Discretization of the Poisson

Problem in IR': Formulation

April 2, 2003



1 Model Problems

1.1 Dirichlet
1.1.1 Strong Form

SLIDE 1
Domain: Q=(0,1) .
Find u such that
gy = f in Q
w0 = wu(l) = 0 ’
for given f.
1.1.2 Minimization Statement
SLIDE 2
Define X = H(9) .
Find
u = arg min J(w)
where
1t 1
J(w) = = / widm—/ fwdzx .
2 Jo 0
This follows from the previous lecture, noting that dA is now dx, and Vw is
NOW W .
1.1.3 Weak Formulation
SLIDE 3

Find v € X such that
0Jy(u) =0, Vve X
(3

1 1
/umvzd.r:/fvdrc, YVve X .
0 0

Again, this follows from our earlier lecture with Vu - Vv now given by uzv,.



1.1.4 Notation

1
/ Wy Vg dT
0

Lv) = /Olfvdx.
1

Define a(w,v)

Minimization: u = arg min - a(w,w) — {(w)
weX 2

Weak: ‘uEX: a(u,v)zf(v),VveX‘

1.1.5 Generalization

For any £(v) € H1(9),
find u € H}(Q) such that

1
w=arg min s a(w,w)—~L(w); or
g, min % o, w) — ()

a(u,v) = £(v), Yo e Hy(Q) ;

for example, £(v) = (0z,,v) = v(zo) is admissible.

As indicated earlier, the delta distribution is not admissible if Q C R2, as can
be motivated by considering the Green’s function.

1.1.6 Regularity

If ¢ e H1(Q),
llull zr @) < C lllla-1(0) -

If £ € L2(9), E(U):/1 fodzx
0

llull 2y < Co llfllz2c) -

1
Recall [[v|[32(qy = V|32 () + I3y = fo vEe + 02 +0? da.

Note 1 Regularity

If ¢(v) = fol fodz, with f € L?(Q), we immediately obtain from |ul| g1 (q) <
C|4|| -1 (@) that [|ullg ) < C|Ifll2(q), since the H~' norm is always bounded
by the L? norm (there is “more” in the denominator). But from the strong form
—Uugze = f we can see that |u|m2(q) < ||fl[z2(). It thus follows that Cp in the
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above slide is (1 + C?)'/2. This can also be shown by explicit construction of u
(see Lecture 2 from earlier in the course).

The fact that u is regular when f is regular (and in IR?, the domain is suitably
regular) has very important implications as regards the convergence rate of the
finite element method and the construction of a priori and a posteriori error
estimates.

1.2 “Neumann”
1.2.1 Strong Form

Domain: Q=(0,1) .
Find u such that

—Uyy = f in Q,
u(0) = 0,
ua:(l) =9,

for given f,g.

1.2.2 Minimization Statement

Define X ={ve H'(Q) [v(0)=0}.

Find
u = arg min J(w)
where
1ot !
J(w):—/ wﬁdm—/ fwdr —gw().
2 Jo 0

This follows from the previous lecture, noting that [.x g v dA is here just
gv(1l). We can also show this explicitly by integrating by parts to find 6J,(u) =

Jo v {—uge — [} da +v(1){us(1) — g} =0, Vv € X.

1.2.3 Weak Statement
Find v € X such that

1 1
/uzvzdmz/fvd:u—kgv(l), Vve X .
0 0
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1.2.4 Notation

1
Define a(w,v) = / Wy Vg dT
0
1
Lv) = / fvdz+go(l).
0
Minimization: u = arg min o a(w,w) — £(w)
Weak: ‘ueX: a(u,v) =L(v) ,, Vve X ‘
Note 2 Neumann and delta distributions (Optional)

We note that, in IR!, our Neumann condition looks exactly like a delta
distribution forcing at the boundary, x = 1. This is fine, since we know the
delta distribution is an admissible (bounded) linear functional, that is, is in the
space H1(Q), for this one-dimensional problem.

We know that in the interior a delta distribution imposes (weakly) a jump
in the derivative (see Note 10 of last lecture). On the boundary, it imposes
(weakly) the value of the derivative itself — since there is no “other side” to the
jump.

