Partial Differential Equations:
An Overview

Lecture 1



1 Model Equation

1.1 Convection-Diffusion

Ou g
E+U-Vu—mv u+ f
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= (%7 6_y)’ =52 + ay°
U, k>0, f, given functions of (z,y)
Scalar, Linear, Parabolic equation

Despite its apparent simplicity, this equation appears in a wide range of disci-
plines ranging from Heat Transfer to Financial Engineering. During this course
we will make extensive use of this equation, and several of the limiting cases
contained therein, to illustrate the numerical techniques that will be presented.

In some cases U, k, and f will be functions of the solution u, in which case the
equation is said to be nonlinear.

Note 1 Derivation of the Convection—Diffusion Equation for Heat
Transfer

We sketch below the derivation of the Convection-Diffusion equation for the
particular problem of Heat Transfer in a moving fluid. Consider a velocity field
U = (U(z,y),V(z,y)) which is (for simplicity) time independent and incom-

pressible, e.g.
ou oV
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streamline
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A streamline is a curve which is obtained by integrating the vector field and
corresponds to the trajectory of a fluid parcel
dy
dz

SIS

streamline
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For a given parcel we can write the equation expressing the balance of energy
as

dE .
dt - Qe * /
fixed parcel ~ ~
rate of net heat rate of volumetric
transferred heat generation
into parcel inside parcel

where E = pcT is the internal energy per unit volume, T is the temperature, p
is the density and c is the specific heat. The term @), can be expressed in terms
of the heat flux ¢ = (gz,qy), by considering an infinitesimal parcel of size dx dy.

dx
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9dqy
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The net rate of the heat transferred into the parcel, per unit area, will thus be

_ 7l [% gy _
_dxdy[am da:dy+ay dedy|l =-V-q.

Qe
The heat flux is finally related to the temperature through Fourier’s law

q=—-kVT
where k is the (constant) thermal conductivity of the fluid.

E
The derivative term — 1is called a material derivative because it is associated
with a fixed fluid parcel that moves with the flow.

—

mparcel (t + dt)

a’parcel (t)

Expressing the material derivative (Lagrangian notion) in terms of fixed time
and space derivatives (Eulerian notion) we obtain

dE

d
E = pc E T(wpa.rcel(t)a t)

fixed parcel



a_T dxparcel a_T dyparcel or
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which then yields the final form of the convection-diffusion equation after divid-

k f*
ing b d defini =—, f=—.
ing by pc and defining & v e
Note 2 Classification of PDE’s (Optional Reading)

We review the classification of first and second order linear partial differential
equations in two independent variables. This classification is useful, not only
to identify solution methods applicable to a particular equation type, but also
to determine the character of the solutions. For two independent variables all
equations can be classified as shown below. We note that for equations with
more than two independent variables, the classification is far more complex as
some equations may become of mixed type (see [F] for additional reading)
Within this note, (z,y), denotes the independent variables and ¢(z,y), the
dependent variable, or solution of the PDE.

First Order PDE’s
First order partial differential equations are always of hyperbolic type. A
general linear first order equation can be written as

Ay + By = F(z,y,9)

where A and B may be functions of z and y, but not of ¢. If we write d¢ =
¢.dx + ¢ydy, then

Ad¢ + ¢y (Bdx — Ady) = Fdx .

Along the lines (characteristics) such that Bdx — Ady = 0,

dp
A7 =F  (ODE).

Characteristics are Bx — Ay = 1), for any 1, and the general solution becomes

qj:%/FdaH—g(w):%/Fdx%—g(Bﬂ?—Ay)-



Where g is an arbitrary function to be determined by the initial and boundary
conditions.

Second Order PDE’s
A linear second order partial differential equation can be written as

A¢zz + B¢zy + C¢yy = F(.’I}, Y, &, s, ¢y)

where A, B and C may be functions of 2 and y. Based on the local value of the
coefficients the equations are classified as follows:

B2 —4AC >0 Hyperbolic
B2 —4AC =0 Parabolic
B? —4AC <0 Elliptic

Note that an equation may change type from one point to another since the
coefficients may be functions of z and y. We will typically assume that, when
we say that an equation is of a given type, it remains of the same type over the
whole domain.

Consider a wvalid change of independent variables ( = ((z,y), n = n(z,y), such

that & ¢
J=<”z n) 7] #0.

