter of the antenna. The data in Table 13-16 gives the following
values for the proportionality factor kp (in kg/m2): kp = 7.96 (fixed parabola), kp = 4.94
and kp = 6.24 (Intelsat-V parabola w/ feed array). The approximate mean value of
kp = 6 was used in the module to derive antenna mass from its diameter.

• Helix:
m∝A∝LD

where D is the diameter and L is the length of the helix. Data from Table 13-16 gives
the approximate value of khe = 11.

• Horn:
m ∝ A∝ hD

where h is the horn “depth” and D is its diameter. We derived kho = 16 from
Table 13-16.

• Biconical horn:
m∝A∝RD

where R is the “depth” of the horn and D its diameter. There is no data in Table 13-16
to derive the proportionality factor, so it was assumed twice larger than factor for a
“single conical” horn: kb = 2 kho = 32.

Module Description

Inputs
The table and equation numbers in parenthesis refer to SMAD.

• f_min, f_max and f_step: [GHz] link frequency domain
• dim_min, dim_max and dim_step: [m] antenna dimension domain. This

“dimension” is either (see Table 13-14):
- the dish diameter D for parabolic reflectors
- the length L for helixes
- the diameter D for horns
- the diameter a for biconical horns.

• received_power: [W] power received by the ground antenna (written C in
Eq. 13-6). The value for this input can be estimated through Eq. 13-8, using
data from Table 13-13.

• altitude: [m] propagation path length (written S in Eq. 13-6)
• line_loss: [dB] transmitter line loss (written Ll in Eq. 13-6)
• prop_loss: [dB] propagation and polarization loss (written La in Eq. 13-6)

• receive_diameter: [m] receive antenna diameter (written Dr in Eq. 13-6)
• receive_efficiency: receive antenna efficiency
• pointing_error: [deg] transmit antenna pointing offset (written e in Eq. 13-21,

and et in Table 13-13).

The following table is a sample set of test values for the inputs, taken from the
“Telemetry and Data” column of Table 13-13 in SMAD. The receive antenna
efficiency was taken equal to 0.7, as suggested page 553.

f_min 0.2
f_max 40
f_step 1

dim_min .5
dim_max 7
dim_step .1

received_power 6.46E-12
altitude 2,831,000
line_loss -1
prop_loss -.3

receive_diameter 5.3
receive_efficiency 0.7

pointing_error 27

TABLE ?. Sample Set Of Test Values For The Inputs

The value for the received power was derived from the following equation (Eq. 13-8
in SMAD):

C = EIRP()LsLaGr
where C is the power in dB, EIRP is the Effective Isentropic Radiated Power from the
transmitter (in dB), Ls is the space loss (in dB), La is the propagation and polarization
loss (in dB), and Gr is the receive antenna gain (in dB). The values for these last four
parameters were taken from Table 13-13 in SMAD, in order to get a realistic value for
the received power (assumed to be a constant given requirement).

Important note: The propagation and polarization loss was considered a given
constant, which is a false assumption, since it strongly depends on the frequency and
also on the altitude and elevation, as illustrated on Figures 13-10 and 13-11 in SMAD.
But we have had no time to create a model for this dependence; inserting such a
model into the module is an important improvement to be made as future work.

Please also note that the user might not want to choose a resolution too high for both
the frequency and the dimension, because the search space might then exceed 100MB,
which would also result in time-consuming calculations. This is due to the fact that
the structure used to represent the search space is not optimal; further work on this
module could include optimization of this structure, to fasten calculation and lower
memory required.

Outputs
We would first like to emphasize the fact that, since the search space is constructed on
a given dimension domain (with a given calculation step), this may result in wide
discontinuities in the outputted graph, when the dimensions of the antenna is allowed
to vary. Increasing the dimension resolution, i.e. choosing lower calculation steps for
the dimension, can lower these discontinuities.

Two different charts can be outputted by the module, representing the relation
between power and frequency, respectively for a given mass and beamwidth.

1) Choice of the most power-efficient design depending on the frequency, for a
given mass

The module was given the inputs listed in Table ?. The function
PlotPowerRelativeToFrequencyForGivenMass outputted the following chart.

Figure ?. Relation Between Transmitter Power And Frequency

(For A Given Mass)

It is difficult to validate this output from the module, since no mass figure is presented
in SMAD for the FireSat example (to which the values for the inputs correspond).
However, some important remarks can be made about this chart.