2 Rayleigh-Ritz Approach

2.1 Approximation
2.1.1 Mesh

Note our default problem is the Dirichlet problem; we shall explicitly indicate
Neumann when we wish to consider that problem (primarily in the exercises).

z=0 — i R e z=1

/\/Y T T T T Y\,\ T T #\I\
To Tl Tk T Tn+41
h h

K
ﬁ:UTfL T,'f, k=1,...,K =n+ 1: elements

k=1 z;, 1=0,...,n+1: nodes
Note 3 Triangulations Ty,

The above decomposition is known as a triangulation, Ty, even though in
IR! our elements are not really triangles (though they are simplices — which are
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segments in IR!, triangles in IR?, and tetrahedra in IR®). In general, a triangula-
tion T refers to the collection of elements (segments, triangles, quadrilaterals,

..) TF, the union of which reconstitutes the original domain 2. Note the
elements are open, so in fact  (the closure of ) is the sum of the closure of
the T}. As in finite differences, we also have nodes — which will play a central
role — but it is the elements that define the approximation.

In general, we may consider non-uniform meshes in which the elements are
of different lengths, or “diameters,” h*. In this case the h which appears in 7y, is
the maximum diameter over all elements. It is important to remember that we
will in fact be concerned with a sequence of triangulations 75 with h — 0. We
say that our sequence of triangulations is quasi-uniform if the ratio Amin/hmax
over T, is bounded from below as h — 0; we shall always assume this to be the
case. In higher dimensions we will also define a regularity hypothesis related to
the shape of the elements.

There is another way to describe elements and triangulations in which T}
shall refer to any particular member of 7, — that is, the enumeration and k
superscript above is left implicit. This is often more convenient for describing
various approximations. In terms of this abbreviated notation, we have that

where T}, € T}, indicates to take the union over all elements.

2.1.2 Space X;, C X
SLIDE 12

Xh:{veX "U|T: e P, (Th), k=1,...,K}

Recall that 1)|T}x: means v restricted to T¥. Thus the above says that a v in X,
must be in X = HJ (), and must be piecewise-linear — P1(D), D C Q, is
the space of linear polynomials over D — on each element. We can also write
Xp={veX|vln, € Pi(Th), VI, € Tn}.

v € Xp piecewise linear

N 7
v(0) =0 v(l) =0

v continuous



Note 4 Continuity of v in X

It is clear that if v € X}, then since X, C X (X}, is a subspace of X — any
member of X}, is a member of X because X = {v e X|---}) v(0) =v(1) =0—
all members of v in Hy () (and hence X, C X) vanish at z = 0 and z = 1. But
X}, C X also tells us that v must be continuous: the (distributional) derivative
of the function depicted above is piecewise constant on each element, and hence
square integrable, as required by H*(f); however, if we had jumps in v between
elements, the derivative would generate delta distributions at the nodes, which
are not in L?(Q) (see Note 7 of the last lecture) — a function with jumps is
thus not in H'(Q). It is important to note that we do not require that our v be
in C*(Q), that is, have continuous first derivatives — this is much more difficult
to implement numerically.

We remark that there are finite element approximations in which X, ¢
X — these are known as monconforming approximations, as opposed to the
conforming approximations we consider here.

2.1.3 Basis

General definition:  given a linear space Y,
a set of members y; €Y, j=1,...,M,
is a basis for Y if and only if

Vy €Y, J unique a; € IR such that

M
y=> ajy;;
j=1

dim(ension) (V) = M . IN5||N6||E1][E2]

Note 5 Linear dependence and dimension

It follows from our definition of a basis that any set of M linearly independent
members y; — members such that

M
Y ajyi=0=0a;=0,j=1,..,M

=1

— will serve as a basis. It is also readily demonstrated that, although our
choice of basis is not at all unique, the dimension of Y, dim(Y), is unique.
For simplicity we will use the basis concept primarily in the context of finite-
dimensional spaces such as Xj; but infinite dimensional spaces such as X =
H}(9Q) can also be described in these terms. Note we can express a space Y in
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terms of any basis as Y = span {y;, j = 1,..., M}, meaning that any member
of Y can be represented as a linear combination of the y;.

