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1 Outline

Easy technique for computing integrals
Piecewise constant approach

Gaussian Quadrature

Convergence properties

Essential role of orthogonal polynomials
Multidimensional Integrals

Techniques for singular kernels
Adaptation and variable transformation
Singular quadrature.

2 3D Laplace’s Equation
2.1 Basis Function Approach
2.1.1 Centroid Collocation

Put collocation points at panel centroids
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Note 1

In the last lecture we were introduced to integral equations and several different
techniques for discretizing them were described. It was pointed out that one
of the most popular means of obtaining a discrete set of equations is to use a
piecewise constant centroid collocation scheme. We consider a simple problem
of solving Laplace’s equation in 3D. The potential, ¥ is prescribed on the sur-
face of the cube and we need to compute the charge distribution ¢. In order
to do that we break the surface of the cube up into n panels and assume a
constant charge distribution on each panel. Mathematically, this corresponds
to assuming piecewise constant basis functions, each basis function, ¢; being
compactly supported on the it* panel. The resulting semi-discrete equation is a
function of the spatial variable x. In order to obtain a discrete set of equations,
we assume that this semi-discrete equation is satisfied exactly at the centroids
of the panels. This gives rise to the set of n equations corresponding to the n
panels. Mathematically, this process of collocation corresponds to setting the
residual orthogonal to a set of delta functions located at the panel centroids.
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This process leaves us with a set of n linear algebraic equations to solve. The
quantities of interest being the collocation point weights a;’s. In today’s lecture
we will concentrate on obtaining the entries of the n-by-n matrix shown in the
slide above. In the centroid collocation technique, the matrix entries involve
integrals of the Green’s function over the panels. Physically, the term A;; of
this matrix corresponds to the potential at the centroid of the i*" panel due to
unit charge density distribution on the j** panel.

2.1.2 Calculating Matrix Elements
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Note 2

One very simple way of computing the integral in A;;, for a panel j which is
far removed from panel 4, is to simply replace the integral by the integrand
evaluated at the centroid of the panel j. Of course, this is too simplistic for
panels which interact "strongly" with the panel i. For these panels which are
closer by, we may use a four-point integration scheme. In our minds we split
the panel up into four equal subpanels and write the integral over the entire
panel j as the sum of four integrals on these four subpanels. Then use the
same trick as before, replacing each of these four integrals by the product of the
integrand, evaluated at the centroid of each of these subpanels and the area of
the subpanel. From intution we believe that this scheme is going to give us a
more accurate answer. The question, however, is whether this is the best way
to go or are there better techniques? Can we do the same kind of integration on
panel i? To be able to answer these questions we will take a brief look at how
numerical integration is performed, a field of study known as "quadrature".
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3 Normalized 1D Problem

3.1 Basis Function Approach
3.1.1 Collocation Discretization of 1D Equation

¥(z) = /0 9@, 2)o(@)dS =z €[0,1]

Centroid collocated piecewise constant scheme
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Note 3

Lets take a simple example in 1D. The domain is the segment [0, 1] of the real
line. We want to solve the integral equation shown at the top of the slide on this
domain. The Green’s function is denoted by g(z,2'). In a centroid collocation
scheme, we divide the domain into n segments [z;,2;+1] Jj = 0,...,n, with
zg = 0 and z,=1. The charge density ¢ is assumed to be piecewise constant on
each of these intervals. The potential, ¥ is then evaluated at the centroids z.,.
This results in n equations in n variables, the collocation weights a;,4 =1,...,n
which can be written in matrix form. Our task is to first evaluate the entries
of the matrix and subsequently solve the set of equations. Note that the ijt*
entry of the matrix is an integral of the Green’s function, evaluated at the
collocation point z;, over the interval [z;,x;41], which is the interval over
which the basis function ¢; is nonzero (recall that we have chosen a piecewise
constant approximation). If, however, we decided to choose a different set of
basis functions, this integral would be nonzero only on the support of the basis
functions (or, to be precise, on the intersection of the support of the basis
function and [0, 1]).
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3.2 Simple Quadrature Scheme

/ fayda = f (3)

f (X) Area under the
curve is
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Note 4

For the time being lets concentrate on the topic of developing a good numerical
technique for evaluating the integral of a functionf(z) on the domain [0,1]. We
assume that the integrand is a “smooth” function, though we will examine this
assumption later. First we are going to develop a naive approach for obtaining
a good approximation of the integral of this function on this interval, which we
call the "simple quadrature scheme".

