Numerical Methods for PDEs

Integral Equation Methods, Lecture 2
Numerical Quadrature

Notes by Suvranu De and J. White

April 28, 2003

Outline

Easy technique for computing integrals

Piecewise constant approach

Gaussian Quadrature

Convergence properties

Essential role of orthogonal polynomials

Multidimensional Integrals

Techniques for singular kernels

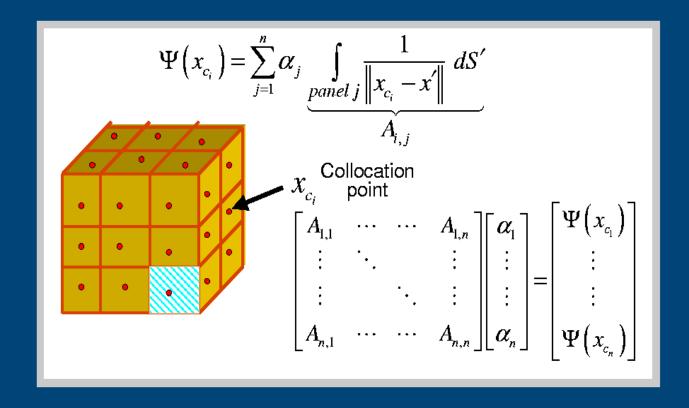
Adaptation and variable transformation Singular quadrature.

3D Laplace's Equation

Basis Function Approach

Centroid Collocation

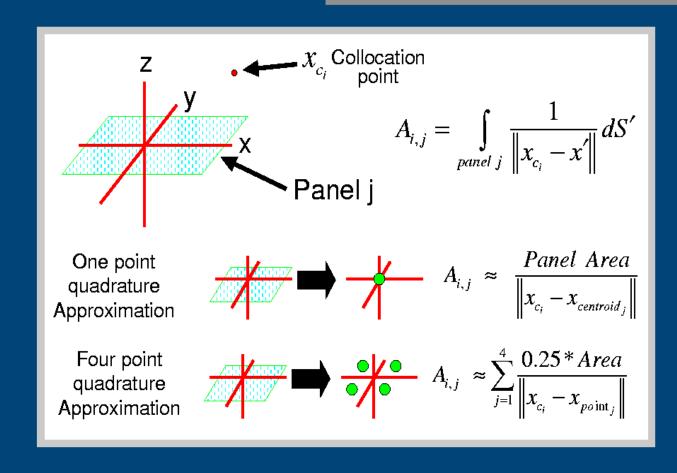
Put collocation points at panel centroids



3D Laplace's Equation

Basis Function Approach

Calculating Matrix Elements



Basis Function Approach

Collocation Discretization of 1D Equation

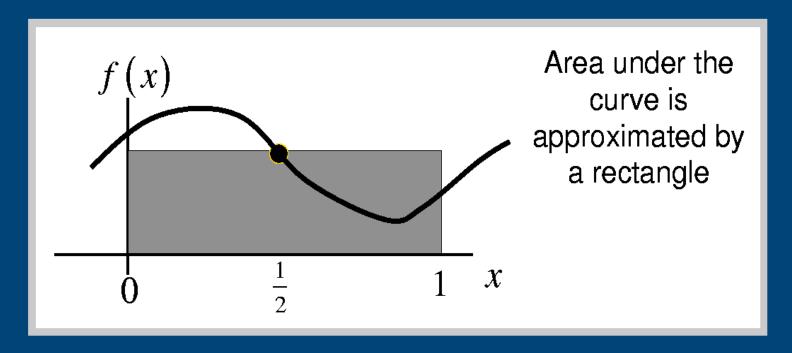
$$\Psi(x)=\int_0^1 g(x,x')\sigma(x')dS' \hspace{0.5cm} x\in [0,1]$$

Centroid collocated piecewise constant scheme

$$\Psi(x_{c_i}) = \sum_{j=1}^n \sigma_j \underbrace{\int_{x_{j-1}}^{x_j} g(x_{c_i}, x') dS'}_{to \ be \ evaluated}$$