Note 6 Orthogonality

If our space Y is a Hilbert space with inner product (-,-)y, we can introduce
the notion of orthogonality: two members y1 € Y and y» € Y are orthogonal if

(y1,92)y = 0.

An orthogonal basis is thus a basis for which the y; are mutually orthogonal,
(i,y;)y = 0, i # j. If, furthermore, (y;,y:)y = |lyil|2 = 1, the basis is
orthonormal.

> Exercise 1 Consider the Hilbert space IR? “equipped” with usual Eu-
clidean inner product, ([21,y1], [%2, y2]) = Z1224+y1Yy2, and hence norm ||[z, y]|| =
(2% + y?)'/2. Note the pair [z, ] refers to a single member (point) in IR?.

(a) Is (1,1),(1,0) a basis for IR?2? an orthogonal basis?

(b) If (1,—1)/+/2 is one of our basis vectors, find a second vector such that
we have an orthonormal basis.

> Exercise 2 Consider Y = IP5([—1,1]) = span {1, z, 7?} equipped with the
L? inner product, (y,2)y = f_ll y z dz (here y and z are two members of Y,
that is, two polynomials).

(a) Replace z2 with another basis vector (in fact, polynomial) such that we
now have an orthogonal basis.

(b) Appropriately normalized, what polynomial system (that is, associated
with what famous French mathematician) are you generating by the above
“Gram-Schmidt” process.

Nodal basis for Xp:

i, 3=1,...,n =dim(Xp)
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| | AL
¢; nonzero only on T', U T,

Note 7 Counting argument

We can convince ourselves independent of any basis that dim(Y') = n. First,
we note that on any element T}, vlgp = a® + b*x; since we have K = n + 1
elements, this gives us 2n + 2 degrees-of-freedom. However we also have 2
boundary conditions (at x = 0, z = 1) and n interface continuity conditions
(v|T;; (z;) = U|T£+1(xi), i =1,...,n), for a total of n + 2 constraints. Thus,
dim(Y)=2n+2-(n+2) =n.

Note 8 Interpretation of basis

The nodal in nodal basis refers to the fact that the basis coefficients are not
just “Fourier-like” coefficients, but also have a “physical-space” significance: if
v is a member of X, we know from the definition of a basis that

n
v=" vipi(x) ;
i=1

however, v(z;) = > i, v; pi(x;) =v;, j =1,...,n, since the ¢, are zero at all
nodes except z;. (Indeed, the ¢; can be uniquely defined by the conditions ¢; €
X, @i(z;) = di5, ¢ = 1,...,n; here d;; is the Kronecker-delta symbol.) Note
that there is no “@g” or “pn41” in the basis since we must have v(0) = v(1) =0
for v € Xp,.

Thus v; = v(z;), the value of v at = z;, the i*" node; and Y-, v; @i(z)
“connects” the values of v at the nodes with linear segments on each element.
It is then patently clear that we can represent any piecewise-linear continuous
function v that vanishes at x = 0 and = 1 by the choice v; = v(x;), i =
1,...,n. Furthermore, the v; are unique — no choice except v; = v(z;) will
work. It thus follows that the ¢; are indeed a basis.

There are many other possible choices for basis — we explore a particularly
useful one in a later exercise. However, the nodal representation remains the
most common, first because of the convenient interpretation as nodal values, and
second because of the matrix sparsity induced by the minimal overlap between
the Pj.




2.2 “Projection”

2.2.1 Plan
Let

n
un (€Xn) = unpi(@);
—— —
RR/FE Approximation =1

set up; = w; that minimize
n
T wie;
Jj=1
More precisely, what we mean is that up; is the minimizer of J (2?21 wj P5),
that is, argmin J(3°7_, w; ¢;)-

The finite element (FE) approzimation is, for this simple problem, a classical
Rayleigh-Ritz (RR) approach with a particular choice of space and basis.

