Hyperbolic Equations : Scalar
One-Dimensional Conservation
Laws

Lecture 11



Definitions

Scalar
Conservation Laws Conservative Form

General form (1D):

Ou  9f(u) _

ot ' Ox 0

u(x,t) : is the unknown conserved quantity
(mass, momentum, heat, ...)

f(u) : is the flux
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Definitions

Scalar
Conservation Laws Primitive Form

Can also be written . ..
Ou Of(u) Ou  df du _

ot ox ot du@:c_o

where a(u) = —.
N1
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Scalar

Conservation Laws

Consider a fixed domain € =

Definitions

Integral Form

[mLa CBR] € R

[ (%28 v o

d
dt

S dV = —[f(ur) —

JF(ur)]
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Derivation Example

Scalar
Conservation Laws Conservation of Mass...

Consider a volume 2 enclosed by surface 92
containing fluid of density p(x,t) and known velocity

v(x,t)

RATE OF CHANGE OF = MASS FLUX OF FLUID

MASS INSIDE @ THROUGH 92
o A% = —/ v-ndS
at Jo" B anp

—/ V- (pv) dV
0
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Derivation Example

Scalar
Conservation Laws ...Conservation of Mass

f{gf+v (p'v)] dV =0

holds for all £2, so we can write

O
p—I—V (pv) =0

This is the differential form of the conservation law.
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Examples

Scalar
Conservation Laws Linear Advection Equation

Model convection of a concentration p(x, t):

Op  Opa 0Ip aap_o
ot  Hx OBt T Ox

a . constant

N2
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Examples

Scalar
Conservation Laws Inviscid Burgers’ Equation

Flux function f(u) = zu?

Conservation law :

du Ozu® Bu o _ o
Ot  Ox Ot < Ox

N3
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Examples

Scalar
Conservation Laws Traffic Flow

Let p(x, t) denote the density of cars (vehicles/km)
and u(x, t) the velocity. Since cars are conserved,

ot ' dx
Assume that u is a function of p:

u (p) = umax (1— e )

Pmax
where 0 < p < pmax and umax IS SOmMe maximum

speed (the speed limit?). N4
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Examples

Scalar
Conservation Laws Buckley-Leverett Equation

Consider a two phase (oil and water) fluid flow in
porous medium. Let 0 < u(x,t) < 1 represent the
saturation of water.

Ou  Of(u) _

ot Ox 0

a. constant ~ 1
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Smoo_th Total Derivative

Solutions

Recall the primitive form of the conservation law

8u—|—a(u)——0

The total time variation of w(x, t), on an arbitrary
curve = x(t), in the & — t plane, is

d_u_au | dx Ou
dt 6t dt Oz
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Smooth Characteristics

Solutions
dx du
If prie a(u) = Fr 0 = wu = ug (constant)

The curves £ = x(t), such that % = a(u) are called

characteristics

u constant = a(w) constant =
characteristics are straight lines
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Smooth Characteristics

Solutions

Z—f p— a(u0) — r = Iy _|_ a(‘u[}) ! =
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Smooth
Solutions

Solution

p(z,t) = po(x — at)

Characteristic lines

xr — g + al
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Examples

Smooth
Solutions Burgers’ Equation...

Recall f(u) = fu? so a(u) =u
ou | 0%
ot ox
Solution : u(x,t) = ug(x — ut)

The solution is constant along the characteristic lines
defined by x — ut = x,.
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Consider the initial data

Smooth
Solutions

1 r <0
0 A |
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Smooth
Solutions
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Examples

Smooth
Solutions ...Burgers’ Equation...
For t<1
dx
Forax < t: Ezl—>a:zt+wg —u(x,t) =1
dx
Fort<ax<1: Ezl—acg — = (1 — zo)t + =g
1—=x
1) =1 — —
u(x,t) o 1_¢
dx
Forxz > 1: Ezoﬁm::cg —u(x,t) =0

SMA-HPC ©2003 MIT Hyperbolic Equations 17



Smooth
Solutions

For t=1
1 <1
u(m,t):{o 2> 1

The procedure breaks down fort > 1
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. . hock Formation

Solution

SHOCK PATH

7

When the characteristics cross, the function w(x, t)
has an infinite slope. A discontinuity or shock forms,
and the differential equation is no longer valid. N7 E1
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o The Riemann Problem

Solution

Hyperbolic Equations 20



piscontinuous [

Solution

9 mRu dr = — (f(ur) — f(ur))
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piscontinuous [

Solution

—%(UR _ uL)5$ = — (f(’U»R) — f(uL))

Shock speed

o _ fun) — f(u) _[J]
ot up — Uy, — [u]

Rankine-Hugoniot jump condition
N8

SMA-HPC ©2003 MIT Hyperbolic Equations 22



Discontinuous m

Solution

For our example,

[u] 0-—1 2
14t
Ty = —p
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Discontinuous m

Solution

If w IS not constant at both sides of the shock, the jump
condition still applies locally = shock path is curved.