Simple Quadrature Scheme

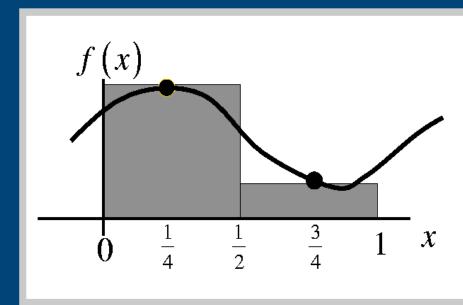
$$\int_0^1 f(x)dx \simeq f\left(\frac{1}{2}\right)$$



Simple Quadrature Scheme

Improving the Accuracy

$$\int_0^1 f(x)dx \simeq \frac{1}{2}f\left(\frac{1}{4}\right) + \frac{1}{2}f\left(\frac{3}{4}\right)$$

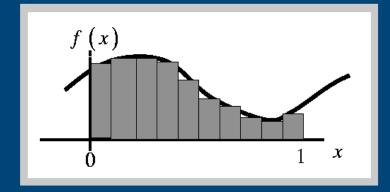


Area under the curve is approximated by two rectangles

Simple Quadrature Scheme

General n-Point Formula

$$\int_0^1 f(x) dx \simeq \sum_{i=1}^n rac{1}{n} f\left(rac{i-rac{1}{2}}{n}
ight)$$



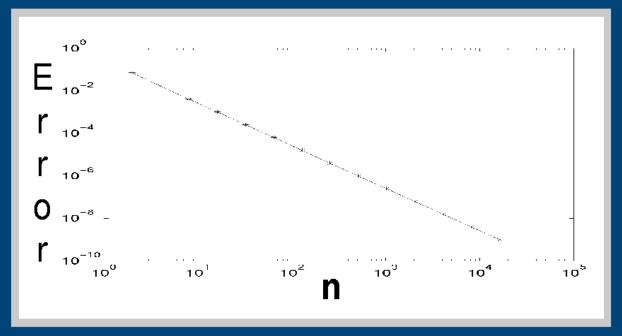
Key questions about the method:

How fast do the errors decay with n? Are there better methods?

Simple Quadrature Scheme

Numerical Example

$$\int_0^1 sin(x)dx \simeq \sum_{i=1}^n rac{1}{n} sin\left(rac{i-rac{1}{2}}{n}
ight)$$



General Quadrature Scheme

General 1D Form

$$\int_0^1 f(x)dx \simeq \sum_{i=1}^n \underbrace{w_i}_{weight} \underbrace{f(x_i)}_{Evaluation\ Point}$$

Free to pick the **evaluation points**. Free to pick the **weights** for each point.

An n-point formula has 2n degrees of freedom!

General Quadrature Scheme

Point-Weight Selection Criteria

Result should be exact if f(x) is a polynomial

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_lx^l = p_l(x)$$

Select x_i 's and w_i 's such that

$$\int_0^1 p_l(x) dx = \sum_{i=1}^n w_i p_l(x_i)$$

for ANY polynomial upto (and including) l^{th} order With 2n degrees of freedom, l=2n-1

General Quadrature Scheme

Why the Exactness Criteria?

Consider the Taylor series for f(x)

$$f(x) = f(0) + rac{\partial f(0)}{\partial x}x + \cdots + rac{1}{l!}rac{\partial^l f(0)}{\partial x^l}x^l + R_{l+1}$$

 R_{l+1} is the remainder

$$R_{l+1} = rac{1}{(l+1)!} rac{\partial^{l+1} f(ilde{x})}{\partial x^{l+1}} x^{l+1}$$

where $\tilde{x} \in [0,x]$

General Quadrature Scheme

Estimating the Error

Using the Taylor series results and the exactness criteria

$$\int_0^1 f(x) dx - \sum_{i=1}^n w_i f(x_i) = rac{1}{(l+1)!} \int_0^1 rac{\partial^{l+1} f\left(ilde{x}(x)
ight)}{\partial x^{l+1}} x^{l+1} dx$$

Remainder

Assuming derivatives of f(x) are bounded on [0,1]

$$\left|\int_0^1 f(x)dx - \sum_{i=1}^n w_i f(x_i)\right| \leq \frac{K}{(l+1)!}$$

Convergence is very fast!!