Then,

. = ¢C CwA'*' ¢17 Nz
bzz = Pc¢ Cﬁ + 2¢¢n CaMe + Oy 773 + ¢¢ Cox + Py Moo

The transformed equation becomes

a¢§€ + b‘b(‘n + c¢’l]7] = f(C7777¢7 ¢C7¢"7)

with
a = AQG+BGG+C(
b = 24 (e + B (Gny + Gne) +2C Gy
¢ = Ani+Bunmny+Cn

THEOREM: This classification is invariant under valid non-singular transforma-
tions.
Proof: From above b? — 4ac = (B? — 4AC) (Cemy — Gune)? = (B2 — 4AC) |J|%.

CANONICAL FORMS

HYPERBOLIC case (B? — 4AC > 0):
In this case it is always possible to choose ¢, 77 so that a = ¢ =0, i.e.



A(C—E)Q+B(C—m)+0=0, A("i)2+B("i)+C=0,

Cy Cy Ty Ty
—B ++v/B2—-4AC —B++vB2 —-4AC
Ce = 24 Cy> Nz = 24 My

Then, the equation becomes

‘ ¢Cn = F’(Cﬂ?; ¢) ¢Ca ¢7]) ‘
An alternative form can be obtained by setting X =(+1n, Y =(—n:

‘QSXX —¢yy = F"(X,Y,¢,¢x,¢y) ‘

PARABOLIC case (B2 —4AC =0) :
Here, we can only set a (or ¢) to zero (not both), otherwise ¢ and n are not
independent. If we set a = 0, then

& __B
G247

It can be verified, by direct evaluation, that in this case b = 0, in which case we
can pick 1 to be any function such that |J| # 0, and the equation becomes:

| Gun = F'(Cm, &, ¢ 6n):- |

ELLIPTIC case (B? —4AC < 0) :

This case is identical to the hyperbolic case but now ( and 7 are complex
conjugates (B? —4AC < 0). Take X = (+n, Y =i(¢ —7n) and the equation
becomes:

‘¢XX +¢vy = F'(X,Y, ¢, ¢x, pv)- ‘

1.1.1 Applications

%+U-Vu=/cv2u+f

If uwis ...
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e Temperature - Heat Transfer
e Pollutant Concentration — Coastal Engineering
e Probability Distribution — Statistical Mechanics

This equation is known in Statistical Mechanics as the Fokker—Planck
equation.

e Price of an Option — Financial Engineering

This equation is known in Financial Engineering as the Black—Scholes
equation.

In some of the above cases the equation is slightly different (e.g. particular
non—constant coefficients), however the basic form remains invariant.

2 Limiting Cases

2.1 Elliptic Equations

Poisson Equation

—kVu=f inQ

Convection-Diffusion ‘t
X

U -Vu=xkVu in
e “Smooth” solutions

— even when the boundary conditions or f are not smooth.

e The domain of dependence of u(z,y) is

This means that a small perturbation of f, or boundary conditions, anywhere in
the domain will alter the value of u(z,y).

The solution of elliptic equations will be studied extensively in this course. For
these equations we will be presenting solution techniques using Finite Differ-
ences, Finite Elements and Boundary Integral Methods.
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2.2 Parabolic Equations
SLIDE 4

Heat Equation

ou o .
a—mVu+f in Q

e “Smooth” solutions

— even when the initial, boundary conditions, or f, are not smooth.

e The domain of dependence of u(z,y,T) is (z,y,t < T)

In this course we will address the solution of parabolic equations using Finite
Difference and Finite Element Methods.

2.3 Hyperbolic Equations
SLIDE 5

Wave Equation (First order)

Ou .
a+U-Vu-f in Q

e Non-smooth solutions

e Characteristics : dgic = U(x(t))

e The domain of dependence of u(z,T) is (z(t),t < T) . 6
LIDE

Convection Equation

U-Vu=f inQ

e Non-smooth solutions

e Characteristics are streamlines of U, e.g. dffsc =U

e The domain of dependence of u(z) is (z.(s),s < 0)

We will present Finite Difference and Finite Volume Methods for solving hyper-
bolic equations. In particular, Finite Volume Methods will be extended to deal
with non-linear hyperbolic equations.



2.4 Eigenvalue Problem

Find non-trivial pairs (u, \)

EViu+du=0 in Q

with homogeneous conditions on T’
Yy

From the mathematical classification point T_.m
of view, the eigenvalue equation is a semi-
linear elliptic equation.

e Non-linear

e “Closely” related to other problems

We shall see below that the eigenvalue problem of a given spatial operator is
closely related to the temporal evolution of the solution of the associated time-
dependent equation. The particular eigenvalue problem shown here is closely

related to the Heat Equation.