Example:
Burgers’ equation with

0 x=<0
u(z,0) =<z 0<z<1
0 z>1
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Discontinuous m

Solution
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Shock Path

Discontinuous
Solution Manipulating the Conservation Law...
Consider 5log2
ou g
=0 A
| ot Oz (4)
Multiply by u
1_.2 1,.2 1..3
ot Oz ot Ox

Let v = Ju?, then we can write

Y8 43
ov 9% v _ 9 (B)
ot ox
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Shock Path

Discontinuous
Solution ...Manipulating the Conservation Law

Characteristics:

A 9 — g(u) = u
B ‘é—fza(v)z%gg\/ﬁ:\/szu
Shock speed:
A sa=35(ur+ur)
'u,3 —u3 N9
B s — el 74: SA
'”'R

Use conservation Iaw for physically conserved quantity
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Weak Solutions

Multiply ws + f = 0 by ¢(z,t) € C3(IR x IR)
/ / ¢(uy + fz) dedt =0
0 — 00

Integrating by parts

fom /_: [pru+ ¢of] dedt + /_ Z é(z,0)u(z,0)dz = 0
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Weak Solutions

If above statement is satisfied for all ¢ € C} (IR x R.)
then w(x, t) is a weak solution

Weak solutions to conservation laws are often non
unique.
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Weak Solutions
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Weak Solutions

Shock wave (Solution A)

Uy, + uR
p— :0
° 2

-12<0
u(m,t):{l e~ 0
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Weak Solutions

Rarefaction wave (Solution B)

-1 <1
—t<x<t
x>

u(z,t) =< 7
|
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Weak Solutions

Solution A Solution B
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Entropy Condition
Weak Solutions

Which is the physically relevant solution?

Criterion : the physical solution satisfies

oo ou  9f(u) O%u
ot | ox ox?

e—0
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Entropy Condition

Weak Solutions
Convex (concave) fluxes...

When f(u) is convex i.e. f’(u) > 0 ( or concave i.e.
f"(u) < 0) for all w, the entropy condition can be
written as

a(ur) = f'(ur) > s > f'(ur) = a(ur)

Characteristics must run into the shock for increasing
t, not emerge from it.
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Entropy Condition
Weak Solutions

ENTROPY ENTROPY
SATISFYING VIOLATING
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Entropy Condition

Weak Solutions
Example

Solution A a(ug) =up = —1
s=3(ur+ug) =0
a(up) =ur =1

Entropy condition is violated - characteristics emerge
from the shock

Solution B No shock = OK
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Entropy Condition

Weak Solutions
Oleinik’s Condition

Applicable to general flux functions

u(x,t) is the entropy satisfying solution if all
discontinuities satisfy the property that

fw) ~Flur) . F() ~ F(un)

u—ur U —up

for all w between ur and ug.
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Entropy Condition

Weak Solutions :
Entropy Functions...

U (u) is an entropy function if it is positive, convex,
and there exists a corresponding entropy flux such
that

F'(u) =U'(u) f'(u)

For smooth solutions
oU . oF

Ot Oz 0

—

SMA-HPC ©2003 MIT Hyperbolic Equations 39



Entropy Condition

Weak Solutions :
...Entropy Functions

The function w(x, t) is the entropy satisfying solution
of the governing equations if, for all convex entropy
functions U () and corresponding entropy fluxes
F'(u), the inequality

oU (u) I OF (u) <0
ot oxr

IS satisfied in the weak sense. N10

If £(u) is convex we only need to check for one U (u)

SMA-HPC ©2003 MIT Hyperbolic Equations 40



Entropy Condition

Weak Solutions

Example

Burgers’ equation f(u) = tu?

Take U(u) = u? and F(u) = u®
Entropy inequality

(u?): + @ua)m <0
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Application Traffic Flow

Examples

Governing equation : p; + f(p), =0

f(p) = pu = pumay (1 P )

Pmax

f'(p) = umax (1 __2p ) , J'(p)= _zumax <0
Pmax Pmax
S

= _ PLT PR)

Pmax

S — Umax (1
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Application
Examples

Consider pr = pmax and pr, < pmax = Shock

:

VEHICLE TRAJECTORIES 4 CHARACTERISTICS

s < 0 and the shock propagates to the left N11
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Consider 0 < pr < pr < pmax = Rarefaction.

Application
Examples

VEHICLE TRAJECTORIES CHARACTERISTICS

|
PL = Pmax; PR = 3Pmax N12
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Traffic Flow

Application
Examples “Sound Speed”...

For smooth solutions information travels with speed f'(p)
pe+ f(p)p: =0

Consider a nearly constant solution
p(x,t) = po+ ep1(x, t)

If € is small we can model p;(x, t) with the linear
equation
p1t+ f'(po)p1z =0
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Application Traffic Flow
Examples ... _oound Speed”

f'(po) < ug cars travel ahead of disturbances

But ...
po < zpmax J'(po) > 0 disturbances move forward

po > zpmax  J'(po) < 0 disturbances move backward

Po — %pma)( : “sonic pOint”
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Application Buckley-Leverett Equation

Examples

f(u) =

u? _I'a(]_ —u)Z ?

Hyperbolic Equations 47



Application Buckley-Leverett Equation

Examples

RAREFACTION

&
S
)
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Total Variation

dx

v

TV (u) = |up — Uq| + |Ue — Up| + [Ug — Ue| + |Ue — vy + |uf — u,|
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Total Variation

Consider the total variation of w(x,t) between two
points x;(t) and x2(t) lying on two characteristics.
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Total Variation

If there are no shocks between x (%) and x5(t), then
the extrema will not change, and the total variation
will stay constant with time.

TV (u(x,t)) =TV (u(x,0))
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Total Variation

The solution at a shock is determined by ¥ (t) and
y2(t) provided the shock is entropy satisfying.
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Total Variation

TV(u(z,T)) = |up — ug| + |te — ue| + |uy — ue|
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Total Variation

If there are shocks: TV (u(x,T)) < TV (u(x,0))

In general,
dt (/ d“’)

The total variation of an entropy satisfying
solution is a non-increasing function of time.
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