General Quadrature Scheme

Meeting the Exactness Criteria

Exactness condition requires

$$\int_0^1 p_l(x) dx = \int_0^1 (a_0 + a_1 x + a_2 x^2 + \cdots + a_l x^l) dx = \sum_{i=1}^n w_i p_l(x_i)$$

for any set of l+1 coefficients a_0, a_1, \ldots, a_l

Equivalently

$$\int_0^1 a_0 dx + \int_0^1 a_1 x dx + \int_0^1 a_2 x^2 dx + \dots + \int_0^1 a_l x^l dx = \sum_{i=1}^n w_i p_l(x_i)$$

General Quadrature Scheme

Meeting the Exactness Criteria

Exactness condition will be satisfied if and only if

$$\int_0^1 dx = \sum_{i=1}^n w_i \cdot 1 \ \int_0^1 x dx = \sum_{i=1}^n w_i \cdot x_i$$

$$\int_0^1 x^l dx = \sum_{i=1}^n w_i \cdot x_i^l$$

General Quadrature Scheme

Meeting the Exactness Criteria

Reorganizing exactness equations

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1^l & x_2^l & \cdots & x_n^l \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} - \begin{bmatrix} 1 \\ \vdots \\ \vdots \\ w_n \end{bmatrix} = 0$$

Nonlinear, since x_i 's and w_i 's are unknowns

General Quadrature Scheme

Computing the Points and Weights

Could use Newton's Method

$$F(y)=0\Rightarrow J_{F}\left(y^{k}
ight)\left(y^{k+1}-y^{k}
ight)=-F\left(y^{k}
ight)$$

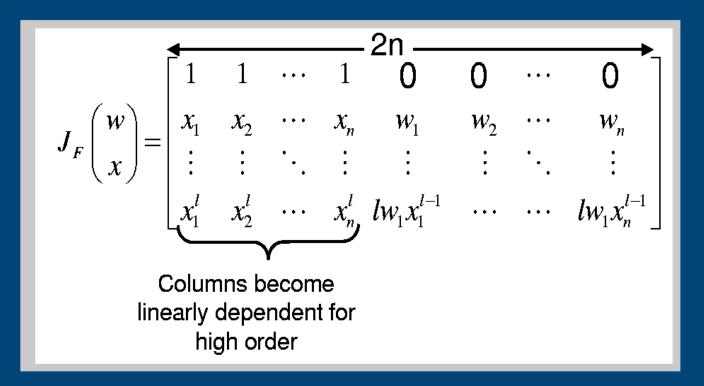
The nonlinear function for Newton is then

$$F\begin{pmatrix} w \\ x \end{pmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1^l & x_2^l & \cdots & x_n^l \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} - \begin{bmatrix} 1 \\ \vdots \\ \vdots \\ w_n \end{bmatrix} = 0$$

General Quadrature Scheme

Computing the Points and Weights

Newton Method Jacobian reveals problem



General Quadrature Scheme

Use Different Polynomials

Exactness criteria will be satisfied if and only if

$$\int_{0}^{1} c_{0}(x) dx = \sum_{i=1}^{n} w_{i} c_{0}(x_{i})$$

$$\int_{0}^{1} c_{1}(x) dx = \sum_{i=1}^{n} w_{i} c_{1}(x_{i})$$
Each c_{i} polynomial must
Contain an x^{i} term
Be linearly independent
$$\int_{0}^{1} c_{l}(x) dx = \sum_{i=1}^{n} w_{i} c_{l}(x_{i})$$

Be linearly independent

General Quadrature Scheme

Orthogonal Polynomials

For the normalized integral, two poynomials are said to be **orthogonal** if

$$\int_0^1 c_i(x) c_j(x) dx = 0 \quad for \ j
eq i$$
 The above integral is often referred to as an inner

The above integral is often referred to as an inner product and ascribed the notation

$$(c_i,c_j)=\int_0^1 c_i(x)c_j(x)dx$$

The connection between polynomial inner products and vector inner products can be seen by sampling.

