Hyperbolic Equations : Scalar One-Dimensional
Conservation Laws

Lecture 11



1 Scalar Conservation Laws

1.1 Definitions
1.1.1 Conservative Form

General form (1D):

ou + Of(u)

ot or =0

u(z,t) : is the unknown conserved quantity
(mass, momentum, heat, ...)

f(u) : is the flux

1.1.2 Primitive Form
Can also be written ...

ou + Of(u) _ Ou  df Ou

% or ot Tduor O
ou ou
e + a(u)% =0
df
h = .
where a(u) Y
Note 1 More General Conservation Laws

In some applications, the flux function f may depend explicitly (not through )
on z; i.e. f(u,z). In such cases, the primitive form of the equation becomes

ou ou
Bt + a(u)% = g(u)

where a(u) = %{; and g(u) = —%5 plays the role of a source term.

The procedures presented here will be generally applicable, sometimes with
small modifications, to this more general form. However, for clarity of presen-
tation we will restrict ourselves to the case where f can be determined once u
is known.
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1.1.3 Integral Form
SLIDE 3

Consider a fixed domain Q = [z, zr] € R
Oou  Of(u) B
/Q ((’)t gy ) V=0
d

E/QudV = —[f(ur) = f(ur)]

The integral form is the most general form of the conservation law from which
the differential forms are derived. In contrast with the differential form, we note
that the integral from is well defined even when the solution u and/or the fluz
[ are discontinuous. We show below, an example of derivation of the different
forms of the conservation laws from physical principles.

1.2 Derivation Example

1.2.1 Conservation of Mass
SLIDE 4

Consider a volume Q enclosed by surface 99 containing fluid of density p(z,t)
and known velocity v(x, t)

RATE OF CHANGE OF = MASS FLUX OF FLUID
MASS INSIDE 2 THROUGH 02

g/pdV = _/ pv -ndS SLIDE 5
ot Jq

o)
— [ V- (pv) dV
Q

/Q[%+V-(pfu)] dvV =0

holds for all 2, so we can write

Op

E+V-(pv):0

This is the differential form of the conservation law.

To derive the differential form of the conservation law, we have assumed that
p(x,t) and v(x,t) are differentiable functions.



1.3 Examples
1.3.1 Linear Advection Equation

Model convection of a concentration p(z,t):

o _ 00, 00 _
ot " or ot %8s 0

a : constant

Note 2 Advection-Diffusion Equation

Consider the flux of a chemical past some point in a stream. If there is no
diffusion in the flow, the concentration profile will convect downstream with
a velocity a, and is described by the linear advection equation. In practice,
molecular diffusion and turbulence will cause the concentration profile to change.
With the simple one-dimensional model we cannot model turbulence, however
the effect of molecular diffusion can be included by determining the diffusive
flux. This flux is described by Fourier’s Law of heat conduction (the diffusion
of a chemical concentration is similar to diffusion of heat):
dp

diffusive flux = —D—.
Ox

Combining this with the advective flux, ap, we obtain the advection-diffusion

equation:
op 0 op\ _
ot ¥ s (“”_Dax) =0

Note that for the advection-diffusion equation, the flux function now depends on
gﬁ as well as p. The advection-diffusion equation is a parabolic equation, while
the linear advection equation is hyperbolic. This means that the advection-
diffusion equation always has smooth solutions, even if the initial data is dis-
continuous, while the linear advection equation admits discontinuities. We will

consider some solutions of the linear advection equation later in the lecture.

1.3.2 Inviscid Burgers’ Equation

Flux function f(u) = 1u?

Conservation law :

u Ozu® Ou Ou

o or o TUap Y
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Note 3 Burgers’ Equation

The actual equation studied by Burgers includes a viscous term:

o, o _ o
ot " “or ‘oz

This is one of the simplest models that includes the nonlinear and viscous ef-
fects of fluid dynamics. Again, when we include the viscous term, the equation
becomes parabolic and does not admit discontinuous solutions.

An important aspect of the flux function, that will be used later, is that it is
convex; i.e. f'(u) =1 >0.

1.3.3 Traffic Flow

Let p(x,t) denote the density of cars (vehicles/km) and wu(z,t) the velocity.

Since cars are conserved,
Op Opu

ot " oz
Assume that u is a function of p:

u(p) = umax (1— p )

Pmax

=0

where 0 < p < pmax and umax is some maximum speed (the speed limit?).