Geometric Picture:

Up

X
u/ (minimizer over X},)

(minimizer over X)

Since any member of Xy, can be represented as our sum over the p;, we are
finding the minimizer (uy) of J over all functions in Xp,. The choice of basis will
thus not affect the minimizer (or minimum), though it will affect the particular
coefficients. We later prove that J|x, is a paraboloid — as indicated here —
and that by extension J over X is an infinite-dimensional paraboloid. We see
from this picture that as X5, grows it absorbs more of X, and uyp, should thus go
to u as we increase the number of elements; this is indeed the case. Of course,
J(up) > J(u), since J(up) is the minimum of J over a subspace (X) of X.

SLIDE 15
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2.2.2 J|x,
SLIDE 17

n 1 n n n
dwiei| = o D wiei Y wie; —€<Zwi%>
j=1 i=1 j=1 i=1

n n

> wialpi, i) wy =Y wi k()

1 j=1 i=1

by bilinearity and linearity.

I
N =
-

7

Note 9 Application of bilinearity and linearity

We indicate here the steps evoked above:

n n
§ w; i, E wj Pj
i=1 j=1

n n
a | wipr + E W;iPi, E wjPj
=2 7j=1
n

n n
= wia | ¢, E wip; | +a E W;iPi, E W;P;j
j=1 i=2 j=1

n n
= E w; @ S%E W;Pj
i=1 j=1

I
M=

w; | a 90i7w1901+zwj90]'
1 j=2

<.
I

M:

wi | alpi,o1) wr +a | i, ) wip;

Il

<
I
—
U
[V

J

n

[
M§

a ‘Pu SOJ
i=1 1

w;
J

n
Z w; a 9017‘;0]

1 j=1

[
M:

<.
I
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Similar arguments yield the linear term:

= wik(p1) +¢ (i wz’%’)

JRweR™) = J[Y wg;
j=1
w

DN | =

Note that J® is essentially the same object as J|x, , however JE: R™ — IR is
expressed in terms of the basis coefficients, while J|x, : Xn — R is expressed in
terms of functions in Xp,. The minima will be the same: JE(up;) = J|x, (upn) =
J(uy). Notew refers to the vector (w1, ws, ..., wy)T; similarly w, shall refer to
the vector of basis coefficients (and nodal values) of up, (Wp1,Un2,- - Upn)?T .

F,eR™ th—€¢z< /f901d$>

d‘pz dp;
A X Ap i = iy P5) = — E
“2h € ]R‘ h ij a(SD 780.7) 9 d.’L’ d.Z' d

Note this is just a re-expression of our earlier indicial expression in terms of
vectors and matrices.

> Exercise 3 Show that A, is SPD — symmetric positive-definite. Hint:
consider what vT A v means in terms of the functions Yoy vi pi(z); recall that
the ; are a basis. m

11
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2.2.3 Minimization

SLIDE 19
_ . R
uy, =arg min J (w) :
L >y
/ "
ws up
Expand J®(w = u;, + v); require J®(w) > JE(u,) unless v = 0.
SLIDE 20
T (up, +0)
1
= 3 (u, + )" Ay (uy, +0) = (u, +0)" F,,
1
= iﬂ;‘l;éhﬂh —@:ffEh
L r L r T
+§Q Ah!h+§yh A,v—v F,
1
+ 3 QT Ay v
SLIDE 21
TR (uy, +v) = JR(u)
+(Apu, —Fp)" v 675 (uy) SPD
| ——— =
VIR (u,)
L 7
+- v Ay SPD
2 —
>0, Vv#0
This is essentially a Taylor series about uy; since J* is quadratic, this Taylor
series terminates with the quadratic term.
SLIDE 22

If (and only if)
613 (uy) =0, VveR"

|}
VJR(%) =Ayu, —F,=0
then
JE(w = uy, +v) > Ji(u,) , Vo#0. N10

If Ay uy — Fy # 0, we can pick v = —e (A, u, — E}); for small enough € the
quadratic terms are negligible, and J® will thus decrease. This proves the “only

12



if ” — JE can not be o minimum if A, u, — F), is not zero. The “if” is just as
easy: if Apup — Fp, =0, JR(u, +v) = JR(u,) + 2 vT4, v > JB(y,) unless
v=0.

Note 10 J%: a paraboloid

Since A4, is SPD, we know it can be diagonalized as QTAhQ = A, where Q
is the matrix of orthonormal eigenvectors of A and A is the diagonal matrix of
perforce real, positive eigenvalues, A;, i = 1,...,n.