First note that on Figure ?, the performances of biconical horns are not very relevant:
the maximum gain achievable with this design is too low (for this sample set of
inputs), so that the power has to be very high to compensate for the low gain. This
graph illustrates the fact that, for a given antenna mass of 2 kilograms, parabolic
reflectors are the most efficient design for higher frequencies. For lower frequencies,
horns should be preferred. For intermediate frequencies, horns and helixes have
similar performances.
Note that this study does not take into account the beamwidth. This is relevant for
satellites which are only required to transmit data to a single given ground antenna.
For communications systems designed to have a given Earth coverage, this method is

not suitable to choose the antenna type, and the user should rather use the following
second method.

2) Choice of the most power-efficient design depending on the frequency, for a
given beamwidth:

The module was given the inputs listed in Table ?. The function
PlotPowerRelativeToFrequencyForGivenBeamwidth outputted the following chart.

Figure ?. Relation Between Transmitter Power And Frequency

(For A Given Beamwidth)

This figure must be compared with Figure 13-12 in SMAD for partial validation.
One can see that a similar discontinuity appears for frequencies close to 1GHz: below
this value, the dimension of the antenna is limited by the maximum dimension
constraint, so the power has to increase as the frequency decreases to compensate the
loss in antenna gain. The slope of the line for parabolic reflectors is the same as on
Figure 13-12. In this domain of frequencies, the actual reachable beamwidth is higher
than the required value (here, 6 degrees).
For frequencies higher than 1GHz, the beamwidth is constantly equal to the required
value of 6 degrees, so that the peak gain is constant (equal to the same value as in
SMAD), and so is the transmitter power, since the dependence of propagation loss in
frequency was not taken into consideration (this is equivalent to the “free space” case
in Table 13-12). The behavior of the parabolic reflector line on the chart for high
frequencies is due to the fact that we also imposed a lower bound to the dimension
domain in order to reduce calculation time.

Future work could be made to output a third graph showing the relation between
antenna mass and frequency, for a given beamwidth. Antenna mass and power
subsystem mass could also be added up to output a graph enabling the user to choose
the antenna and power subsystem designs minimizing the combined mass of the two
systems.

List Of The Functions
Details of the inputs and outputs of each function can be found in the extensive
description of the function, in the code.

• CreateBlankSearchSpace: function creating a “blank” search space, given the
frequency and antenna dimension domains

• FillBlankSearchSpace: function calling CalculateGainFromFrequency and
CalculateTransmitterPowerFromGain to complete a given blank search space
by filling in the missing values. Those values are:

- dimension parameters for antenna designs depending on the frequency
- transmitter power

• CalculateGainFromFrequency: function deriving peak transmitter gain from
frequency, and calculating dimension values for antenna designs depending on
frequency

• CalculateTransmitterPowerFromGain: function deriving transmitter power
from transmitter peak gain and the specifications of the link and of the receive
antenna

• PlotPowerRelativeToFrequencyForGivenMass: function plotting the
transmitter power required by each antenna design, depending on the
frequency and on a given antenna mass

• PlotPowerRelativeToFrequencyForGivenBeamwidth: function plotting the
transmitter power required by each antenna design, depending on the
frequency and on a given antenna beamwidth

• Datamassstorage_sizing: function calculates mass needed to store data
collected in between transmission to ground station.

References –
Wertz, James R. and Wiley J. Larson (Ed.) Space Mission Analysis and Design.

El Segundo: Microcosm Press, 1999.

Pisacane, Vincent L. and Robert C. Moore (Ed.) Fundamentals of Space Systems.
New York: Oxford University Press, 1994.

www.seagate.com

Codes

function search_space = CreateBlankSearchSpace(f_min, f_max, f_step,
dim_min, dim_max, dim_step);

% Function creating a blank search space
% Inputs:
% f_min [GHz] frequency lower bound
% f_max [GHz] frequency upper bound
% f_step [GHz] frequency step
% dim_min [m] antenna dimension lower bound
% dim_max [m] antenna dimension upper bound
% dim_step [m] antenna dimension step
% Note: The dimension is:
% - the diameter for parabolic reflectors
% - the length for helixes
% - the diameter for horns
% - the diameter for biconical horns.
% Output:
% search_space matrix where:

% - each row correspond to a given frequency
% - each column correspond to a given antenna design
% - each element e is of the following structure:
% e.frequency [GHz] frequency
% e.power [W] transmitter power
% e.design structure of the type specs
% (see function CalculateGainFromFrequency)

global c % speed of light IN METERS PER SECOND

f = f_min - f_step;
nf = 0;
while (f + f_step <= f_max)

