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Problem Set 3 — Variational Methods

Handed Out: 31 March 2003                                                                                                    Due: 28 April 2003

Design of a Thermal Fin

Problem Statement

We consider the problem of designing a thermal fin to effectively remove heat from a surface.
The two-dimensional fin, shown in Figure 1, consists of a vertical central “post” and four horizontal
“subfins”; the fin conducts heat from a prescribed uniform flux “source” at the root, Γroot, through
the large-surface-area subfins to surrounding flowing air.

The fin is characterized by a five-component parameter vector, or “input,” µ = (µ1, µ2, . . . , µ5),
where µi = ki, i = 1, . . . , 4, and µ5 = Bi; µ may take on any value in a specified design set D ⊂ IR5.
Here ki is the thermal conductivity of the ith subfin (normalized relative to the post conductivity
k0 ≡ 1); and Bi is the Biot number, a nondimensional heat transfer coefficient reflecting convective
transport to the air at the fin surfaces (larger Bi means better heat transfer). For example, suppose
we choose a thermal fin with k1 = 0.4, k2 = 0.6, k3 = 0.8, k4 = 1.2, and Bi = 0.1; for this
particular configuration µ = {0.4, 0.6, 0.8, 1.2, 0.1}, which corresponds to a single point in the
set of all possible configurations D (the parameter or design set). The post is of width unity and
height four; the subfins are of fixed thickness t = 0.25 and length L = 2.5.

We are interested in the design of this ther-

Figure 1: Thermal Fin

mal fin, and we thus need to look at certain
outputs or cost-functionals of the temperature
as a function of µ. We choose for our output
Troot, the average steady-state temperature of
the fin root normalized by the prescribed heat
flux into the fin root. The particular output
chosen relates directly to the cooling efficiency
of the fin — lower values of Troot imply better
thermal performance.

The steady–state temperature distribution
within the fin, u(µ), is governed by the elliptic partial differential equation

− ki ∇2ui = 0 in Ωi, i = 0, . . . , 4, (1)

where ∇2 is the Laplacian operator, and ui refers to the restriction of u to Ωi. Here Ωi is the region
of the fin with conductivity ki, i = 0, . . . , 4: Ω0 is thus the central post, and Ωi, i = 1, . . . , 4,
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corresponds to the four subfins. The entire fin domain is denoted Ω (Ω̄ = ∪4
i=0Ω̄

i); the boundary
Ω is denoted Γ. We must also ensure continuity of temperature and heat flux at the conductivity–
discontinuity interfaces Γi

int ≡ ∂Ω0 ∩ ∂Ωi, i = 1, . . . , 4, where ∂Ωi denotes the boundary of Ωi:

u0 = ui

−(∇u0 · n̂i) = −ki(∇ui · n̂i)

}
on Γi

int, i = 1, . . . , 4;

here n̂i is the outward normal on ∂Ωi. Finally, we introduce a Neumann flux boundary condition
on the fin root

− (∇u0 · n̂0) = −1 on Γroot, (2)

which models the heat source; and a Robin boundary condition

− ki(∇ui · n̂i) = Bi ui on Γi
ext, i = 0, . . . , 4, (3)

which models the convective heat losses. Here Γi
ext is that part of the boundary of Ωi exposed to

the flowing fluid; note that ∪4
i=0Γ

i
ext = Γ\Γroot.

The average temperature at the root, Troot(µ), can then be expressed as `O(u(µ)), where

`O(v) =
∫
Γroot

v

(recall Γroot is of length unity). Note that `(v) = `O(v) for this problem.

Part 1 - Finite Element Approximation

α) Show that u(µ) ∈ X ≡ H1(Ω) satisfies the weak form

a(u(µ), v;µ) = `(v), ∀v ∈ X, (4)

with

a(w, v;µ) =
4∑

i=0

ki
∫
Ωi
∇w · ∇v dA + Bi

∫
Γ\Γroot

wv dS,

`(v) =
∫
Γroot

v dS.

β) Show that u(µ) is the argument that minimizes

J(w) =
1
2

4∑
i=0

ki
∫
Ωi
∇w · ∇w dA +

Bi
2

∫
Γ\Γroot

w2 dS −
∫
Γroot

w dS (5)

over all functions w in X.

