Hyperbolic Equations : Scalar One-Dimensional Conservation Laws

Lecture 11

Definitions

Conservative Form

General form (1D):

$$oxed{ \left| rac{\partial u}{\partial t} + rac{\partial f(u)}{\partial x} = 0
ight|}$$

u(x,t): is the unknown conserved quantity (mass, momentum, heat, ...)

f(u): is the flux

Definitions

Primitive Form

Can also be written ...

$$rac{\partial u}{\partial t} + rac{\partial f(u)}{\partial x} = rac{\partial u}{\partial t} + rac{df}{du} rac{\partial u}{\partial x} = 0$$

$$\frac{\partial u}{\partial t} + a(u) \frac{\partial u}{\partial x} = 0$$

where
$$a(u) = \frac{df}{du}$$
.

Definitions

Integral Form

Consider a *fixed* domain $\Omega \equiv [x_L, x_R] \in \mathbb{R}$

$$\int_{\Omega} \left(rac{\partial u}{\partial t} + rac{\partial f(u)}{\partial x}
ight) \; dV = 0$$

$$igg|rac{d}{dt}\int_{\Omega} u\ dV = -[f(u_R) - f(u_L)]$$

Derivation Example

Conservation of Mass...

Consider a volume Ω enclosed by surface $\partial\Omega$ containing fluid of density ho(x,t) and known velocity v(x,t)

RATE OF CHANGE OF \equiv MASS FLUX OF FLUID MASS INSIDE Ω THROUGH $\partial \Omega$

$$\frac{\partial}{\partial t} \int_{\Omega} \rho \, dV = -\int_{\partial \Omega} \rho v \cdot n \, dS$$
$$= -\int_{\Omega} \nabla \cdot (\rho v) \, dV$$

Derivation Example

...Conservation of Mass

$$\int_{\Omega} \left[rac{\partial
ho}{\partial t} +
abla \cdot (
ho oldsymbol{v})
ight] \, dV = 0$$

holds for all Ω , so we can write

$$\left|rac{\partial
ho}{\partial t} +
abla \cdot (
ho v) = 0
ight|$$

This is the differential form of the conservation law.

Examples

Linear Advection Equation

Model convection of a concentration $\rho(x,t)$:

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho a}{\partial x} = \frac{\partial \rho}{\partial t} + a \frac{\partial \rho}{\partial x} = 0$$

a: constant

Examples

Inviscid Burgers' Equation

Flux function
$$f(u) = \frac{1}{2}u^2$$

Conservation law:

$$rac{\partial u}{\partial t} + rac{\partial rac{1}{2}u^2}{\partial x} = rac{\partial u}{\partial t} + urac{\partial u}{\partial x} = 0$$

Examples

Traffic Flow

Let $\rho(x,t)$ denote the density of cars (vehicles/km) and u(x,t) the velocity. Since cars are conserved,

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$

Assume that \mathbf{u} is a function of $\boldsymbol{\rho}$:

$$oldsymbol{u}\left(oldsymbol{
ho}
ight)=oldsymbol{u}_{\mathsf{max}}\left(\mathbf{1}-rac{oldsymbol{
ho}}{oldsymbol{
ho}_{\mathsf{max}}}
ight)$$

where $0 \le \rho \le \rho_{\text{max}}$ and u_{max} is some maximum speed (the speed limit?).

Examples

Buckley-Leverett Equation

Consider a two phase (oil and water) fluid flow in porous medium. Let $0 \le u(x, t) \le 1$ represent the saturation of water.

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0$$

$$f(u) = rac{u^2}{u^2 + a \left(1 - u
ight)^2}$$

a: constant ~ 1

Total Derivative

Smooth Solutions

Recall the primitive form of the conservation law

$$\frac{\partial u}{\partial t} + a(u) \frac{\partial u}{\partial x} = 0$$

The total time variation of u(x,t), on an arbitrary curve x = x(t), in the x - t plane, is

$$rac{du}{dt} = rac{\partial u}{\partial t} + rac{dx}{dt} \, \, rac{\partial u}{\partial x}$$

Characteristics

If
$$\frac{dx}{dt} = a(u) \Rightarrow \frac{du}{dt} = 0 \Rightarrow u = u_0$$
 (constant)

The curves x = x(t), such that $\frac{dx}{dt} = a(u)$ are called characteristics

u constant $\Rightarrow a(u)$ constant \Rightarrow characteristics are straight lines

Characteristics

Smooth Solutions

$$rac{dx}{dt} = a(u_0) \quad \Rightarrow \quad x = x_0 + a(u_0) \ t$$

Examples

Linear Advection Equation

Solution

$$ho(x,t)=
ho_0(x-at)$$

Characteristic lines

$$x = x_0 + at$$

Examples

Burgers' Equation...