We know that J®(u, +v) = J¥(u,) + 5 vIAv. Expressing (any) v as Qz
— a rotation of our axes — we find that

Ty +v) = J%u,) +s2"Az

DN | =

2

N vnk

Thus J&(w) is a paraboloid with minimum J%(u,,) and (hyper)ellipsiodal cross-
sections — J®(w) is constant if

= JRu,) +

N =

Zi

(1/X)

n 2
= constant ,

N | =

=1

which is the equation for an ellipsoid in R™ (with largest or major axis 1/v/Amin
and smallest or minor axis 1/4/Amax). It “follows” that J: X — IR is an infinite
dimensional paraboloid.

2.2.4 Final Result
Find u, € R™ such that

N
Ay w=F, = w)= Z unj ;() -
~— ~— =

a(pi,pj) £(p:)

Different bases will give us different A, — with different sparsity, bandedness,
and conditioning — and hence different u,. For example, if the ¢; are orthonor-
mal in the a(-,-) inner product, A, would be diagonal (not likely in general . .. ).
But up(z) depends (at least in infinite precision arithmetic) only on our choice
of space — it is basis-independent.

SPD = existence and uniqueness.

13
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3 Galerkin Approach

The Galerkin approach is based on the weak statment, which will exist even when
the minimization statement does not. It is thus much more widely applicable,
and the cornerstone for general finite element analysis. Indeed, the procedure
we describe below will work for any equation and problem and discretization
— all that will change in each case is the particular X, Xy, a(-,-), and £(-).
Furthermore, the general Galerkin procedure is widely used even outside the
finite element context.

3.1 Approximation
PP SLIDE 24

Triangulation 7p;
Space X}, ; and
(Nodal) Basis Xp, = span {¢1,...,¢n} ;

as for the Rayleigh-Ritz approach.

3.2 Projection
3.2.1 Plan SLIDE 25
Let

un(€ Xp) =Y un; p;(2) ;
j=1

set wup; such that
5J’u(uh):0, Vve X,
0

a(up,v) = £(v) , YveXy.

N11

Note 11 Interpretation of a(up,v) = £(v), Yv € X}

From the definition of .J, we know that

Jup+v) = 1alup+v,up+v) — Lup +v)
= J(up) + a(up,v) — L) + 1 a(v,v)

= J(un) +6Jy(up) + 5 a(v,v) ,

14



where we recognize from the last lecture that 6J,(w) = a(w,v)—£(v), and hence
0Jy (up) = a(up,v) — £(v). If we wish J(up) to be the minimum of J(w) for all
w € Xp, we must have §J,(up) =0, Vv € Xy, or a(up,v) =£(v), Vv € Xp.

We are again minimizing our paraboloid just as in the last section, but this
time we start directly from the minimization (or optimality) condition rather
than from the minimization statement itself. This is shown graphically in the
next slide. Note that §J,(up) # 0, Vv € X (6J,(u) =0, Vv € X): there are
directions in X for which 0J,(up) # 0, which will lead to lower values of J —
unless we are very lucky and the exact solution u is in Xj,.

The above arguments again rely on the minimization statement. But we can
proceed independently: if u € X satisfies

a(u,v) = £(v), Vve X,
then we simply require up € X}, to satisfy
a(up,v) = £(v), YveXy,.

As we shall see in a later Note, this can be interpreted as requiring the equation
to be satisfied not at each point, but in an integral sense relative to certain test
functions v.

Geometric Picture:

J|x,

éJv(uh) = 0,
Vv (S Xh

h

3.2.2 Variation

Since any v € X} can be written as

n
v=">" viiz),
=1

a(up,v) = £L(v) VveX,

)
a(“h’z ”i%)=€< Uz’%’) ) VveR".
i=1 im1

n
But Up = E Upj Pj 5 SO
i=1

15
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ald unjps Y vies =€<Z vz’%’); VveR"
=1 i=1 i=1

or, by bilinearity and linearity

vl Ayu, =v"F,, YveR".