 % this doesn't work: display(strcat('Processing... ',
int2str(floor((f-f_min)/(f_max-f_min))*100), ' %'))

 % For each frequency / lambda:
 nf = nf + 1;
 f = f + f_step;
 lambda = c / (f * 1000000000);

 % Building up the parabolic reflector space search:
 % display('Parabolic Reflector')
 d = dim_min - dim_step;
 j = 0;
 while (d + dim_step <= dim_max)

 %For each diameter:
 j = j + 1;
 d = d + dim_step;

 search_space(nf, j).frequency = f;
 search_space(nf, j).design.type = 'Parabolic Reflector';
 search_space(nf, j).design.dim = d;

 end

 % Building up the helix space search:
 % display('Helix')
 L = dim_min - dim_step;
 while (L + dim_step <= dim_max)

 %For each length:
 L = L + dim_step;

 d = 0.8 * lambda / pi;
 % display(1.2 * lambda / pi)
 while (d + dim_step <= 1.2 * lambda / pi)
 % For each diameter in the range allowed by

% the frequency: (see TABLE 13-14)
 j = j + 1;
 d = d + dim_step;

 search_space(nf, j).frequency = f;
 search_space(nf, j).design.type = 'Helix';
 search_space(nf, j).design.dim.diameter = d;
 search_space(nf, j).design.dim.length = L;
 end
 end

 % Building up the horn space search:
 d = dim_min - dim_step;
 while (d + dim_step <= dim_max)

 %For each diameter:
 j = j + 1;
 d = d + dim_step;

 search_space(nf, j).frequency = f;
 search_space(nf, j).design.type = 'Horn';
 search_space(nf, j).design.dim.diameter = d;

 end

 % Building up the biconical horn space search:
 d = dim_min - dim_step;
 while (d + dim_step <= dim_max)

 %For each diameter:
 j = j + 1;
 d = d + dim_step;

 search_space(nf, j).frequency = f;
 search_space(nf, j).design.type = 'Biconical Horn';
 search_space(nf, j).design.dim.diameter = d;

 end

end

% ###

function search_space = FillBlankSearchSpace(received_power,
altitude, line_loss, prop_loss, receive_diameter, receive_efficiency,
pointing_error, blank_space);

% Function filling in an input blank search space with the
appropriate values of power
% Input:
% received_power [W] received power
% altitude [m] propagation path length (IN METERS!)
% line_loss [dB] transmitter line loss
% (TABLE 13-13, written Ll)
% prop_loss [dB] propagation and polarization loss
% (TABLE 13-13, written La)
% receive_diameter [m] receive antenna diameter
% receive_efficiency receive antenna efficiency
% pointing_error [deg] transmit antenna pointing offset
% (TABLE 13-13, written et)
% blank_space object with the same structure as
% search_space in function
% CreateBlankSearchSpace
% Output:
% search_space object with the same structure as
% search_space in function
% CreateBlankSearchSpace

search_space = blank_space;
[number_of_rows, number_of_columns] = size(blank_space);

for row = 1 : number_of_rows

 display(strcat('Processing... ', int2str(floor(row /
number_of_rows*100)), ' %'))

 % For each frequency:
 for j = 1 : number_of_columns

 % For each antenna design:
 f = search_space(row, j).frequency;
 if ~isempty(f)
 % The number of antenna devices considered varies with f,

% since the domain of values for the diameter of a helix
% depends on f; the greater f, the lower lambda, so the
% smaller domain for this diameter. So their might be
% empty elements at the end of a row in search_space. So

% regard first empty element in a row as the end of this
% row.

 specs = search_space(row, j).design;
 [gain, new_specs] = CalculateGainFromFrequency(f,
pointing_error, search_space(row, j).design);

search_space(row, j).design = new_specs;
 search_space(row, j).power =
CalculateTransmitterPowerFromGain(received_power, altitude,
line_loss, prop_loss, receive_diameter, receive_efficiency, gain);
 end
 end

end

% #######################################

function power = CalculateTransmitterPowerFromGain(received_power,
altitude, line_loss, prop_loss, receive_diameter, receive_efficiency,
gain);

% Function deriving transmitter power from transmitter gain
% using Eq. 13-6 in SMAD
% Inputs:
% received_power [W] received power
% altitude [m] altitude of the satellite (IN METERS!)
% line_loss [dB] transmitter line loss
% (TABLE 13-13, written Ll)
% trans_loss [dB] transmission path loss
% (TABLE 13-13, written La)
% receive_diameter [m] receive antenna diameter
% receive_efficiency receive antenna efficiency
% gain [dBi] transmitter peak gain
% Output:
% power [W] transmitter power