γ) We now consider the linear finite element space

Xh = {v ∈ H1(Ω)| v|Th
∈ IP1(Th), ∀Th ∈ Th},

and look for uh(µ) ∈ Xh such that

a(uh(µ), v;µ) = `(v), ∀v ∈ Xh; (6)
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our output of interest is then given by

Troot h(µ) = `O(uh(µ)). (7)

Applying our usual nodal basis, we arrive at the matrix equations

Ah uh(µ) = F h,

Troot h(µ) = (Lh)T uh(µ),

where Ah ∈ IRn×n, uh ∈ IRn, F h ∈ IRn, and Lh ∈ IRn; here n is the dimension of the finite element
space, which (given our natural boundary conditions) is equal to the number of nodes in Th.
Derive the elemental matrices Ak

h ∈ IR3×3, load vectors F k
h ∈ IR3, and output vectors, Lk

h ∈ IR3,
with particular attention to those elements on Γ; and describe the procedure for creating Ah, F h,
and Lh from these elemental quantities.

δ) Write a finite-element code that takes a configuration µ and a triangulation Th (see Appendix
1) and returns uh(µ) and Troot h(µ). For the particular configuration µ

0
= {0.4, 0.6, 0.8, 1.2, 0.1}

(i) plot the solution uh(µ
0
) (see Appendix 1), and (ii) evaluate the output Troot h(µ

0
); use Thmedium

for this calculation.

ε) Show that
Troot(µ)− Troot h(µ) = a(e(µ), e(µ)), (8)

where e(µ) = u(µ)− uh(µ) is the error in the finite element solution. If u ∈ H2(Ω), how would you
expect Troot(µ)− Troot h(µ) to converge as a function of h? In practice, what do you observe? To
answer the latter question, take the finest of the three triangulations given (Thfine

) as the “truth,”
and suppose that

(Troot)hfine
− (Troot)2hfine=hmedium

= C(2hfine)b

(Troot)hfine
− (Troot)4hfine=hcoarse = C(4hfine)b;

then find b in the obvious fashion.

Part 2 - Reduced-Basis Approximation

In general, the dimension of the finite element space, dim Xh = n, will be quite large (in
particular if we were to treat the more realistic three-dimensional fin problem), and thus the
solution of Ahuh(µ) = F h can be quite expensive. We investigate here an alternative, reduced-
basis methods, that allow us to accurately and very rapidly predict Troot(µ) in the limit of many
evaluations — that is, at many different values of µ — which is precisely the “limit of interest” in
design and optimization studies. To derive the reduced-basis approximation we shall exploit the
energy principle,

u(µ) = arg min
w∈X

J(w),

where J(w) is given by (5).
To begin, we introduce a sample in parameter space,

SN = {µ1, µ2, . . . , µN}

with N � n. Each µi, i = 1, . . . , N , belongs in the parameter set D. For our parameter set we
choose D = [0.1, 10.0]4 × [0.01, 1.0], that is, 0.1 ≤ ki ≤ 10.0, i = 1, . . . , 4, for the conductivities,
and 0.01 ≤ Bi ≤ 1.0 for the Biot number.
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We then introduce the reduced-basis space as

WN = span{uh(µ1), uh(µ2), . . . , uh(µN )} (9)

where uh(µi) is the finite-element solution for µ = µi. To simplify the notation, we define ζi ∈ X
as

ζi = uh(µi), i = 1, . . . , N ;

we can then write WN = span{ζi, i = 1, . . . , N}. Recall that WN = span{ζi, i = 1, . . . , N} means
that WN consists of all functions in X that can be expressed as a linear combination of the ζi; that
is, any member vN of WN can be represented as

vN =
N∑

j=1

βjζj , (10)

for some unique choice of βj ∈ IR, j = 1, . . . , N . (We implicitly assume that the ζi, i = 1, . . . , N ,
are linearly independent; it follows that WN is an N -dimensional subspace of X.)