General Quadrature Scheme

Exploiting the Different Polynomials

Consider rewriting the exactness criteria

$$\int_{0}^{1} c_{0}(x) dx = \sum_{i=1}^{n} w_{i} c_{0}(x_{i}) \qquad \int_{0}^{1} c_{n}(x) dx = \sum_{i=1}^{n} w_{i} c_{n}(x_{i})$$

$$\int_{0}^{1} c_{n-1}(x) dx = \sum_{i=1}^{n} w_{i} c_{n-1}(x_{i}) \qquad \int_{0}^{1} c_{2n-1}(x) dx = \sum_{i=1}^{n} w_{i} c_{2n-1}(x_{i})$$
Low order terms

High Order Terms

Recall that l(# polys) = 2n - 1(# of coefficients)

General Quadrature Scheme

Exploiting the Different Polynomials

Can write the higher order terms differently

$$\int_0^1 c_n(x) dx = \sum_{i=1}^n w_i c_n(x_i) \Rightarrow \int_0^1 c_n(x) c_0(x) dx = \sum_{i=1}^n w_i c_n(x_i) c_0(x_i)$$

$$\int_0^1 c_{2n-1}(x) dx = \sum_{i=1}^n w_i c_{2n-1}(x_i) \Rightarrow \int_0^1 c_n(x) c_{n-1}(x) dx = \sum_{i=1}^n w_i c_n(x_i) c_{n-1}(x_i)$$

The products $c_n(x)c_j(x)$ are linearly independent!

General Quadrature Scheme

Using Orthogonality and Roots

Use orthogonal polynomials

$$\int_{0}^{1} c_{n}(x) c_{0}(x) dx = \sum_{i=1}^{n} w_{i} c_{n}(x_{i}) c_{0}(x_{i})$$

$$\vdots$$

$$\int_{0}^{1} c_{n}(x_{i}) c_{n-1}(x) dx = \sum_{i=1}^{n} w_{i} c_{n}(x_{i}) c_{n-1}(x_{i})$$

Pick the x_i 's to be n roots of $c_n(x)$ The higher order constraints are exactly satisfied!

General Quadrature Scheme

Satisfying the Lower Order Constraints

An abbreviated exactness equation

$$\uparrow \begin{bmatrix}
1 & 1 & \cdots & 1 \\
c_0(x_1) & \cdots & c_0(x_n) \\
\vdots & \vdots & \ddots & \vdots \\
c_{n-1}(x_1) & \cdots & c_{n-1}(x_n)
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_2 \\
\vdots \\
w_n
\end{bmatrix} =
\begin{bmatrix}
1 \\
\vdots \\
\vdots \\
w_n
\end{bmatrix}$$

Now linear, as x_i 's are known! Rows are sampled orthogonal polynomials!

Gaussian Quadrature Summary

Algorithm Steps

1. Construct n + 1 orthogonal polynomials

$$\int_0^1 c_i(x) c_j(x) dx = 0 \quad for \ j
eq i$$

- 2. Compute n roots, x_i , $i=1,\ldots,n$ of the n^{th} order orthogonal polynomial such that $c_n(x_i)=0$
- 3. Solve a linear system for the weights wi
- 4. Approximate the integral as a sum

$$\int_0^1 f(x)dx = \sum_{i=1}^n w_i f(x_i)$$

Gaussian Quadrature Summary

Accuracy Result

$$\int_0^1 f(x) dx \simeq \sum_{i=1}^n w_i f(x_i)$$

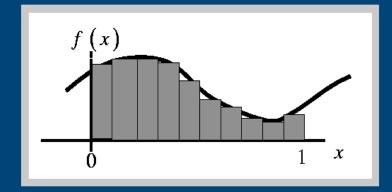
Key properties of the method

- An n-point Gauss quadrature rule is **exact** for polynomials of order 2n 1
- Error is proportional to $\left(\frac{1}{2n}\right)^{2n}$

Simple Quadrature Scheme

General n-Point Formula

$$\int_0^1 f(x) dx \simeq \sum_{i=1}^n rac{1}{n} f\left(rac{i-rac{1}{2}}{n}
ight)$$