Note 4 Traffic Flow Problem

Typically on a highway, we wish to drive at some speed umax, but in heavy traffic
we slow down. At some point, the highway reaches its maximum capacity of
cars, pmax, and our velocity is zero. The simplest model for this relationship
between velocity and density is that given above. This function has been found
to provide a fairly good model for actual traffic flows. For example, for the
Lincoln tunnel a good fit to actual data was obtained using the function

_ pmax
f(p) = aplog < P ) ;

which has a similar shape to our linear relation (see [W]).
We point out that with either of the two relationships between car density and
velocity, the flux is a concave function of p; i.e. f"(p) <0.

1.3.4 Buckley-Leverett Equation

Consider a two phase (oil and water) fluid flow in porous medium. Let 0 <
u(z,t) < 1 represent the saturation of water.

SLIDE &
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ot ox

ou + Of(u) —0

This equation has applications in oil reservoir simulation where one models the
flow of oil and water through porous rock or sand. So u varies between 0 and 1
:u =0 represents a flow of pure oil, u = 1 represents pure water.

u2

w?+a(l—u)’

flu) =

a: constant ~ 1

Note 5 The Buckley-Leverett Equations

For the most part, we consider equations where f(u) is convex (or a concave)
function of the unknown variable. In the convex (or concave) case, the solution
of an initial discontinuos data distribution (Riemann problem) is always either a
shock or a rarefaction (or expansion) wave. When f is not convex (nor concave),
the solution might involve both. The Buckley-Leverett equation is a simple
example where this situation may occur.

2 Smooth Solutions

2.1 Total Derivative
Recall the primitive form of the conservation law

ou ou
E + a(u) e 0

The total time variation of u(x,t), on an arbitrary curve z = z(t), in the z — ¢
plane, is

du_Ou  dr du
dt ot dt Ox

2.2 Characteristics

It c;_a: —a(u) = ‘;_7; =0 = u=ug (constant)

d
& a(u) are called characteristics

The curves x = z(t), such that i

u constant = a(u) constant =
characteristics are straight lines

SLIDE 10
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The characteristics are straight lines in the x—t plane along which u is constant.
If u(xo,0) = ug, the characteristic passing through x = zo, t = 0, is the solution
of the following initial value problem dx/dt = a(ug), =(0) = zo; i.e. z =
xo + a(ug)t.

U = Ug
t
Lo T >
dz
Eza(u()) = z=u1x9+alug)t
Note 6 Characteristics

The slope of the characteristic lines is determined by the initial condition ug(z),
except for the trivial case in which f is a linear function of u. In this latter case,
the slope characteristics is constant i.e. the characteristics are parallel.

We note that, for our problems, the characteristics are straight lines, even in the
non-linear case, because f is determined by u only. For systems of equations,
or for scalar equations with either a source term or a flux function that depends
explicitly on z, the characteristics are no longer straight lines.

If we solve a problem on a finite domain, the number of boundary conditions to
be prescribed, in the non-linear case, depends on the data itself. That is, in those
boundaries with incoming characteristics a boundary condition will be required.
Similarly, the solution at those boundaries with outgoing characteristics will be
determined by the interior. We can see therefore that in the 1D case we can
require, two, one or no boundary condition.

For nonlinear conservation laws and arbitrary data, the characteristics may
cross within finite time. This would suggest a multi-valued solution which does
not make any sense physically. We will see that just at the point where the
characteristics start crossing, the solution becomes discontinuous. At this point,
the differential primitive form of the equation, on which we are basing our
solution procedure is no longer valid.

SLIDE 12



2.3 Examples

2.3.1 Linear Advection Equation
t

V==71111/

/// // ‘ p,1) = polz = ot

x

p ‘at*

(@, t* Characteristic lines

p(x,0) p )
\ T =T+ at

€T

2.3.2 Burgers’ Equation
Recall f(u) = 1u?, so a(u) =u

6_u+u6_u_0
ot or

Solution : u(z,t) = ue(z — ut)
The solution is constant along the characteristic lines defined by =z — ut = zy.