In the reduced-basis approach we look for an approximation uN (µ) to uh(µ) (which for our
purposes here we presume is arbitrarily close to u(µ)) in WN ; in particular, we express uN (µ) as

uN (µ) =
N∑

j=1

uj
N ζj ; (11)

we denote by uN (µ) ∈ IRN the coefficient vector (u1
N , . . . , uN

N )T . The premise — or hope — is that
we should be able to accurately represent the solution at some new point in parameter space, µ, as
an appropriate linear combination of solutions previously computed at a small number of points in
parameter space (the µi, i = 1, . . . , N). But how do we find this appropriate linear combination?
And how good is it? And how do we compute our approximation efficiently?

The energy principle is crucial here (though more generally the weak form would suffice). To
wit, we apply the classical Rayleigh-Ritz procedure to define

uN (µ) = arg min
wN∈WN

J(wN ); (12)

alternatively we can apply Galerkin projection to obtain the equivalent statement

a(uN (µ), v;µ) = `(v), ∀v ∈ WN . (13)

The output can then be calculated from

Troot N (µ) = `O(uN (µ)). (14)

We now study this approximation in more detail.

α) Prove that, in the energy norm ||| · ||| ≡ (a(·, ·))1/2,

|||u(µ)− uN (µ)||| ≤ |||u(µ)− wN |||, ∀wN ∈ WN . (15)

This inequality indicates that out of all the possible choices of wN in the space WN , the reduced-
basis method defined above will choose the “best one” (in the energy norm). Equivalently, we can
say that even if we knew the solution u(µ), we would not be able to find a better approximation
to u(µ) in WN — in the energy norm — than uN (µ).
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β) Prove that
Troot(µ)− Troot N (µ) = |||u(µ)− uN (µ)|||2. (16)

γ) Show that uN (µ) as defined in (11–13) satisfies a set of N ×N linear equations,

AN (µ)uN (µ) = FN ;

and that
Troot N (µ) = LT

N uN (µ).

Give expressions for AN (µ) ∈ IRN×N in terms of Ah(µ) and Z, FN ∈ IRN in terms of F h and Z,
and LN ∈ IRN in terms of Lh and Z; here Z is an n×N matrix, the jth column of which is uh(µj)
(the nodal values of uh(µj)).

δ) Show that the bilinear form a(w, v;µ) can be decomposed as

a(w, v;µ) =
Q∑

q=1

σq(µ)aq(w, v), ∀w, v ∈ X, ∀µ ∈ D, (17)

for Q = 6; and give expressions for the σq(µ) and the aq(w, v). Notice that the aq(w, v) are not
dependent on µ; the parameter dependence enters only through the functions σq(µ), q = 1, . . . , Q.
Further show that

Ah(µ) =
Q∑

q=1

σq(µ)Aq
h,

and

AN (µ) =
Q∑

q=1

σq(µ)Aq
N . (18)

Give an expression for the Aq
h in terms of the nodal basis functions; and develop a formula for the

Aq
N in terms of the Aq

h and Z.

ε) Implement an off-line/ on-line version of the reduced-basis approximation following the compu-
tational decomposition indicated below.

• Off-line

1. Choose N .

2. Choose the sample SN .

3. Construct Z.

4. Construct Aq
N , q = 1, . . . , Q; FN ; and LN .

• On-line

1. Form AN (µ) from (18).

2. Solve AN (µ)uN (µ) = FN .

3. Evaluate the output Troot N (µ) from (14).
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The idea is that the off-line stage is done only once, generating a small datafile with the Aq
N , q =

1, . . . , Q, FN , and LN ; the on-line stage then accesses this datafile to provide real-time response
to new µ queries. For the required off-line finite element calculations in this and the following
questions, you should use the coarse triangulation Thcoarse .

For N = 10, and the sample set SN given in the datafile sn.dat (available on the course web
site), verify that for µ

0
= {0.4, 0.6, 0.8, 1.2, 0.1} the value of the output is Troot N (µ

0
) = 1.72621.

For µ
1

= {1.8, 4.2, 5.7, 1.9, 0.3} what is the value that you obtain for the output Troot N (µ
1
)?

ζ) Show that the operation count for the on-line stage of your code is independent of n. In particular
show that the operation count (number of floating-point operations) for the on-line stage, for each
new µ of interest, can be expressed as

c1N
γ1 + c2N

γ2 + c3N
γ3 ,

for c1, c2, c3, γ1, γ2, and γ3 independent of n. Give values for the constants c1, c2, c3, γ1, γ2, and γ3.