We play identical tricks as before, pulling out the v; and uyj to arrive at

n n n

S vialei, ;) uny = Z vi l(pi),  VveR"

i=1 j=1 =1

which in matriz form is simply vT A u, = vT'F,, Yv € R", with A, and F), as
defined earlier.

Take y:(l 0 ... O)T = ZAhljuhj:Fhl
=1
]n

QZ(O 1 ... O)T = ZAthuhj:FhQ
j=1

‘QTAhﬂh:QTEh , VVeER™ & Ayu,=F, ‘

N12

If we took different v test vectors we would get different (even non-symmetric)
equations — but the u; would be the same. The test functions chosen here
preserve the Galerkin recipe in which the test (v) and trial (up) spaces and
bases are the same.

Note 12 Weighted residual techniques (WRT)

Given some general operator £ and associated partial diffential equation
Lu = f, a weighted residual technique looks for a & € X; C X such that

/v{&l—f}dAzO, Vve Xy.
Q N e’
residual

In particular, we no longer require that Lu — f = 0 in a pointwise sense, but
rather in an integral sense relative to test functions v; we expect as X; and X,

16
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become richer 4 should approach . Many different procedures can be devised
based on different choices of X7, X5, and their associated bases. In the Galerkin
procedure, X; = Xs.

Note we know from the previous lecture that it is much smarter, for our
particular problem in which £ = —V?2u, to write

/UﬁudA:/ Vu-VuvdA
Q Q

rather than [,v LudA = [ —V2u v dA, since the former is more general,
permits simpler approximation spaces (X} is only C°(f2), not C*(£2)), provides
for automatic imposition of natural boundary conditions, ... .

4 Discrete Equations

4.1 Matrix Elements: A4,
4.1.1 ; and dyp;/dx

SLIDE 30
1
h
0 3 . ——t .
le Tilz+1
_1
h SLIDE 31
1
h o dpiz
dz
dpi_1
e dr
LR A A
dx
1
" h
4.1.2 Typical Row
dow d dow d do: d SLIDE 32
Wi aP; PYi ap; Yi aP;
Apii = L dr = ——d:z:+/ — —dzx
hii q dzr dx /T;; dr dx Ti+1 de dx

isnonzeroonly for j =¢—1, ¢, ¢ +1

17



Anii = W)+ (h) = 3
M = FEH® =
Apiivi = (=3) 1 (b = -3

Sparsity naturally arises because the @; have very little and localized “support”
— are nonzero only over a small patch of elements — and thus interact very
little with each other.

4.1.3 Boundary Rows

SLIDE 33
1
Ahll = %7 AhlZ = _% 3
Ahnn - %; Ahnn—l - _%
1
“h
4.1.4 Properties of 4, 5
LIDE 34
2 -1
1 2 0
1
Ah =T
h
O 2 -1
-1 2

A, is SPD; and
diagonally dominant; and
sparse; and
tridiagonal.

The matriz here is the same as that from finite difference approzimation except
for a factor of h (which will of course appear on the right-hand side as well for
consistency). We delay our first comparison with finite differences until the end
of the next lecture.

18



4.2 “Load” Vector Elements: £,

General case, £(v): Fp; = £(p;)

Example: £(v) = (05,.,v)
£(p3) (02;0 5 P4)

pi(ziv)

= 04 .

Note i* here is a particular node (placement at a point which is not a node is
not such a good idea); Fp; = 0;;» means that F, = QO except entry i* which is
unity.

Particular case, £(v) = / fudx:
Q
Fyi= fsoidw+/, foids, i=1,. .,n;
T} T+t

f

pi Numerical quadrature —
“variational crime” — next
- - lecture. N13
T, T,;“
Note 13 Quadrature

In fact, numerical quadrature is not “implementation,” but really part of
the formulation. (Of course if we perform the integrals exactly, that is not the
case — but rarely can we do so in practice.) In particular, different quadratures
will yield different F, (and perhaps even A; for more complicated problems),
and thus different u,. In the next lecture we look at the two basic approaches:
integration by interpolation; and Gauss quadrature. In general, in contrast to
finite differences, we will not obtain Fy ; = f(z;)-

4.3 Summary

u, € R™ satisfies

2 -1
-1 2

Fy;

O Up 1

-1

S =

2 Up n Fyn
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|E4]|E5]|E6]|ET7]

A, is known as the stiffness matriz (inherited from structural analysis), or the
system matriz, or the global matriz.