We note that the above solution is defined implicitly (e.g. the definition of the
function requires the function itself) and therefore it is often not very useful.
We can verify however by direct differentiation that it is in fact a solution of
the partial differential equation; i.e.,

! ! u6
Uy = Uy — UgUgt = uw:1+u’t
0
!
! ! Ul
U = —Ugl — UgUgt =  Ug = Trut
0
Consider the initial data
A
1 z<0 1
u(z,0)=¢ 1l—-z 0<z<1 —
0 z>1 \ .
o1
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>
—=1- Lo
dt
SLIDE 17
For t<1
d
Forz <t: d—“:=1—>w=t+w0 = u(z,t) =1
d
Fort<z<1: d—f:l—mo = z=(1-z0)t+ 2o
1—z
t = ]_ — =
U(.’L’, ) Zo 1—¢
dx
Forz >1: E=0_>$=$0_) u(z,t) =0
Fort < x < 1, we first solve for the characteristic lines. In this case they are
defined by ‘fi—f = u. Since u is constant along each characteristic, we know that
on each line ‘fi—f = ug. Once we have determined the characteristic lines, we use
the fact that u is constant along each line to determine the overall solution.
SLIDE 18
UA
u(z,1/2) For t=1
(o) 1 z<l1
u(z, 0) —
u(z, 1) { 0 z>1
0 1 g

At t =1 the solution develops a discontinuity. This corresponds to the time at
which the characteristics first cross.

The procedure breaks down for ¢ > 1



3 Discontinuous Solution

3.1 Shock Formation

t SHOCK PATH
—

i)

When the characteristics cross, the function u(z,t) has an infinite slope. A
discontinuity or shock forms, and the differential equation is no longer valid.

Note 7 Vanishing Viscosity Approach

SLIDE 19

]Y

After the characteristics have crossed, there are some points  where more than
one characteristic leads back to ¢ = 0. This would imply that the solution is
multi-valued at such a point, which in most cases is not physically realisable.
The correct physical behaviour can be determined by recalling that the inviscid
Burgers’ equation was a simplified version of a viscous equation with a term e%
on the righthand side. If the initial data is smooth and € is very small, then this
term is negligible compared to the lefthand-side terms, and the solution of the
viscous equation is almost identical to that of the inviscid equation. However, as
the discontinuity begins to form, % becomes very large, and the viscous term
becomes important. This term keeps the solution smooth for all time (recall the
equation is now parabolic), and determines the correct physical nature of the

system as shown in the figure below.

limiting solution
e->0

This behaviour is evident in the equations governing fluid flow. The Euler
equations, which ignore the viscous terms, are hyperbolic and admit discontin-
uous solutions. Conversely, the Navier-Stokes equations are parabolic, and the
viscosity ensures that the solution is always smooth.

> Exercise 1 (from [LV]) Show that the viscous Burgers’ equation has a trav-
elling wave solution of the form u¢(z,t) = w(x — st) by deriving an ODE for w
and verifying that this ODE has solutions of the form

w(y) = ug + %(uR —ur)[l —tanh((ur — ur)y/4e)]



with s = (ug + ur)/2. Note that w(y) — ur as y — —oo and w(y) = ug as
y — 400. Sketch this solution and indicate how it varies as € — 0. m

3.2 The Riemann Problem

In order to understand the behaviour of the solution at discontinuities it is useful
to start with a simplified problem. The Riemann problem is a conservation low
together with piecewise constant data having a single discontinuity.

ou + of (u)

ot or =0

uT
ur

_ ur, <0
u(.Z‘,O) _{ UR z>0 n

Y

3.3 Shock Path

To determine the shock path we need to go back to the integral form of the
conservation law which is still valid across the shock.

o [°r
5i ) == (flum) ~ fus)
B u(w,t)
ur, ( lu(z,t+6t)
./
] wn
oz
rL TR x

The boundaries tr and xy are taken sufficiently close to the shock, so that
spatial variations of the solution away from the shock become unimportant. They
are also taken sufficiently far apart from the shock so that the boundary will not
interfere with the shock motion over a time interval t.

10
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_é(uR — ’LI,L)(S.’L' = - (f(uR) - f('LLL))

Shock speed

_ 6z f(ur) — flur) _ [f]

ot UR — UL [u]

Rankine-Hugoniot jump condition

Note 8 The Equal Area Rule

One technique that is sometimes useful for determining the discontinuous solu-
tion is to start with the solution constructed using characteristics. This solution
may be multi-valued if characteristics cross. The multi-valued parts can be elim-
inated by inserting shocks at appropriate locations. The shock location can be
determined by the equal area rule which is depicted in the figure below. The
shock is placed so that the shaded areas cut off on either side have equal areas.

3.3.1 Example

SLIDE 23
For our example,
] 0-1 2
o = 1+t
D)
3.3.2 Variable States SLIDE 24

If » is not constant at both sides of the shock, the jump condition still applies
locally = shock path is curved.