The simplest thing we can do is to replace the integral with the the product
of the integrand, evaluated at a point inside the interval, and the length of the
interval, which in this case is unity. If we choose the point of evaluation as the
centroid of the interval, i.e. x = 0.5, we call the scheme "midpoint quadrature".
A midpoint quadrature scheme replaces the area under the curve f(z) by a
rectangle whose height is the function f(z) evaluated at z = 0.5. The scheme is
exact when f(z) is a constant. However, what is less obvious is that the scheme
is exact when f(z) is a linear function of z as well. The most obvious way of
seeing this is by realizing that when f(z) is a straight line, the area under it is
a trapezoid. This trapezoid has exactly the same area as the rectangle which
this scheme uses to approximate the integral (can you see why?).

Lets try to derive this in a slightly different way. Instead of the interval being
[0,1] we consider an interval [0,h],h > 0 to be a bit more general. We may

exapnd f(z) about the centroid of this interval, z = 2

f@) = @) + Al) df;f> 4 A<2:r!r> ddj;g)

where A(z) = x — Z. The last term in the expansion is the Taylor series
remainder. Lets integrate this exapansion over the interval [0, ]

h 3 J2
| faaa = hs@ + 35 <

for some & € [0, h]

Hence the error in the midpoint quadrature approximation is

_ R f(§)
T 24 da?

h
E= /0 f(@)dz — hf()
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A straight line or a constant would generate a zero as the second derivative and
therefore the above expression tells us that the error is identically zero for both
these cases.

Now, another important piece of information that we obtain from this little
exercise is that the error scales as the cube of the domain length. This tells
us that for small enough intervals our simple rule is OK but for larger domain
lengths we have to seek better methods.

3.2.1 Improving the Accuracy

/ o= 1f (1) +3()
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Note 5

One way of improving may be to divide the interval [0, 1] into subintervals [0, 0.5]
and [0.5, 1] and write the integral

1 0.5 1
/ f@iz= [ f@dr+ [ f@)de
0 0 0.5

and apply a midpoint rule to the integral on each subinterval. We obtain a
scheme shown in the slide. The factor 3 appearing in front of f(3) and f(3)
are just the domain lengths.

> Exercise 1 Can you come up with an expression for the error in this case?
How much does the accuracy improve? m

3.2.2 General n-Point Formula

/Olf(w)dw:g;%f (";%)

f(x)
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Key questions about the method:
How fast do the errors decay with n?
Are there better methods?

Note 5

As you can see dividing the interval into two reduces the error and there is no
reason to stop at just two subintervals when we can have n subintevals and
repeat our midpoint quadrature rule on each subinterval. We obtain the scheme

1 n
1
| f@a=> L )
0 =1 -~
subinterval
length
where the centroid of the ¢** subinterval is z., = (&2 + 1) = i_"%. There is

no doubt that we gain, but the key question is by how much? How does this
gain scale with the number of subintervals used? And finally, are there clever
ways of obtaining better accuracy with less effort?

3.2.3 Numerical Example

v "1 [(i—1%
/Osm(:t:)d:c:zﬁsm( - )

i=1

SLIDE 7

Note 6

Lets look at an example of integrating f(z) = sin(z) on our domain. We
obtain progressively better answers to the integral by increasing the number of
subintervals n. The error in evaluating the integral is plotted as a function of
the number of subintervals (n). The error appears to be going down as O (#)
Lets see why.

From what we have just seen, the error inside the i** subinterval (of length
o L) iy 1 A1)

s bS5 for some &; € [©=1, £]. Hence, for the entire interval [0, 1]

we can sum these errors and obtain the error, E, for an approximation using



'n’ subintervals as

_nh? (1S B (&)
E”_ﬂ<ﬁ,l dx? )

[\ /

call this ‘M’

It is easy to see that if f(z) is a continuous function, ‘M’ (being the mean) must
be bounded by the maximum and the minumum of f(z) on the interval [0, 1]
and hence, there must exist some £ € [0,1] such that M = d2f(£)/dz?. Hence
we obtain the estimate

nh*d?f(€) _ 1 d*f(€)
24 dgz  24n? da?