> Exercise 4 Consider the problem

—uk = 0 0<ar<%;

—Zume =0 %<:1:<1;
—uk()+1 = 2l

a(d) = W)

u(0) = w®(1) = 0.

(a) Find the weak formulation of the above problem. Hint: see the examples
and exercises of the previous lecture.

(b) Consider a triangulation 7, with two equi-sized elements, Ty = (0, 3),
T? = (3,1). Find A,, F,,, and hence uy,.

(c¢) Explain why up = u with only two elements.

> Exercise 5 Consider linear finite element discretization of the Neumann
problem of Section 1.2 on a triangulation 75 of equi-sized elements TF, k =
1,..., K = n; the corresponding n + 1 nodes are given by zo =0,...,z, = 1.

(a) Define X}, and the associated nodal basis.

(b) Find the discrete equations 4, u, = F, analogous to those of Slide 37 for
the Dirichlet problem. (Note 4, € R™*", u, € R", F, € R".)

(c) Compare the n** equation to what you might expect from finite differences.

> Exercise 6 Consider (for the Dirichlet problem) approximation by finite
elements in which v in each element is quadratic:

Xn={veX|vn €Pa(Th), VIn € Tn} .
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(a) Find dim(X}) by a counting argument. Hint: note that v € X are still
only C°(9).

(b) Introduce nodes not only at element boundaries but also at the midpoints
of each element. Sketch several nodal basis functions ;: recall the ;(x)
are uniquely determined by the conditions that ¢;(z) € X} and @;(z;) =
0ij-

(c¢) Find the discrete equations for these quadratic elements analogous to those
of Slide 37 for linear elements.

> Exercise 7 For the fourth-order problem of Exercises 7 and 11 of the last
lecture, show by a dimension/counting argument that piecewise linear elements
do not lead to a viable conforming approximation. Hint: does it still suffice to
require only v € C°()? m

5 The Mass Matrix

5.1 Motivation
5.1.1 Definition
Mh € Rnxn.

My ;5 = / wip; d )
Q
————
originating form: (w,v) 2,

the finite element “identity” (I) operator.

The mass matriz will have the form above — and the stiffness matriz Ay, ; j will
be given by a(p;, ;) — for any choice of basis functions p;; however, unless
otherwise indicated, we will assume that the ; refer to our particular nodal
basis functions.

5.1.2 “Applications”
M, appears where the identity appears

e as part of differential operator, —ug, + Iu = f;
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e in eigenvalue problems, —u,, = A Iu;

0
e in parabolic PDEs, I 8—1: = V2u;

e in quadrature by interpolation.

We know that in the Galerkin procedure we find the discrete equations simply
by replacing u by ¢; and v by ¢;; in each of the above cases the Identity term
will give rise to a weak form (v,u)p2(q) and hence mass matriz. We will see
this more clearly in each particular application.

> Exercise 8 Consider the “good” Helmholtz problem
—Upe + YU = f inQ2=(0,1),
u(0) = uw(l) = 0,

with 42 > 0 (and real).

(a) Find the minimization statement and weak form associated with this prob-
lem: specify X; specify a and £ (and hence J); show that a is SPD. Hint:
multiply the equation by v € X and integrate the Laplacian term by parts.

(b) Show that the stiffness matrix Afeimholtz — glaplacan 4 \2pr, = where
Aﬁaplaman is the stiffness matrix for the Laplacian as given in Slide 37.

5.2 Properties
5.2.1 General
M, is SPD:

n n 1
My = Z'Uz'zvj/ i pj dz
S
Y viei > vipds

1 n
0 ; ———

p; are basis
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5.2.2 Particular

For linear elements, nodal basis:
2 1
3 6
1 2 1
6 3 6 O
M, =h
0 2 1
3 6
1 2
6 3
sparse, banded, tri-diagonal — “close” to I.