11



Example:
Burgers’ equation with

0 z<0
uw(z,0)=¢ z 0<z<1
0 z>1 >
tA 2, = VIFti
11
- >
0 1 x

The characteristics emanating from (0,1) at t = 0 are given by
z = xzo(l + 1)
on which
oz
1+t
provided characteristics have not intersected. To the right of shock the charac-

teristics are vertical with u =0 on each.
So at the shock, z,

u(z,t) = o

dzs _ f(ur) — f(ur) 1w —uf
dt UR — UL - 2 up —ur,
1
= 3 (ur +ur)
1 Tg
- §®+1+9
1z
T 21+t

This ODE has solution
zs =V1+1,

which is the shock position separating ur and ur =

1+t

12
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3.3.3 Manipulating the Conservation Law

Consider 1,2
5‘u §’LI/
— =0 A
ot ox (4)
Multiply by u
u@_u +u8%u2 _ 0 6%u2 8%113 B
ot Ox ot ox
Let v = u?, then we can write
ov 0% vs
= =0 B
ot ox (B)
Characteristics:
% =alu) =u
B & — gv) =L 3 i=v2w=u
Shock speed:
A SA = % (ur +ur)
o ud —ud
B $B = 3 ué;—ugz ;é sSA

Use conservation law for physically conserved quantity

Note 9

Shock speeds

Discontinuous solutions depend on the quantity being conserved. In the original
equation, we conserve u, while in the second equation we conserve %uQ. Recall

the shock speeds are given by s = % For the original equation,

1,2 1.2
SUH — U
_ 3Ugr —3Yr _
s1=2——2= =" (ug+ug).
UR — U, 2
For the modified equation,
1,3 _ 1,3 3 3
8 = sUR — 3UL _ 2up UL#
1,2 1,2 2 _ .2
SUR —zuy  Bup—up " 2

It is therefore very important to always use the conserved quantity to calculate

shock speed.

1
= (ur + ur) -

13
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4 Weak Solutions

A natural way to define a generalized solution of the inviscid equation that does
not require differentiability is to go back to the integral form of the conservation
law, and say that u(z,t) is a generalized solution of the equation if the integral
form of the equation is satisfied for all Ty, and xg.

An alternative to the above approach is to write a weak statement in a form
which requires less smoothness from the solution.

Multiply u; + f» = 0 by ¢(z,t) € Co (R x Ry)

CL is the space of continuous functions with continuous first derivative that have
compact support; i.e. that are zero at infinity.

/ooo /_Z d(ug + fo) dzdt =0

Integrating by parts
/ / [peu + ¢g f] dxdt + / é(x,0)u(z,0)dr = 0
0 —0o0 —0

The above statement will be modified accordingly for a bounded spatial domain,
by incorporating the appropriate boundary terms.

If above statement is satisfied for all ¢ € C}(R x R.) then u(z,t) is a weak
solution

Weak solutions are essentially solutions that satisfy the differential equation
where the solution is smooth, and the jump condition at discontinuities. All
(strong) solutions of the differential equation are also weak solutions; the reverse
is obviously not true. Unfortunately, there is a price to pay by enlarging the class
of solutions.

Weak solutions to conservation laws are often non unique.

14
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4.1 Non-uniqueness

4.1.1 Example : Burgers’ equation

SLIDE 30
-1 =<0
u(z,0) = { 1 2 >0 ;
AU
o SLIDE 31
0 . \\ >
z T
-1
The initial condition is in fact a solution for all times
. AU
Shock wave (Solution A) 1
s = vpt e _ 0 7
2 0 . SLIDE 32
-1 <0 ;7
u(m,t)—{ 1 >0 -1
Another possible solution is
Rarefaction ~ wave  (Solution B) 1“ b
(sometimes called expansion waves) 1
-1 r< -t 77;5 0 t >
u(z,t) =< § —t<z<t z
1 T >t +-1
In fact, it is possible to construct infinitely many weak solutions. Try it!
. . SLIDE 33
Solution A Solution B
t t
% %
4.2 Entropy Condition
SLIDE 34

Which is the physically relevant solution?

Criterion : the physical solution satisfies

- (au af (u) a%)

e—0

ot " oz ‘o2

15



We consider the more general viscous solution, and teke the limit as € — 0.
This is the vanishing viscosity solution discussed earlier. This condition is not
particularly easy to work with. We will examine below some equivalent forms
[L,S,LV] of expressing this entropy condition.