2.5 One Spatial Variable

In some cases we will consider the above equations involving only one spatial

variable.

Unknown Equation
u(z) —Ugy = f
u(z) Uu, = Kugy

u(z,t) Up = KlUgg
u(z,t) u+Uuy =0
(u(z), \) Ugy +Au =0

3 Fourier Analysis

3.1 Definition

Let g(x) be an “arbitrary” periodic real function with period 2w
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g(z) = Z gr €*®  (k integer)

k=—o0

The following orthogonality relationship satisfied by the Fourier modes can be
easily verified

27
/ e*e=*' T dp — 27 §pp  (orthogonality)
0

We recall that Ogx is the Kronocker symbol and is equal to 1 if k = k' and
0 otherwise. Using the above relationship, the coefficients g, can be computed
directly as

1 27

gk = — g(x) e~ dg
27r 0

Note that when g(z) is real, gr, = g*,,, where * denotes complex conjugate.

Note 3 Fourier series

Fourier series are only defined for functions which satisfy the following regularity
condition

27
/ lg(z)|* dz < oo.
0

We also note that the decomposition presented above can be written in an
equivalent form as

oo
g(z) = Z ay cos kx + by sin kzx,
k=0

with ay = gr + g— and by = i(gr — 9—¢).




3.2 Example
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Rate at which |gx| — 0 for |k| large determines smoothness

The above figures show two functions together with a plot of the amplitude of
their Fourier coefficients. An important feature of the Fourier coefficients is
that they are directly associated with the smoothness of the original function:
we can intuitively see that the less oscillatory the function, the faster |gi| will
tend to zero as |k| becomes large, since we will need less “high frequency” (small
wavelength) contributions.

3.3 Differentiation SLIDE 12

o

'U/(-'L'): f: ’Ll,ke'ikz or u(w,t): Z uk(t)eikz

k=—o0 k=—o0

o™u . . ou 2 du
z 7 k)" ikx 7 PR ik
dz" k:z_oo (R i e ot :Z_Oo at ¢

= 2m - (k)" = (=1)mkK®™ (real)
S (k)" = —i(—1)"k?™!  (imaginary)

I

[\~

3
|

10



Since differentiation decreases the rate of decrease of the Fourier coefficients, we
must assume that our function is sufficiently smooth (lug| — 0 fast enough)
in order to meaningfully perform this operation. In particular, it can be shown
that, if a function has p bounded derivatives, |u||k|P™ < co as |k| — oo.

3.4 Poisson Equation

|—tee=f x€(0,21))

with
u(0) = u(2m),
uz(0) = wuz(27),

The number and type of boundary conditions required for this equation will be
discussed further during the course; however it should be clear that, in one
dimension, a linear equation involving an n-th order spatial operator will require
n boundary conditions.

and
27 27
/ uwdr =0, fdr=0
0 0
Note 4 Existence and Uniqueness of the Solution

Physically, there can be no net generation since the flux in (u;(0)) equals the
flux out (uz(27)). Also note that, from the equation u is free to “float” and the
condition f02 "wdz = 0 pins the solution. Physically, the level of u is determined
by initial conditions for the heat equation of which —u,, = f is the long—time
limit.

u= Z upe*® . f= Z fr ™ (fo=0)

k=—0o0 k=—oc0

— 2 ik Ix
—Ugy = Z kZuye = |up =3 (ug=0)

k=—o00

11
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=  — the solution u is smoother than f

3.4.1 Example

—gi(g
- g2l

99

T =
3.5 Heat Equation
‘ut = KlUgzg z € (0,2m) ‘
with
u(0,t) = wu(2m,t),
ug(0,t) = wg(2m,t),
o0
uw(z,0) = u(z) = Z uf) et*®
k=—o00
oo
u= Z ug(t) e*®
k=—o0
[ duy oo
up = E ezkz ’ Upy = Z —k2 u ezkz
k=—0o0 k=—oc0

12
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— = —kk’u

dt k
du
d—tk = —kk’u , up(t=0)=u), = ug(t)=uj ek

ad 2
u(z,t) = Z uf) e rRE gika
k=—oc
= — exponential decay of initial condition (dissipation)