The mass matriz takes its name (I presume) from its appearance in dynamical
equations (or the heat equation) with the mass term. We can also see that if we
sum all the entries of M, we get something very close to unity — the volume (or
mass) of Q. We do not get exactly unity only because of the Dirichlet boundary
conditions; we revisit this in the next lecture.

> Exercise 9 Hierarchical basis functions, in which the finite element coef-
ficients have only a Rayleigh-Ritz role, and no nodal interpretation, are often
attractive for adaptive purposes, as, unlike in our nodal system, refinement is
achieved without modifying the basis functions already present. Hierarchical
basis functions can also achieve very sparse matrix structure in certain “orthog-
onal” cases, and are also often well-conditioned.

We consider the homogeneous Dirichlet problem on the domain Q = (—1,1),
for which the continuous and finite element spaces are given by X = H}(Q) =
{v e H(Q) [v(-1) = v(1) = 0} and X, = {v € X |v|px € Py(T}), k =
1,...,K}, respectively. We choose K = 2L+1 elements of equal length h = 2L,
for L an integer greater than zero. Note that we are not changing our finite
element approximation, X, but only the way in which we represent X, in terms
of a basis. In particular, as before, up € X}, satisfies a(up,v) = £(v), Vv € Xp,
for the a(-,-) and £(-) corresponding to our problem of interest.

To describe the new basis, we first introduce a “mother” function ¥: R - R

1 — |z| lz[ <1
U(z) =
0 |z] > 1

which is a hat function defined over the entire real line. Now, “wavelet-like,”
we introduce 2™ shifted and squeezed daughter functions at each of L levels,
25 —1 j=1,...,2m
. — m —_ I I
Vm,;(T) lIJ(Q (m+1 om )) m=0,...,L
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The ¢m,;(z) are centered at —1 + (2§ — 1)/2™, with half-width 2™, as shown
in the figure. At level m = 0 we have the mother function; at level m = 1 we
have two copies each with half the support; at level m we have 2™ copies each
with 2™ the support.

Al A e — 4
P11 ‘ P12 Yo
To proceed algebraically, we need to collapse our basis functions to a single
index, which we define as

lnd(m7.7)=.7+(2m_]-), j:].,...,Qm, ’)TL:O,___’_L7
and then write
Xind(m,j) = ¥m,j>, Jj=1,...,2™, m=0,...,L.

Note that ind (L, 2%) = 2541 —1 = n, and we thus have 2L+1 —1 = K — 1 basis
functions; note also that the x;(z), ¢ = 1,...,n, all satisfy the homogeneous
Dirichlet boundary conditions.

(a) Argue that the x;(z), i =1,...,n, form a basis for X}, that is
Xp =span {x;(z), i=1,...,n},

or equivalently, for every w € Xj,
n
w(z) =Y wixi(z)
=1

for some unique vector w € R™. Note n = K — 1 = dim(X},), as must be
the case. Hint: show that w(z) of above is linear over each element and
continuous over §2; construct a unique correspondence between the nodal
values w(z;) and the w; by “peeling” off each level of the hierarchy (start
with the mother).

(b) Consider the particular problem

Ugg = [,
u(-1) = u(l) = 0
Apply the Rayleigh-Ritz procedure with the basis functions x;(z), i =
1,...,n, to find the discrete equations
Apu, =Fy,
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where, as always,

1
dx; dx; .
An)ij = =t 2 1< <
( h)] /1 d.'E d.CL' d'r7 _7'7.7_”’7
1
(Fh)i = / xi f dz, i=1,...,n,
-1

and u, € R™ are the coeflicients of the finite element solution
n
up(z) = Z up; Xi(z) -
i=1

In particular, give an explicit expression for A,, and discuss the structure
of this system matrix relative to that associated with the nodal basis. Hint:

o dx; . . .
plot the derivatives %, which resemble “Haar” functions; consider how
i

these derivatives interact at the same and different levels of the hierarchy.

Repeat Part (b) for the modified problem (see Exercise 8)

—Uzz +u = f,
u(-1) = u(l) = 0.

Is the good matrix structure obtained in Part (b) “robust”? You need
not give an explicit expression for A4, in this case, but you should clearly
identify the sparsity structure.
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