% first calculate power in dB-W
power = 10 * log10(16) + 20 * log10(altitude) + 10 *
log10(received_power) - line_loss - gain - prop_loss - 20 *
log10(receive_diameter) - 10 * log10(receive_efficiency);
% convert into Watts
power = 10^(power/10);

% ####################################

function [gain, new_specs] = CalculateGainFromFrequency(f,
pointing_error, specs);

global c % speed of light IN METERS PER SECOND

% Function deriving the peak gain and other antenna dimensions
% from the frequency and the antenna specs
% using TABLE 13-14 in SMAD
% Inputs:
% f [GHz] Frequency
% pointing_error [deg] transmit antenna pointing offset
% (TABLE 13-13, written et)
% specs object that has the following structure:
% specs.type type of the antenna
% ('Parabolic Reflector', 'Helix',
% 'Horn' or 'Biconical Horn')
% specs.dim dimensions of the antenna:
% diameter of the 'Parabolic Reflector'
% OR diameter, length and width of the
% 'Helix'
% OR diameter and depth of the 'Horn'
% OR diameter and semi_depth of the
% 'Biconical Horn'

% specs.mass antenna mass
% specs.beam beam shape:
% 'Conical' for 'Parabolic Reflector',
% 'Helix' and 'Horn'
% OR 'Toroidal' for 'Biconical Horn'
% specs.beamwidth [deg]
% specs.efficiency
% specs.max_gain [dB] maximum gain reachable
% for this design (see TABLE 13-14)
% Outputs:
% gain [dBi] Transmitter Peak Gain
% new_specs it also returns mew_specs because some of the
% dimensions of the antennae depend on the frequency

new_specs = specs;
lambda = c / (f * 1000000000);

if strcmp(specs.type, 'Parabolic Reflector')
 new_specs.mass = 6 * specs.dim^2;
 % (the [very] approximate factor 6 was derived from the data in
TABLE 13-16)
 new_specs.beam = 'Conical';
 new_specs.max_gain = 65;
 new_specs.beamwidth = 21 / (f * specs.dim);
 new_specs.efficiency = 0.55;
 gain = 17.8 + 20 * log(specs.dim) + 20 *log(f) - 12 *
(pointing_error / new_specs.beamwidth)^2;
 % The maximum reachable gain is new_specs.max_gain:
 gain = min(gain, new_specs.max_gain);
elseif strcmp(specs.type, 'Helix')
 new_specs.beam = 'Conical';
 new_specs.max_gain = 20;
 lambda = c / (f * 1000000000);
 if (0.8 <= pi * specs.dim.diameter / lambda && pi *
specs.dim.diameter / lambda <= 1.2)
 % The diameter is within the range allowed

% by the frequency
 new_specs.mass = 11 * specs.dim.diameter *
specs.dim.length;
 % (the [very] approximate factor 11 was derived

% from the data in TABLE 13-16)
 new_specs.beamwidth = 52 / sqrt((pi *
specs.dim.diameter)^2 * specs.dim.length / lambda^3);
 new_specs.dim.width = 0.8 * lambda;
 new_specs.efficiency = 0.7;
 gain = 10.3 + 10 * log((pi * specs.dim.diameter)^2 *
specs.dim.length / lambda^3) - 12 * (pointing_error /
new_specs.beamwidth)^2;
 % The maximum reachable gain is new_specs.max_gain:
 gain = min(gain, new_specs.max_gain);
 else
 % The diameter and the frequency are inconsistent ;

% return zero gain:
 gain = 0;
 end
elseif strcmp(specs.type, 'Horn')
 new_specs.beam = 'Conical';
 new_specs.max_gain = 20;
 new_specs.beamwidth = 225 / (pi * specs.dim.diameter / lambda);
 new_specs.dim.depth = specs.dim.diameter^2 / (3 * lambda);
 new_specs.mass = 16 * specs.dim.diameter * new_specs.dim.depth;
 % (the [very] approximate factor 16 was derived

% from the data in TABLE 13-16)
 new_specs.efficiency = 0.52;
 gain = 20 * log(pi * specs.dim.diameter / lambda) - 2.8 - 12 *
(pointing_error / new_specs.beamwidth)^2;
 % The maximum reachable gain is new_specs.max_gain:
 gain = min(gain, new_specs.max_gain);
else

 new_specs.beam = 'Toroidal';
 new_specs.max_gain = 5;
 new_specs.dim.semi_depth = 2 * lambda;
 new_specs.mass = 32 * specs.dim.diameter *
new_specs.dim.semi_depth;
 % (the factor 32 was taken double to the factor