4.2.1 Convex (concave) fluxes

SLIDE 35
When f(u) is convex i.e. f”(u) > 0 ( or concave i.e. f"(u) <0) for all u, the
entropy condition can be written as
la(ur) = f'(ur) > s > f'(ur) = a(ur) |
Characteristics must run into the shock for increasing ¢, not emerge from it. SLIDE 36
At
ENTROPY ENTROPY
SATISFYING VIOLATING
xIr
>
4.2.2 Example
SLIDE 37
Solution A a(ur) =up, = -1
s=1ur+ur)=0
a(ug) =ug =1
Entropy condition is violated - characteristics emerge from the shock
Solution B No shock = OK
4.2.3 Oleinik’s Condition
SLIDE 38

Applicable to general flux functions
u(z,t) is the entropy satisfying solution if all discontinuities satisfy the property

that

fw) = flur) o J(w) = f(ur)
U —uy - = U — UR

for all u between u;, and ug.

16



4.2.4 Entropy Functions

Now we consider yet another characterization of the entropy conditions which
is very general and can be readily extended to systems of equations.

SLIDE 39
U(u) is an entropy function if it is positive, convex, and there exists a
corresponding entropy flux such that
F'(u) = U'(u) f'(u)
For smooth solutions
ot = Or
Proof: Multiply the original equation u; + fr = 0 by U' and the above results
follows.
SLIDE 40

The function u(z,t) is the entropy satisfying solution of the governing equations
if, for all convex entropy functions U (u) and corresponding entropy fluxes F(u),
the inequality

is satisfied in the weak sense. N10

If f(u) is convex we only need to check for one U(u)

Note 10 Entropy Functions

This is an alternative approach to enforcing the entropy condition. In gas dy-
namics, a physical quantity exists called the entropy that is known to be constant
along particle paths in smooth flow, and to jump to a higher value as the gas
crosses a shock. The entropy can never jump to a lower value (Second Law of
Thermodynamics) and this gives the extra condition which enables us to select
the physically correct solution.

The above inequality is derived by multiplying the viscous equation by U’(u)

U +U'f = eUugy
U+ F, = eU'uy,
Ui+ F, = €(Up —U"u?)

since U is convex, U" > 0 and so

Ui+ F, < eUygy

17



and letting € — 0 gives,
U +F, <0

in a weak sense.
The weak form of the entropy inequality is thus

/0°° /_O:o[¢tU + 6o F] dodt + /_Z ¢(z,0)dz < 0

to be satisfied for all ¢ € C}(R x R.) with ¢(z,t) > 0 for all z and ¢.
Note that becasue we have now an inequality, we must require that the weighting
functions ¢ be positive.

4.2.5 Example

SLIDE 41
Burgers’ equation f(u) = 1u?
Take U(u) = u? and F(u) = 3u®
Entropy inequality
2 2 3
(u)e + U <0
5 Application Examples
5.1 Traffic Flow SLIDE 42

Governing equation : p; + f(p)z =0

f(p) = pu = pumax (1 - L)

Pmax

Pmax

The fluz is a concave function of the unknown p.

S:%:Umax(l—m)

Pmax

18



5.1.1 “Traffic Jam”

Consider pr = pmax and pr, < pmax = Shock

Models moving cars encountering a traffic jam and instantaneously stopping.

PN

VEHICLE TRAJECTORIES @I CHARACTERISTICS £y

s < 0 and the shock propagates to the left N11

Note 11 Traffic Flow : shock solution

The cars are moving at speed uy > 0 when they encounter the traffic jam.
When they slam on their brakes, they instantaneously reduce their velocity to
zero, and the density jumps from pr to pmax (this is the shock). The shock
location moves to the left as more cars join the traffic jam (s < 0). We can
verify that characteristics run into the shock and that the entropy condition is
thus satisfied.

5.1.2 “Green Light”

Consider 0 < pr < pr < pmax = Rarefaction.

This might model the startup of cars after a light turns green.

VEHICLE TRAJECTORIES 7 CHARACTERISTICS T

PL = Pmax, PR = %Pma.x N12

Note 11 Traffic flow: rarefaction solution

The cars to the left initially have zero velocity (they are stopped at the inter-
section). They begin to accelerate as the cars in front of them move. Since
the velocity is inversely proportional to the density, each car can only speed up

19
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by allowing the distance between cars to increase. Therefore we see a gradual
acceleration and spreading out of cars (the rarefaction wave).

