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3D Laplace’s Basis Function Approach

Equation
Put collocation points at panel centroids
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3D Laplace’s
Equation

One point
quadrature
Approximation

Four point
quadrature
Approximation

Basis Function Approach
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Basis Function Approach

Normalized 1D
Problem Collocation Discretization of 1D Equation

¥ (x) :/0 g(z,z)o(xz)dS" = €][0,1]

Centroid collocated piecewise constant scheme
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¥(@e) = Y05 [ o(ena)ds
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to be evvaluated
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Normalized 1D Simple Quadrature Scheme

Problem
! 1
/0 f(z)de ~ f (5)

Area under the
curve Is
approximated by
a rectangle
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Normalized 1D Simple Quadrature Scheme

Problem

/01 f(z)dz ~ %f (i) _|_%f (Z)

Area under the
curve is
approximated by
two rectangles
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Normalized 1D Simple Quadrature Scheme

Problem General n-Point Formula

Key questions about the method:
How fast do the errors decay with n?
Are there better methods?
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Normalized 1D Simple Quadrature Scheme

Problem

fo 1 sin(z)dr ~ i Lein ("’ — %)

=1
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General Quadrature Scheme

Normalized 1D
Problem General 1D Form

i=1 weight Evaluation Point

Free to pick the evaluation points.
Free to pick the weights for each point.

An n-point formula has 2n degrees of freedom!
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General Quadrature Scheme

Normalized 1D
Problem Point-Weight Selection Criteria

Result should be exact if f(x) is a polynomial

f(x) = ao+ a1z + axz® + - - - + air’ = py(x)
Select x;’s and w,’s such that

/01 pi(z)dr = i w;Pi( ;)

1=1
for ANY polynomial upto (and including) I*" order
With 2n degrees of freedom, ! = 2n — 1
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General Quadrature Scheme

Normalized 1D
Problem Why the Exactness Criteria?

Consider the Taylor series for f(x)

8f(0) | 185(0)
i Y ml"'ll! Y ac‘|‘12l+1

f(z) = £(0)

R; 1 is the remainder

1 6l+1 et
f(m)mz.u

R —
T+ 1) it

where ¢ € [0, z]
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General Quadrature Scheme

Normalized 1D
Problem Estimating the Error

Using the Taylor series results and the exactness

criteria : {911 (3(a)
1 n . N L\ L I+1
fo f(z)de — ) wif(zi) = &l n 1)!/0 PYTE T daj,
Rem:&nder
Assuming derivatives of f(x) are bounded on [0, 1]

1 n K
|t - Y ws o) < gy

Convergence is very fast!!
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General Quadrature Scheme

Normalized 1D
Problem Meeting the Exactness Criteria

Exactness condition requires

1 1 n
/ pi(z)dx = / (ag-l-a,l:n-l-az:cz-l-- : --I-az:cl)d:c — Zw@-pg(:ni)
0 0 =1
for any set of I + 1 coefficients ag,a1,...,a;

Equivalently

1 1 1 1 n
/ agdz+ / a,zdz+ / ayx’dz+ -+ / azide = Zwip;(:ci)
0 0 0 0

1=1
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General Quadrature Scheme

Normalized 1D
Problem Meeting the Exactness Criteria

Exactness condition will be satisfied if and only If

n
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Normalized 1D General Quadrature Scheme

Problem

Reorganizing exactness equations

Nonlinear, since x;'s and w;’s are unknowns
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Normalized 1D General Quadrature Scheme

Problem

Could use Newton’s Method

F(y) =0= Jr (y¥*) ("' —4*) = —F (¢*)
The nonlinear function for Newton is then
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Normalized 1D General Quadrature Scheme

Problem

Newton Method Jacobian reveals problem

Columns become
linearly dependent for
high order
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Normalized 1D General Quadrature Scheme

Problem

Exactness criteria will be satisfied if and only if

1 A

_[Co (x)dx=) wc,(x) BUT

i=l

Each ¢, polynomial must

Contain an x* term

Be linearly independent
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General Quadrature Scheme

Normalized 1D
Problem Orthogonal Polynomials

For the normalized integral, two poynomials are said to
be orthogonal if

/1 ci(z)cij(z)de =0 forj #1
0

The above integral is often referred to as an inner
product and ascribed the notation