η) Consider a thermal fin with specified {k1, k2, k3, k4} = {0.4, 0.6, 0.8, 1.2} and the Biot number
varying from [0.1, 10]. The Biot number is directly related to the cooling method; higher cooling
rates (higher Bi) imply lower (better) Troot but also higher (worse) initial and operational costs.
We can thus define (say) a total cost function as

C(Bi) = 0.1 Bi + Troot(Bi), (19)

minimization of which yields an optimal solution. Apply your (on-line) reduced-basis approximation
for Troot N (that is, replace Troot(Bi) in (19) with Troot N (Bi)) to find the optimal Bi. Any (simple)
optimization procedure suffices for the minimization.

Appendix 1 - Finite Element Method Implementation

For the implementation of the finite element method, three possible triangulations of the fin
problem are provided. To obtain the triangulation data, download from the course web site, the
file grids.mat. To download and save this file to your hard drive right-click on the link of this file
and choose Save as. . . . To load then the triangulation data in the MATLAB®  workspace:

>> load grids
This creates three variables named coarse, medium, and fine. Each of these variables is a different
triangulation Th for the fin problem. More specifically

• coarse defines Thcoarse , with 1333 nodes, and 2095 elements.

• medium defines Thmedium
, with 4760 nodes, and 8380 elements, and

• fine defines Thfine
, with 17889 nodes, and 33520 elements.

Each of these variables is of type struct, with four different fields.
>> coarse
coarse =

nodes: 1333
coor: [1333x2 double]
elements: 2095
theta: 1x7 cell

Description of the fields: (assume that we are using the coarse triangulation)
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• nodes: The number of nodes in the triangulation.

• coor: Two-dimensional matrix with size (nodes×2), where each row i has the x and y
coordinates for node i. For example, the location of node 49 can be determined by two
coordinates. The coordinate in the x-direction would be coarse.coor(49,1) and in the
y-direction coarse.coor(49,2).

• elements: The number of elements in the triangulation.

• theta: The adjacency matrix θ(k, α) which defines the local-to-global mapping required in
the elemental assembly procedure. Since we have regions with different physical properties,
for each region a seperate adjacency matrix is provided. The regions considered are

– Region 1: Domain Ω1, θ1(k, α) =coarse.theta{1},
– Region 2: Domain Ω2, θ2(k, α) =coarse.theta{2},
– Region 3: Domain Ω3, θ3(k, α) =coarse.theta{3},
– Region 4: Domain Ω4, θ4(k, α) =coarse.theta{4},
– Region 5: Domain Ω0, θ5(k, α) =coarse.theta{5}.

For each of these regions i, the index k varies in the range k ∈ {1, . . . , ni}, where ni are the
number of elements in region i. For example element 12 in region 3 is has the global nodes
ν1=coarse.theta{3}(12,1), ν2=coarse.theta{3}(12,2), and ν3=coarse.theta{3}(12,3).
In addition, for the treatment of the boundary conditions, the boundary is divided into two
sections. The first is Γ\Γroot, where Robin boundary conditions are applied; the second
is Γroot, where the incoming heat flux is applied. For each segment in these sections, the
associated global nodes are provided.

– Section 1: Γ\Γroot, κ1(m,α) =coarse.theta{6},
– Section 2: Γroot, κ2(m,α) =coarse.theta{7}.

For each of the sections i, the index m varies in the range m ∈ {1, . . . , si}, where the si are the
number of segments in section i. As an example, to find the nodes ν1, and ν2 for segment 5 in
the first section, we would use ν1 =coarse.theta{6}(5,1), and ν2 =coarse.theta{6}(5,2).

To plot the temperature distribution, plotsolution.m can be used (available on the course
web site). If z ≡ uh is the vector with the computed temperature values for each of the nodes, then
a contour plot of the temperature distribution can be obtained by
>> plotsolution(coarse, z)
The first argument is the mesh used in the calculation of z, and the second is the solution vector z.

For the storage of the finite element matrices, use MATLAB®’s sparse matrix data structure.
Also, for the solution of the resulting linear systems, use the default solution methods provided in
MATLAB®.
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