Recall
$$f(u)=rac{1}{2}u^2$$
, so $a(u)=u$
$$rac{\partial u}{\partial t}+urac{\partial u}{\partial x}=0$$

Solution :
$$u(x,t) = u_0(x-ut)$$

The solution is constant along the characteristic lines defined by $x - ut = x_0$.

Examples

...Burgers' Equation...

Consider the initial data

$$u(x,0) = egin{cases} 1 & x < 0 \ 1 - x & 0 \leq x \leq 1 \ 0 & x > 1 \end{cases}$$

Examples

...Burgers' Equation...

Examples

...Burgers' Equation...

For
$$t \leq 1$$

For
$$x \leq t$$
 : $\dfrac{dx}{dt} = 1 \ o \ x = t + x_0 \ o u(x,t) = 1$

For
$$t < x < 1$$
 : $\dfrac{dx}{dt} = 1 - x_0 o x = (1 - x_0)t + x_0$ $u(x,t) = 1 - x_0 = \dfrac{1 - x}{1 - t}$

$$u(x,t)=1-x_0=rac{1-x}{1-t}$$

For
$$oldsymbol{x} \geq oldsymbol{1}$$
 : $egin{array}{c} \dfrac{dx}{dt} = oldsymbol{0} & oldsymbol{x} = oldsymbol{x}_0 & oldsymbol{u}(x,t) = oldsymbol{0} \ \end{array}$

Examples

...Burgers' Equation

For
$$t=1$$

$$u(x,t) = egin{cases} 1 & x < 1 \ 0 & x > 1 \end{cases}$$

The procedure breaks down for t > 1

Shock Formation

Discontinuous Solution

When the characteristics cross, the function u(x,t) has an infinite slope. A discontinuity or shock forms, and the differential equation is no longer valid. N7 E1

The Riemann Problem

$$rac{\partial u}{\partial t} + rac{\partial f(u)}{\partial x} = 0$$

$$u(x,0) = egin{cases} u_L & x < 0 \ u_R & x > 0 \end{cases}$$

Shock Path

Discontinuous Solution

$$rac{\partial}{\partial t} \int_{x_L}^{x_R} u \ dx = - \left(f(u_R) - f(u_L)
ight)$$

Shock Path

Discontinuous Solution

$$-rac{1}{\delta t}(u_R-u_L)\delta x = -\left(f(u_R)-f(u_L)
ight)$$

Shock speed

$$egin{aligned} oldsymbol{s} &= rac{oldsymbol{\delta x}}{oldsymbol{\delta t}} = rac{oldsymbol{f(u_R)} - oldsymbol{f(u_L)}}{oldsymbol{u_R - u_L}} \equiv rac{[oldsymbol{f}]}{[oldsymbol{u}]} \end{aligned}$$

Rankine-Hugoniot jump condition

Shock Path

Example

For our example,

$$s = rac{[f]}{[u]} = rac{0 - rac{1}{2}}{0 - 1} = rac{1}{2}$$

$$x_s=rac{1+t}{2}$$

Shock Path

Variable States...

If u is not constant at both sides of the shock, the jump condition still applies **locally** \Rightarrow shock path is **curved**.

Example:

Burgers' equation with

$$u(x,0) = egin{cases} 0 & x < 0 \ x & 0 \leq x \leq 1 \ 0 & x > 1 \end{cases}$$

Shock Path

...Variable States

Shock Path

Manipulating the Conservation Law...

Consider

$$\frac{\partial u}{\partial t} + \frac{\partial \frac{1}{2}u^2}{\partial x} = 0 \qquad (A)$$

Multiply by u

$$urac{\partial u}{\partial t}+urac{\partial rac{1}{2}u^2}{\partial x}=0 \quad ext{or} \quad rac{\partial rac{1}{2}u^2}{\partial t}+rac{\partial rac{1}{3}u^3}{\partial x}=0$$

Let $v = \frac{1}{2}u^2$, then we can write

$$rac{\partial v}{\partial t} + rac{\partial rac{\sqrt{8}}{3} v^{rac{3}{2}}}{\partial x} = 0 \qquad (B)$$