— higher decay for “higher modes” (larger k) = smoothness

3.5.1 Example

3.6 Wave Equation

‘ut+Uuw:0 x€(0,27r)‘

with
u(0,t) = wu(2w,t),
uw(z,0) = u(z) = Z uf) etk?
k=—o0
oo
u = Z ug(t) eh®
k=—00
2 du > )
up = d—tk ke Uy = Z ikuy, e*®
- k=—o00
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:>_

dup .
E— iUkUk

% = —iUkuy , up(0)=ud = wuy(t)=u)e UM

oo oo
u(x,t) — Z u% efiUkt ez’kz — Z Ug ez’k(szt) — 'LLO(."L' _ Ut)

k=—oc0 k=—o0

no decay, propagation with wave speed ¢ = U
no dispersion (c constant) = invariant shape

3.6.1 Example

with

Uy = % T € (0,271')
u(0,t) = u(2m,t),

ugz(0,8) = wu,(2m,t),

u"0,1) = Wl (2m, ),

u(z,0) = u’(z)

u= z up(t) e*®
k=—00
uy % ikx 7 u(n) _ Z (zk)"uk etk
k=—o00 k=—o00
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dug _ o = (ik)"
a "
n o Feature
1 ik | Propagation, ¢ = —o/ik = —1 (no Dispersion)
2 | —k? | Decay
3 | —ik® | Propagation, ¢ = +k? (and Dispersion)
4| k* | Growth (—ugyz, much faster Decay than ug;)
Note 5 Dispersion

Whenever the speed of propagation depends on the wavelength 27 /k (or wavenum-
ber k), we say that the wave is dispersive. A consequence of dispersion is that
the shape of the solution will change as the wave propagates. We see from the
above table that for n = 1 (the wave equation), the speed of propagation is
constant for all modes and therefore any initial shape will be preserved as it
propagates. For n = 3, ¢ = —k? and waves with high |k| will propagate a lot
faster than the waves with small |k|, and therefore any initial condition will
change its shape as the solution evolves.

We also note that when different derivative terms are present, the solution will
exhibit a behaviour which is the result of combining the different terms present.
For instance an equation such as u; = —u, + u;, will exhibit both propagation
and decay; this can easily be seen by noting that in this case 0 = —ik — k2.

3.8 Eigenvalue Problem

‘um+)\u=0 xe(0,27r)‘

with
u(0) = wu(2w),
ug(0) = wug(2m)

Need to determine non-trivial pairs (u™(x), A™)

It can be easily verified that the eigenvalues are:

At =n? for n=1,2,...

15
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The eigenvectors associated with A" are:

ul(z) = e, ul(z) =e "2, for n=1,2,...

‘ Eigenmodes = Fourier modes

We note that the two eigenvectors corresponding to the eigenvalue A\™ can be
combined into sinnx and cosnx. We note also that in addition to the eigenvalues
and eigenvectors shown above, \° = 0, u°(z) = 1 is also an eigenvector.

Since the eigenmodes coincide with the Fourier modes, we can regard our original
Fourier expansion as an expansion in terms of eigenmodes. In fact, this latter
interpretion is quite general and applies in situations in which the Fourier modes
either do not exist, or do not coincide with the eigenmodes of the differential
operator.

4 Eigenvalue Expansions

4.1 Formal Extension

ou
E —E’U;

with homogeneous boundary conditions
o0
u(@,y,t) = an(t)u"(z,y)
n=0
(u™, A™") solution of Lu—Au=0

Here we are assuming that the eigenvalues/eigenvectors have been ordered in
such a way that if an eigenvalue has a multiplicity m it will contribute m terms
to the sumation.

16

SLIDE 30



Note 6 Separation of Variables

We observe that if we attempt the solution of the problem u; = Lu, using the
method of separation of variables

w(z,y,t) = X(z,y) T(t)
then

') _ LX(zy) _
T  X(zy)
where r is the separation variable. The function X (z,y) will then be required to

solve the eigenvalue problem £X +rX = 0, and the eigenvalue will be precisely
the separation variable.

SLIDE 31
o0 o0
ou da,
_ n n g “n . n
£u—2)\ anu’”, % 7 U
n=0 n=0
d n
% =MNa, = ap(t)=ad !
o0
u(@,y,t) = 3 ad & u(z,y)
n=0
SLIDE 32

Eigenvalues determine temporal evolution of the associated time-dependent
problem.

Higher A

0

Higher decay/frequency

0

More Oscillations

Higher spatial oscillations can be expected since a larger eigenvalue will generate
larger time variations that will have to be matched, through the original equation,
with higher spatial derivatives.

For the heat equation solved on arbitrary domains we will expect the eigenvalues
to be real and negative (decay). On the other hand, for the wave equation the
eigenvalues will be purely imaginary (propagation). Finally, we will expect the
eigenvalues to be general complexr numbers when convective and diffusive terms
are present in the equation.
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