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Outline for this
Module

Overview of Integral Equation Methods

Important for many exterior problems

(Fluids, Electromagnetics, Acoustics)
Quadrature and Cubature for computing integrals

One and Two dimensional basics

Dealing with Singularities
1°* and 2¢ Kind Integral Equations

Collocation, Galerkin and Nystrom theory
Alternative Integral Formulations

Ansatz approach and Green’s theorem
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Outline for this
Module

Fast Solvers
Fast Multipole and FFT-based methods.

Discretization of Boundary Integral Equations 1



Outline

Integral Equation Methods
Exterior versus interior problems
Start with using point sources
Standard Solution Methods
Collocation Method
Galerkin Method
Some issues in 3D
Singular integrals
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Interior Vs Exterior Problems

Interior Exterior
outside
VT=0

inside

Temperature Temperature
known on surface known on surface

"Temperature in a tank" "lce cube in a bath"

What is the heat flow?
Heat flow = Thermal conductivity |

oT

ur face dn

Discretization of Boundary Integral Equations



Computation of Capacitance
Examples

potential

V% =0 Outside

Y is given on Surface

What is the capacitance?
Capacitance = Dielectric Permittivity [ 2™
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Drag Force in a Microresonator

Examples

Resonator Discretizéd Structure

Courtesy of Werner Hemmert. [J

# —
Computed Forces Computed Forces
Bottom View

n | Used with permission.
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C. Gouldstone
Courtesy of Werner Hemmert.  Used with permission.


Electromagnetic Coupling in a Package
Examples

Picture Thanks to Coventor.
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Capacitance of Microprocessor Signal Lines

Examples
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What is common about these problems?

Exterior Problems
MEMS device - fluid (air) creates drag
Package - Exterior fields create coupling
Signal Line - Exterior fields.

Quantities of interest are on surface

MEMS device - Just want surface traction force
Package - Just want coupling between conductors
Signal Line - Just want surface charge.

Exterior problem is linear and space-invariant
MEMS device - Exterior Stoke's flow equation (linear)
Package - Maxwell's equations in free space (linear)

Signal line - Laplace’'s equation in free spce (linear)

But problems are geometrically very complex
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' ?
E xterior Why not use FDM / FEM

Problems

2-D Heat Flow Example

dEEANEERIEEELN

d
AN LN T=0ate

IIIIIIII.IIIIIII But, must

\ T L] truncate the
N T mesh

N L
S~L |

Only need g—‘}; on the surface, but T' is computed everywhere.
Must truncate the mesh, = T'(co) = 0 becomes T'(R) = 0.
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Lopisce'

Equation

In 2D
Ifu = log (\/(a: — 0)? + (y — yo)z)
then 2% + 24 =0 V (2,9) # (0, Yo)

or2 ! 8y2 —
In 3D

1
V (@—0)2+(y—y0)2+(2—20)?

then gmz | gyz | gzz =0 V (x,y,2) Z (Tos Yo, 20)

Proof: Just differentiate and see!
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Simple idea

u 1S given on surface

Laplace’s
Equation in 2D

o’u 0u .
—+ — =0 outside
ox~  ody”

2

Let u=log|\/(x—x,) +(y—y0)2)

—+ =0 outside P
A2 ayz

Does not match boundary conditions!
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Simple idea

i1 1$ given on surface

Laplace’s
Equation in 2D

J’u
_I_

= (0 outside

2

dy

letu=Y", o;log (\/ (2 — @)+ (y - y,;)2) =Y. G(x - 2,y — u)
Pick the «;’s to match the boundary conditions!
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Simple idea

Laplace’s
Equation in 2D

Source Strengths selected
to give correct potential at
test points.
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Simple idea

Circle with Charges r=9.5

Laplace’s
Equation in 2D

Potentials on the Circle

~

n=20
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Integral Formulation

Laplace’'s
Equatlon in 2D Limiting Argument

Want to smear point charges to the surface

Results in an integral equation

¥ (x) = / Gz, ') o (z')dS’
sur face
How do we solve the integral equation?
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Basis Function Approach

Represent o (x)= ia, @, (x)
i=1 o

Basis Functions

Laplace’s
Equation in 2D

Example Basis

Represent circle with straight lines

Assume 0O 1s constant along each line

The basis functions are “on” the surface

Can be used to approximate the density
May also approximate the geometry.
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Laplace’s
Equation in 2D

Basis Function Approach

Piecewise Straight surface basis ~ Triangles for 2-D FEM
Functions approximate the circle approximate the circle too!