% for a simple horn antenna)
 gain = 5 * log(specs.dim.diameter / lambda);
 if (gain > -1)
 new_specs.beamwidth = '40º * 360º';
 gain = gain - 12 * (pointing_error / 40 * 360)^2;
 % The maximum reachable gain is new_specs.max_gain:
 gain = min(gain, new_specs.max_gain);
 else
 new_specs.beamwidth = '70º * 360º';
 gain = gain - 12 * (pointing_error / 70 * 360)^2;
 % The maximum reachable gain is new_specs.max_gain:
 gain = min(gain, new_specs.max_gain);
 end
 new_specs.efficiency = 0.5; % not in TABLE 13-14;

% assumed worst-case efficiency
end

% ###########################

function PlotPowerRelativeToFrequencyForGivenMass(search_space, m,
max_power_plot);

% Function creating a chart of transmitter power relative to
% frequency, for a given value of mass m
% Inputs:
% search_space object which structure is described
% in function CreateBlankSearchSpace
% m [kg] mass of the antenna.
% max_power_plot [W] plotted power domain upper bound
% No outputs; the chart is directly exported to a figure
% named power_for_given_mass

[number_of_rows, number_of_columns] = size(search_space);

for row = 1 : number_of_rows

 % For each frequency (plotted on a log axis):
 f(row) = log10(search_space(row, 1).frequency * 1000000000);

 j = 1;

 % Get the parabolic reflector design whose mass is

% about the closest to m:
 while ((search_space(row ,j).design.mass < m) &&
strcmp(search_space(row ,j).design.type, 'Parabolic Reflector'))
 j = j + 1;
 end
 if (search_space(row ,j).design.mass >= m)
 % Executed only if one design of mass equal or

% greater than m was found
 power_parab(row) = log10(search_space(row, j).power);
 else
 % Otherwise, return Inf as the value for the power
 power_parab(row) = Inf;
 end

 % Skip the other parabolic reflector designs:
 while strcmp(search_space(row ,j).design.type, 'Parabolic
Reflector')
 j = j + 1;
 end

 % Get the helix design with smallest length whose mass

% is about the closest to m: (we want to minimize the power,
% which decreases when the gain increases, and the gain
% increases with C2*L, which, for a given mass=C*L, is maximum
% for L minimum)

 while (search_space(row ,j).design.mass < m &&
strcmp(search_space(row ,j).design.type, 'Helix'))
 j = j + 1;
 end
 if (search_space(row ,j).design.mass >= m)
 % Executed only if one design of mass equal or

% greater than m was found
 power_helix(row) = log10(search_space(row, j).power);
 else
 % Otherwise, return Inf as the value for the power
 power_helix(row) = Inf;
 end

 % Skip the other helix designs:
 while strcmp(search_space(row ,j).design.type, 'Helix')
 j = j + 1;
 end

 % Get the horn design whose mass is about the closest to m:
 while (search_space(row ,j).design.mass < m &&
strcmp(search_space(row ,j).design.type, 'Horn'))
 j = j + 1;
 end
 if (search_space(row ,j).design.mass >= m)
 % Executed only if one design of mass equal or

% greater than m was found
 power_horn(row) = log10(search_space(row, j).power);
 else
 % Otherwise, return Inf as the value for the power
 power_horn(row) = Inf;
 end

 % Skip the other horn designs:
 while strcmp(search_space(row ,j).design.type, 'Horn')
 j = j + 1;
 end

 % Get the biconical horn design whose mass is about

% the closest to m:
 while (search_space(row ,j).design.mass < m && j <
number_of_columns)
 j = j + 1;
 if isempty(search_space(row ,j).frequency)
 search_space(row ,j).design.mass = 0;
 break
 end
 end
 if (search_space(row ,j).design.mass >= m)
 % Executed only if one design of mass equal or

% greater than m was found
 power_bic(row) = log10(search_space(row, j).power);
 else
 % Otherwise, return Inf as the value for the power
 power_bic(row) = Inf;
 end

end

% Create and export the plot:
h = plot(f,power_parab,f,power_helix,f,power_horn, f, power_bic);
axis([-Inf Inf 0 log10(max_power_plot)]);

set(h, {'LineStyle'}, {'--'; ':'; '-.'; '-'});
xlabel('Log10 Of Frequency [Hz]');
ylabel('Log10 Of Transmitter Power [W]');
legend(h, 'Parabolic Reflector', 'Helix', 'Horn', 'Biconical Horn');
title(strcat('Transmitter Power For Various Antenna Designs, With A
Given Mass Of ', int2str(m), ' Kilograms'));
print -depsc -tiff -r200 power_for_given_mass