Shock Path

...Manipulating the Conservation Law

Characteristics:

$$A \qquad \frac{dx}{dt} = a(u) = u$$

$$egin{array}{ll} egin{array}{c} rac{dx}{dt} = a(v) = rac{\sqrt{8}}{3}rac{3}{2}\sqrt{v} = \sqrt{2v} = u \end{array}$$

Shock speed:

$$oldsymbol{A} oldsymbol{s_A} = rac{1}{2} \left(oldsymbol{u_R} + oldsymbol{u_L}
ight)$$

$$m{B} = rac{2}{3} rac{u_R^3 - u_L^3}{u_R^2 - u_L^2}
eq s_A$$

N9

Use conservation law for physically conserved quantity

Multiply
$$m{u}_t+f_x=m{0}$$
 by $m{\phi}(x,t)\in\mathcal{C}_0^1({
m I\!R} imes{
m I\!R}_+)$ $\int_0^\infty\int_{-\infty}^\inftym{\phi}(m{u}_t+f_x)\,dxdt=m{0}$

Integrating by parts

$$\int_0^\infty \int_{-\infty}^\infty [\phi_t u + \phi_x f] \ dx dt + \int_{-\infty}^\infty \phi(x,0) u(x,0) dx = 0$$

If above statement is satisfied for all $\phi \in C_0^1(\mathbb{R} \times \mathbb{R}_+)$ then u(x,t) is a weak solution

Weak solutions to conservation laws are often non unique.

Non-uniqueness

Example: Burgers' equation...

$$u(x,0)=egin{cases} -1 & x<0 \ 1 & x>0 \end{cases}$$

Non-uniqueness

...Example : Burgers' equation...

Shock wave (Solution A)

$$s=rac{u_L+u_R}{2}=0$$

$$u(x,t)=egin{cases} -1 & x<0 \ 1 & x>0 \end{cases}$$

Non-uniqueness

...Example: Burgers' equation...

Rarefaction wave (Solution B)

$$u(x,t) = egin{cases} -1 & x < -t \ rac{x}{t} & -t \leq x \leq t \ 1 & x > t \end{cases}$$

Non-uniqueness

...Example: Burgers' equation

Solution A

Solution B

Entropy Condition

Weak Solutions

Which is the physically relevant solution?

Criterion: the physical solution satisfies

$$\lim_{\epsilon o 0} \left(rac{\partial u}{\partial t} + rac{\partial f(u)}{\partial x} = \epsilon rac{\partial^2 u}{\partial x^2}
ight)$$

Entropy Condition

Convex (concave) fluxes...

When f(u) is convex i.e. $f''(u) \ge 0$ (or concave i.e. $f''(u) \le 0$) for all u, the entropy condition can be written as

$$a(u_L)=f'(u_L)>s>f'(u_R)=a(u_R)$$

Characteristics must run **into** the shock for increasing **t**, not emerge from it.

Weak Solutions

Entropy Condition

...Convex (concave) fluxes

Entropy Condition

Weak Solutions

Example

Solution A

$$egin{aligned} a(u_L) &= u_L = -1 \ s &= rac{1}{2}(u_R + u_L) = 0 \ a(u_R) &= u_R = 1 \end{aligned}$$

Entropy condition is violated - characteristics emerge from the shock

Solution **B**

No shock \Rightarrow OK

Entropy Condition

Weak Solutions

Oleinik's Condition

Applicable to general flux functions

u(x,t) is the entropy satisfying solution if all discontinuities satisfy the property that

$$egin{aligned} rac{f(u)-f(u_L)}{u-u_L} \geq s \geq rac{f(u)-f(u_R)}{u-u_R} \end{aligned}$$

for all \boldsymbol{u} between \boldsymbol{u}_L and \boldsymbol{u}_R .

Weak Solutions

Entropy Condition

Entropy Functions...

U(u) is an entropy function if it is positive, convex, and there exists a corresponding entropy flux such that

$$F'(u) = U'(u)f'(u)$$

For smooth solutions

$$\Rightarrow \quad rac{\partial U}{\partial t} + rac{\partial F}{\partial x} = 0$$

Weak Solutions

Entropy Condition

...Entropy Functions

The function u(x,t) is the entropy satisfying solution of the governing equations if, for all convex entropy functions U(u) and corresponding entropy fluxes F(u), the inequality

$$\left|rac{\partial U(u)}{\partial t} + rac{\partial F(u)}{\partial x} \le 0
ight|$$

is satisfied in the weak sense.