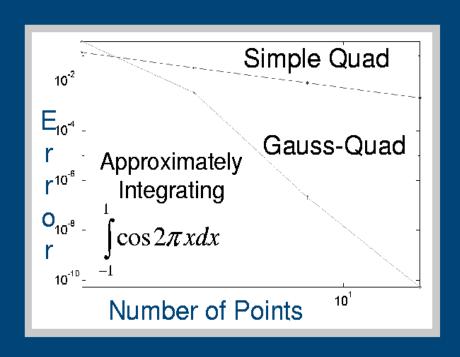


Key property of the method

• Error is proportional to $\frac{1}{n^2}$

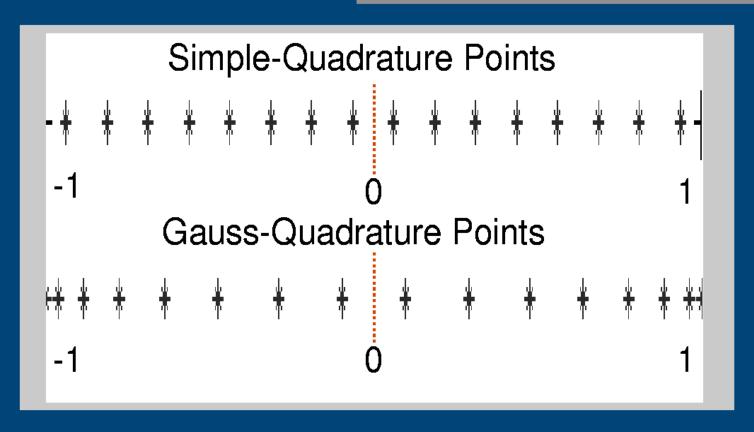
Comparing Simple Quad and Gauss Quad

Normalized 1D Problem



Comparing Simple Quad and Gauss Quad

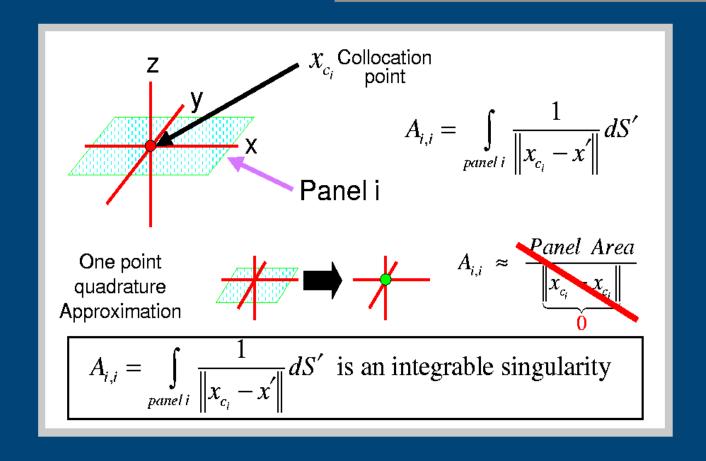
Evaluation Point Placement



Notice the clustering at interval ends

3D Laplace Example

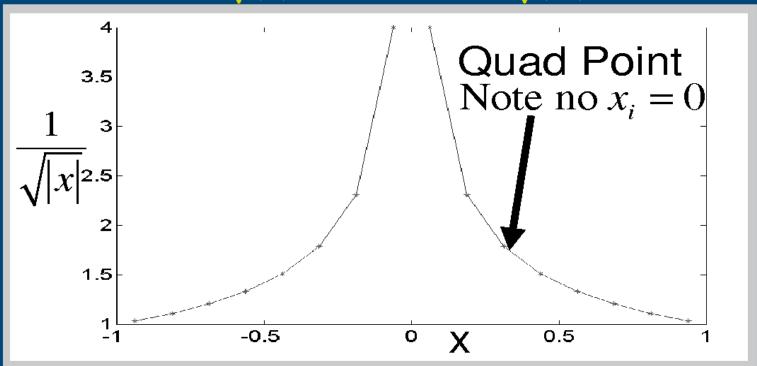
Calculating the "Self-Term"