Note also there is another weak solution to this problem. This solution contains
a shock and corresponds to drivers accelerating instantaneously from u; = 0
to ug > 0 as the cars in front move out of the way. This solution is not
physically viable in terms of the original problem. In terms of mathematical
viability, although it satisfies the governing equations, it is inadmissible since
the characteristics run out of the shock and therefore the entropy condition is
violated.

5.1.3 “Sound Speed”

SLIDE 45
For smooth solutions information travels with speed f'(p)
pe+ f'(p)pe =0
Consider a nearly constant solution
p(SL", t) =po+ Epl(wa t)
If € is small we can model p;(z,t) with the linear equation
pit + f'(po)prz = 0
The initial data simply propagates unchanged with velocity f'(po).
) SLIDE 46
fl(po) = Umax <]- - Po ) 5 U9 = Umax (1 — Po )
Pmax Pmax
f'(po) < ug cars travel ahead of disturbances
But ...
po < 1pmax f'(po) >0  disturbances move forward
po > Lpmax  f'(po) <0  disturbances move backward
po = % Pmax @ “sonic point”
5.2 Buckley-Leverett Equation
SLIDE 47
u? )
flu) = u? +a(l —u)?’ “=

Here we consider the Riemann problem consisting of a discontinuos initial data
u=1forz<0andu=0 forz>0.

20



f(u)

£'(u)

We see that the flux function in this case is neither convex nor concave. In fact,

it has an inflexion point.

Physically we see that as the water moves in, it displaces a certain fraction of
the oil immediately. Behind the shock there is a mizture of oil and water with
less and less oil as times goes on.

We note that for non-conver flur functions it is possible to have a Riemann
solution which involves both a shock and a rarefaction wave. If the flux function
had more inflexion points, the solution might involve more shocks and rarefaction

waves.

8Y

t2

RAREFACTION

&
T
S

Note 13

Graphic determination of the shcok location

The solution to the Riemann problem can be determined from the graph of f(u)

in a simple manner.

f(w)
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The point of tangency u* is precisely the post-shock value. The straight line
represents the shock jumping from u = 0 to u = u* and the segment of f(u)
above the tangency point represents the rarefaction wave. Note that the slope
of the straight segment is precisely the shock speed. The fact that the line is
tangent to the curve means that the shock moves at the same speed as the
characteristic at the edge of the rarefaction fan.

It can bee seen that if the shock were connected to some point below u*, then
the solution would be multi-valued, and if the shock were connected to some
point above u* the entropy condition would be violated.

6 Total Variation

6.1 Definition

SLIDE 49
We examine now a property of the scalar conservation laws that will be useful
in developing numerical approximations. The total variation of a function u is
defined as:
u
b d f
Ou W
TV (u) = —|d
(U) /‘6.%’ . a c e
T
TV(u) = |up —ug| + |ue — up| + [ug — ve| + |te — ual + |uy — ue|
We note that the total variation can be related to the maxima and minima of
the function as follows:
TV(u) = |up—uq|+ |uc — up| + g — ue| + e — ua| + Jup — ue|
= 2(up + uq) — 2(uc + Ue) — uqg + uy
= 2 (Z mazxima — Z mz’m’ma)
6.2 Continuous Case
SLIDE 50

Let the above function u correspond to the initial condition for our conservation
law.

22



Consider the total variation of u(z,t) between two points z1(t) and z2(t) lying
on two characteristics.

tp o0 ea(t)
T
iy
SLIDE 51
If there are no shocks between z1(t) and z2(t), then the extrema will not
change, and the total variation will stay constant with time.
| TV (u(z,1)) = TV (u(x,0)) |
6.3 Discontinuous Case
SLIDE 52
The solution at a shock is determined by y; () and y»(t) provided the shock is
entropy satisfying.
t
tg =1(t) y\(j) x2(t)
T
%
SLIDE 53

The function in this figure is not exactly u(z,T), but has the same total variation
of u(z,T) since it has the same extrema.

23



TV(u(z,T)) = |up—ua| + [uc — ue| + uy — uel

By inspection we see that

TV(u(z,T)) = |up—ug|+ |us — ue| + |up — ue
< |up — wal| + [ue — up| + [ua — we| + |ue — ual + [uy — uel
= TV(u(z,0))
SLIDE 54
If there are shocks: TV (u(z,T)) < TV (u(zx,0))
In general,
d Ou
= - <
dt (/ Oz d:c) =0

The total variation of an entropy satisfying solution is a non-increasing
function of time.
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