N10

If f(u) is convex we only need to check for one U(u)

Entropy Condition

Weak Solutions

Example

Burgers' equation
$$f(u) = \frac{1}{2}u^2$$

Take
$$U(u)=u^2$$
 and $F(u)=rac{2}{3}u^3$

Entropy inequality

$$(u^2)_t + \left(\frac{2}{3}u^3\right)_x \leq 0$$

Traffic Flow

Application Examples

Governing equation : $\rho_t + f(\rho)_x = 0$

$$egin{aligned} f(
ho) &=
ho u =
ho \, u_{ ext{max}} \left(1 - rac{
ho}{
ho_{ ext{max}}}
ight) \ f'(
ho) &= u_{ ext{max}} \left(1 - rac{2
ho}{
ho_{ ext{max}}}
ight), \quad f''(
ho) = -2 rac{u_{ ext{max}}}{
ho_{ ext{max}}} < 0 \ s &= rac{[f]}{[
ho]} = u_{ ext{max}} \left(1 - rac{
ho_L +
ho_R}{
ho_{ ext{max}}}
ight) \end{aligned}$$

Traffic Flow

"Traffic Jam"

Consider $\rho_R = \rho_{\text{max}}$ and $\rho_L < \rho_{\text{max}} \Rightarrow \text{Shock}$

s < 0 and the shock propagates to the left

N11

Traffic Flow

"Green Light"

Consider $0 < \rho_R < \rho_L < \rho_{\text{max}} \Rightarrow \text{Rarefaction}$.

$$ho_L =
ho_{\mathsf{max}}, \;
ho_R = rac{1}{2}
ho_{\mathsf{max}}$$

N12

Traffic Flow

"Sound Speed"...

For smooth solutions information travels with speed $f'(\rho)$

$$ho_t + f'(
ho)
ho_x = 0$$

Consider a nearly constant solution

$$ho(x,t) =
ho_0 + arepsilon
ho_1(x,t)$$

If ε is small we can model $ho_1(x,t)$ with the linear equation

$$ho_{1t} + f'(
ho_0)
ho_{1x} = 0$$

Traffic Flow

... "Sound Speed"

$$f'(
ho_0) = u_{\mathsf{max}} \left(1 - rac{2
ho_0}{
ho_{\mathsf{max}}}
ight), \quad u_0 = u_{\mathsf{max}} \left(1 - rac{
ho_0}{
ho_{\mathsf{max}}}
ight)$$

 $f'(\rho_0) \leq u_0$ cars travel ahead of disturbances

But . . .

$$ho_0 < rac{1}{2}
ho_{ ext{max}}$$
 $f'(
ho_0) > 0$ disturbances move forward

$$ho_0 > \frac{1}{2}
ho_{ ext{max}}$$
 $f'(
ho_0) < 0$ disturbances move backward

$$\rho_0 = \frac{1}{2}\rho_{\text{max}}$$
: "sonic point"

Buckley-Leverett Equation

$$f(u) = rac{u^2}{u^2 + a(1-u)^2}\,, \quad a = 1$$

Buckley-Leverett Equation

N13

Definition

Total Variation

$$TV(u) = \int \left| rac{\partial u}{\partial x}
ight| dx$$

$$TV(u) = |u_b - u_a| + |u_c - u_b| + |u_d - u_c| + |u_e - u_d| + |u_f - u_e|$$

Continuous Case

Total Variation

Consider the total variation of u(x,t) between two points $x_1(t)$ and $x_2(t)$ lying on two characteristics.

Continuous Case

Total Variation

If there are no shocks between $x_1(t)$ and $x_2(t)$, then the extrema will not change, and the total variation will stay constant with time.

$$TV(u(x,t)) = TV(u(x,0))$$

Discontinuous Case

Total Variation

The solution at a shock is determined by $y_1(t)$ and $y_2(t)$ provided the shock is entropy satisfying.

Discontinuous Case

Total Variation

$$TV(u(x,T)) = |u_b - u_a| + |u_c - u_e| + |u_f - u_e|$$

Discontinuous Case

Total Variation

If there are shocks: $TV(u(x,T)) \leq TV(u(x,0))$ In general,

$$\left|rac{d}{dt}\left(\int\left|rac{\partial u}{\partial x}
ight|dx
ight)\leq 0
ight|$$

The total variation of an entropy satisfying solution is a non-increasing function of time.