1
(c0) = [ al@)e(@)de
0
The connection between polynomial inner products
and vector inner products can be seen by sampling.
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Normalized 1D General Quadrature Scheme

Problem

Consider rewriting the exactness criteria

Low order terms High Order Terms

Recall that I(# polys) = 2n — 1(# of coef ficients)
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General Quadrature Scheme

Normalized 1D
Problem Exploiting the Different Polynomials

Can write the higher order terms differently
Jo eal@)dz = Vi wiea(w:) = [y eale)ea(e)de = Vi, wiea(wi)eo(:)

i anmr(@)dz = Y wicz () 5 Ji eal@)enr(@)dz = Y wiea(z)ens (2:)

The products c,(x)c;(x) are linearly independent!
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Normalized 1D General Quadrature Scheme

Problem

Use orthogonal polynomials

Pick the x;’s to be n roots of ¢, (x)
The higher order constraints are exactly satisfied!
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Normalized 1D General Quadrature Scheme

Problem

An abbreviated exactness equation

Now linear, as z;’s are known!
Rows are sampled orthogonal polynomials!

Numerical Quadrature 22



Gaussian Quadrature Summary

Normalized 1D
Problem Algorithm Steps

1. Construct n 4+ 1 orthogonal polynomials

/1 ci(z)cj(x)de =0 forj #1
0

2.Compute n roots, z;, i = 1,...,n of the n'" order
orthogonal polynomial such that ¢,,(z;) = 0

3. Solve a linear system for the weights w;
4. Approximate the integral as a sum

fy f(@)de = X7, wif ()
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Gaussian Quadrature Summary

Normalized 1D
Problem Accuracy Result

IRCEE ijwif(wi)

Key properties of the method

e An n-point Gauss quadrature rule is exact for
polynomials of order 2n — 1

2n

e Error is proportional to (-}
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Normalized 1D Simple Quadrature Scheme

Problem General n-Point Formula

Key property of the method

e Error is proportional to —;
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Comparing Simple Quad and Gauss Quad

Normalized 1D
Problem

.. Simple Quad

f . Gauss-Quad
. Approximately

Integrating
L

] jcosZﬁxdx
-1E|_ _l

10’

Number of Points
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Normalized 1D Comparing Simple Quad and Gauss Quad

Problem

Simple-Ouadr:ature Points
+++++++H+++H+H
-1 -

0 1

Gauss-Quadrature Points

AN B I ++ bttt

1 0 1

Notice the clustering at interval ends

Numerical Quadrature 27



The Sinaular 3D Laplace Example

Kernel Problem

X Collocation
point

|

’
parnel | ‘xcj —X

One point
quadrature
Approximation

Af,r’ = J.

dS’ is an integrable singularity

4
X —X

pareli ||"c
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s G Symmetrized 1D Example

Kernel Problem

/| Quad Point

\Note nox;, =0
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s G Symmetrized 1D Example

Kernel Problem
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The Singular

Kernel Problem

.Gauss-Quad

Comparing Quadrature Schemes

Approximately J‘ dx

Integrating {

Large errors -
even with many

pomtsl &

4 5 g8 10 1'2 14 15
Number of Points
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Improved Techniques

The Singular
Kernel Problem Subinterval (Adaptive) Quadrature

Subdivide the integration interval

[agmte =" J=dat [y Jdo t 77 =da+ o, =da

Use Gauss quadrature in each sublnterval
Polynomials fit subintervals better
Expensive if many subintervals used.
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Improved Techniques

The Singular
Kernel Problem Change of Variables - for Simple Cases

Change variables to eliminate singularity

y =
= 2ydy = dx
f—1 _2f0m y—2f0 2dy

Apply Gauss quadrature on desingularized intergrand
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Improved Techniques

The Singular
Kernel Problem Singular Quadrature - Complicated Cases

Integrand has known singularity s(x)

fil f(x)s(x)dx where f(x) is smooth

Develop a quadrature formula exact for

fil pi(x)s(x)dx where p;(x) is polynomial of order l

Calculate weights like Gauss quadrature
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The Sinaular Improved Techniques

Kernel Problem

-1

Need (analytic) formulas for integral of c(x)s(x)
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Summary

Easy technique for computing integrals
Piecewise constant approach

Gaussian quadrature
Faster convergence
Essential role of orthogonal polynomials

Techniques for singular kernels
Adaptation and Variable Transformation

Singular quadrature
What about multiple dimensions?
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