W (x)= G(x,x’)i@goi(x')dS'
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Laplace’s
Equation in 2D

Basis Function Approach

Piacewise Constant Straight Sections Example

1) Pick a set of n Points on the

2 surface

2) Define a new surface by

connecting pomts with n lines.
3) Define ¢ (x)=1if x is on line

otherwise, go( ) 0

U(z) = /approx z,2) Zow3 NdS' = Ea% /1 G(z,2')dS’

surface

line {;

How do we determine the «o;’s?
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Laplat_:e’s_ Basis Function Approach
Equation in 2D

Residual Definition and Minimization

R@) = (@) - [, 0 G@a) ) aipi(a)ds

surface
We pick the «;’s to make R(x) small

General Approach: Pick a set of test functions
o1, ..., 0, and force R(x) to be orthogonal to the set

/Cb?:(a?)R(az)dS =0 foralli
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Basis Function Approach

Laplace’'s

Eq uation in 2D Residual Minimization Using Test Functions

[ ¢i(z)R(z)dS = 0 =

/¢i( x)dS— /approx G(x, a:’)Zanoj( )dS'dS =0

surface

We will generate different methods by choosing the ¢4, ..., ¢,
Collocation : ¢;(x) = 6(x — x¢,) (point matching)

Galerkin Method : ¢;(x) = ¢;(x) (basis = test)

Weighted Residual Method : ¢;(z) = 1if ¢;(x) # 0
(averages)
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Basis Function Approach

Laplace’s
Equation in 2D

Collocation

Collocation: ¢;(x) = d(x — =x¢,) (point matching)

| 6(xz—z¢, )R(x)dS=R(z¢,)=0 | =

A;

Jc.')'
21 /approx G(xt;, ') pj(2')dS" = W(ay,)
surface
[ s oo oo Al 1 [ o] [ (x4, 1
Ao mos cae Apon o ()
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Laplace’s Basis Function Approach

Equation in 2D

entroid Collocation for Piecewise Constant Bases

A'n, | An n (8 7% lI’({Btl) A?,j
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Basis Function Approach

Laplace’'s
Eq uation in 2D Centroid Collocation Generates Nonsymmetric A

Al szzfline2 G(:‘Etl ’:‘E’) dS’#flinel G(ﬁ”tz ’:B’) dS’:Azsl

Discretization of Boundary Integral Equations

23



Basis Function Approach

Laplace’s
Equation in 2D

Galerkin

Galerkin: ¢;(x) = ;(x) (test=basis)

=1

X)dS = jgo (x)dS - j j'ga(x) (x, 1)?5:@( )dSdS =0

x)dS = Zaj lel @, (x)@,(x)dsds

appro appro
f Tt

If G(x, z’') = G(«’, x) then A; ; = A, ; = A is symmetric
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Basis Function Approach

Laplace’s
Equation in 2D

alerkin for Piecewise Constant Bases

tine;

[w(x)ds= ia:_{. | [G(xx)dsas
i=l line; line

Y —
v

b A. j
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Electrostatics Example

Laplace’s
Equation in 3D

Dirichlet Problem

potential

V% =0 Outside

Y is given on Surface

First kind integral equation for charge:

1
Y(z) = / , o(z)  dS’
Pot.;;;?',al sur face M Charge density

Green’s function
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Basis Function Approach

Laplace’s
Equation in 3D

Piecewise Constant Basis

Integral Equation : ¥(x) = | Lo (x))dS'

sur face ||z—x’'||

Discretize Surface into
Panels
Represent o (x) =

0, (x)=1 if x is on panel j
Panel | 0
j

( x)=0 otherwise
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Laplace’s
Equation in 3D

Basis Function Approach

Put collocation points at panel centroids

| j s

/|
X —X
&

panel j
A

i,f
_ Collocation
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Basis Function Approach

Laplace’s
Equation in 3D

X Collocation
. 4 %  point

A= | L s

4
X, —X

!

panel j

One point
quadrature
Approximation

Four point
quadrature
Approximation
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Laplace’s
Equation in 3D

Basis Function Approach

X _ Collocation
“%  point

Ai,:.': J.

paneli [|*c

Panel |

One point
quadrature ﬁ - *
Approximation

dS is an integrable singularity

panel i
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Laplace’s
Equation in 3D

Basis Function Approach

X Collocation
- point 1

X‘\ Panel i A= I

panel
Disk of radius R
surrounding
collocation point

ds’

’
X X

“E.‘!;

1 , 1 ,
Integrate intwo A, = j dS"+ .f dS

L4

’
pieceS disk ’1".':.’!- —X H rest of panel "1".':.’!- —A

Disk Integral has 1 S|
singularity but has I—dS = I Ijr'dr'dﬁzzyrR

: oolx. —x ¥
analytic formula 4k |7 0 0
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Basis Function Approach

Laplace’'s
Equation in 3D Calculating "Self Term"Other Tricks of the Trade

X Collocation

y Ci pointA' _ 1 45’
A Paneli '[ x, —x

X

panel i
M /_1'
Integrand is singular

1. If panel is a flat polygon, analytical formulas exist.
2. Curved panels can be handled with projection.
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Summary

Integral Equation Methods
Exterior versus interior problems
Start with using point sources
Standard Solution Methods
Collocation Method
Galerkin Method
Integrals for 3D Problems
Singular Integrals
We will examine computing integrals next time, and
then examine integral equation convergence theory.
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