Symmetrized 1D Example

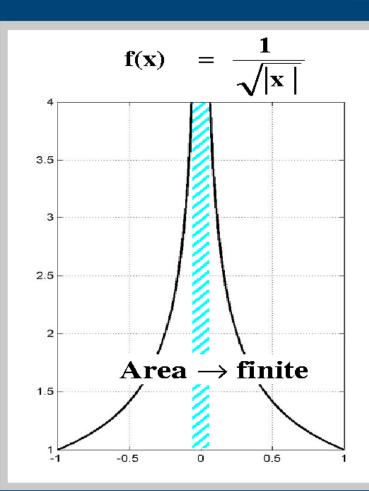
Example

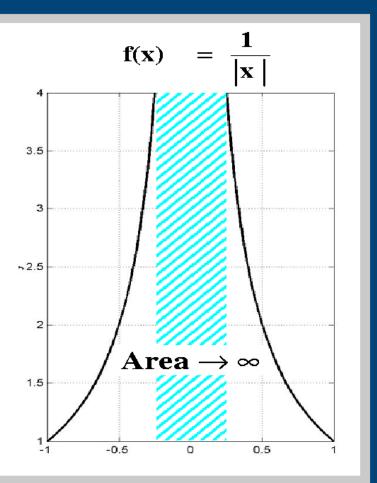
$$\int_{-1}^1 rac{1}{\sqrt{|x|}} dx \simeq \sum_{i=1}^n w_i rac{1}{\sqrt{|x_i|}}$$



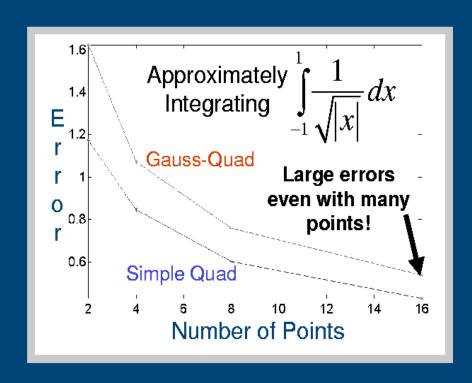
Symmetrized 1D Example

Integrable and Nonintegrable Singularities



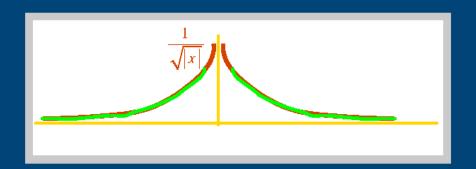


Comparing Quadrature Schemes



Improved Techniques

Subinterval (Adaptive) Quadrature



Subdivide the integration interval

$$\int_{-1}^{1} rac{1}{\sqrt{|x|}} dx = \int_{-1}^{-0.1} rac{1}{\sqrt{|x|}} dx + \int_{-0.1}^{0} rac{1}{\sqrt{|x|}} dx + \int_{0}^{0.1} rac{1}{\sqrt{|x|}} dx + \int_{0.1}^{1} rac{1}{\sqrt{|x|}} dx$$

Use Gauss quadrature in each subinterval

Polynomials fit subintervals better

Expensive if many subintervals used.

Improved Techniques

Change of Variables - for Simple Cases

Change variables to eliminate singularity

$$y^2 = x$$

$$\Rightarrow 2ydy = dx$$

$$\int_{-1}^{1} rac{1}{\sqrt{|x|}} dx = 2 \int_{0}^{1} rac{1}{\sqrt{|y^2|}} 2y dy = 2 \int_{0}^{1} 2 dy$$

Apply Gauss quadrature on desingularized intergrand

Improved Techniques

Singular Quadrature - Complicated Cases

Integrand has known singularity s(x)

$$\int_{-1}^{1} f(x)s(x)dx$$
 where $f(x)$ is smooth

Develop a quadrature formula exact for

$$\int_{-1}^{1} p_l(x) s(x) dx$$
 where $p_l(x)$ is polynomial of order l

Calculate weights like Gauss quadrature

Improved Techniques

Singular Quadrature Weights

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ c_0(x_1) & \cdots & c_0(x_n) \\ \vdots & \vdots & \ddots & \vdots \\ c_{n-1}(x_1) & \cdots & c_{n-1}(x_n) \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} \int_1^1 s(x) dx \\ \vdots \\ w_n \end{bmatrix}$$

Need (analytic) formulas for integral of c(x)s(x)

Summary

Easy technique for computing integrals

Piecewise constant approach

Gaussian quadrature

Faster convergence

Essential role of orthogonal polynomials

Techniques for singular kernels

Adaptation and Variable Transformation

Singular quadrature

What about multiple dimensions?