% #################################

function PlotPowerRelativeToFrequencyForGivenBeamwidth(search_space,
theta, max_power_plot);

% Function creating a chart of transmitter power relative to
% frequency, for a given value of beamwidth theta
% Inputs:
% search_space object which structure is described
% in function CreateBlankSearchSpace
% theta [deg] half-power transmitting antenna
% beamwidth
% max_power_plot [W] plotted power domain upper bound
% No outputs; the chart is directly exported to a figure
% named power_for_given_beamwidth

[number_of_rows, number_of_columns] = size(search_space);

for row = 1 : number_of_rows

 % For each frequency (plot frequency on a log axis):
 f(row) = log10(search_space(row, 1).frequency * 1000000000);

 j = 1;

 % Get the parabolic reflector design whose beamwidth is

% about the closest to theta:
 while ((search_space(row ,j).design.beamwidth > theta) &&
strcmp(search_space(row ,j).design.type, 'Parabolic Reflector'))
 j = j + 1;
 end
 power_parab(row) = log10(search_space(row, j).power);

 % Skip the other parabolic reflector designs:
 while strcmp(search_space(row ,j).design.type, 'Parabolic
Reflector')
 j = j + 1;
 end

 % Get the helix design with smallest length whose beamwidth is

% about the closest to theta:
 while (search_space(row ,j).design.beamwidth > theta &&
strcmp(search_space(row ,j).design.type, 'Helix'))
 j = j + 1;
 end
 power_helix(row) = log10(search_space(row, j).power);

 % Skip the other helix designs:
 while strcmp(search_space(row ,j).design.type, 'Helix')
 j = j + 1;
 end

 % Get the horn design whose beamwidth is about the closest

% to theta:
 while (search_space(row ,j).design.beamwidth > theta &&
strcmp(search_space(row ,j).design.type, 'Horn'))
 j = j + 1;
 if ~(strcmp(search_space(row ,j).design.type, 'Horn'))

 % If no horn design was found and we got to
% the biconical horn designs (whose beamwidth is a
% STRING, not a number), then break.

 break
 end
 end
 power_horn(row) = log10(search_space(row, j).power);

 % (The biconical horn is not considered because its beamwidth

% is fixed)

end

% Create and export the plot:
h = plot(f,power_parab,f,power_helix,f,power_horn);
axis([-Inf Inf 0 log10(max_power_plot)]);
set(h, {'LineStyle'}, {'--'; ':'; '-.'});
xlabel('Log10 of Frequency [Hz]');
ylabel('Log10 of Transmitter Power [W]');
legend(h, 'Parabolic Reflector', 'Helix', 'Horn');
title(strcat('Transmitter Power For Various Antenna Designs, With A
Given Beamwidth Of ', int2str(theta), ' degrees'));
print -depsc -tiff -r200 power_for_given_beamwidth

function mass = datamassstorage_sizing(data_rate, t_max,
weight_factor)

 % data_rate [bps] - data rate required
 % t_max [seconds] - coverage time (amount of time satellite can
transmit
 % to ground station
 % weight_factor [kg/bytes] - constant related to data storage device

 % constants
 F = 0.8; %from SMAD this is an average value for satellites in a
circular LEO-Earth orbit
 t_init = 120; %seconds, estimate from SMAD
 M = 2; % estimate from SMAD, this is a conservative estimate unless
it is a dedicated ground
 %station with a specified value for the percentage of pass time that
will
 %be used for collecting data

 data_quantity = data_rate*(F*t_max - t_init)/M;

 mass = data_quantity*weight_factor;

	Data Mass Storage Design Trade-Off
	Approach

	The aim of this trade-off is to show the relationship betwee
	Calculation of Quantity of Data Transmitted:
	Calculation of Mass of Data Storage:

	Module Description
	Inputs
	Outputs
	Results:
	Validation:

	Transmitter Antenna Design Trade-Off
	Approach
	Calculation Of The Bandwidth
	Calculation Of The Transmitter Gain
	Calculation Of The Transmitter Power
	Calculation of the mass

	Module Description
	Inputs
	Outputs
	List Of The Functions

	References –
	Codes