E, =

since h = 1/n. This error estimate tells us that the scheme is again exact for
constants and linear functions on the domain (no higher order polynomials!)
and, for a smooth function, the error decays algebraically.

3.3 General Quadrature Scheme
3.3.1 General 1D Form
1 n

z)dr ~ w; T

[[ o= g

——

=" weight Evaluation Point
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Free to pick the evaluation points.
Free to pick the weights for each point.

An n-point formula has 2n degrees of freedom!

Note 7

After all the hard work we did dividing the domian into subintervals, we realize
that we cannot even integrate a parabola exactly on the domain. There must
be something that we can do to improve this scheme. We go back and look at
the general form of the quadrature approximation scheme. All we are doing is
approximating an integral by a weighted sum of function evaluations as shown
in this slide. So far we have been choosing these weights as the subinterval
lengths. We have also been choosing all the evaluation points. The weights are
just some normalizing factors which ensure that the approximation is exact if
f(z) = 1 and the equality of areas of trapezoids and rectangles that we discussed
gives us the extra polynomial accuracy of being able to obtain the area under
a straing line exactly. So, what would happen if we were to choose both the
integration points and the weights intelligently? For an n-point formula we have




‘n’ weights and ‘n’ evaluation points to choose. That gives us ‘2n’ degrees of
freedom. Hence we must be able to integrate a polynomial of degree at most
‘(2n — 1)’ . This simple idea gives rise to the so called "Gauss quadrature"
scheme.

3.3.2 Point-Weight Selection Criteria
Result should be exact if f(z) is a polynomial
f(x) =ap+ a1z + azx® + - - + a2’ = py(x)

Select z;’s and w;’s such that

/0 pi(z)dr = Zwipz(ﬂ?i)

lth

for ANY polynomial upto (and including) order

With 2n degrees of freedom, [ =2n —1

Note 8

Let p;(z) denote a polynomial of degree | in the variable z (a; # 0). We want
to select the weights and integration points such that the formula

1 n
/ f(z)dz = Zwipl(xz’)
0 i=1

is exact for all polynomials of degree upto (and including) I. Obviously, with
2n degrees of freedom, the best we can dois I = 2n — 1.

3.3.3 Why the Exactness Criteria?

Consider the Taylor series for f(z)

!
f(z) = f(0)+ —6](;5:0)x+---+ %%w(lo)wl + R

R;44 is the remainder

1 (@)
B = et ©

where & € [0, z]

Note 9

Of all functions, why are we interested in integrating polynomials? The reason
comes from the structure of Taylor’s series expansion. The Taylor expansion
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of a function in a local neighborhood of a point (here this point is chosen as 0
without loss of generality) is nothing but a power series expansion! The higher
the order of polynomials that our scheme can integrate the higher the order of
the remainder term in the expansion. The integral of the remainer over the
domain is precisely the error in numerical integration.

3.3.4 Estimating the Error

Using the Taylor series results and the exactness criteria

. 1 1 8l+1f 5
Jo f@)dz = 0 wif () SRER /0 aml(fl(x)) J

Remainder

#1dz Assuming deriva-

tives of f(z) are bounded on [0, 1]

/0 f@)ds =Y wif @)

Convergence is very fast!!

K

ST+

Note 10

Assume that our scheme is exact upto a polynomial order ‘I’. That means we
can integrate the first (I + 1) terms in this Taylor series expansion exactly. The
error in numerical integration

_ [ - _ 1 [T (E(w)
E_/o ﬂm)dm_;wiﬂx")_(ul)!/o g

3.3.5 Meeting the Exactness Criteria

Exactness condition requires

1 1 n
/ pi(z)de = / (a0 + a1z + az2® + -+ + gz )dz = D wipi(x;)
0 0

i=1
for any set of [ + 1 coefficients ag, a1, - .., q;
Equivalently
1 1 1 1 n
/ apdx + / a1 xdx +/ asx’dx + - - +/ wrldr = Zwipl(xi)
0 0 0 0 pt
Note 11

This slide needs little clarification. Our exactness criterion is

1 1 n
/ pi(x)dx = / (ag + a17 + apz® + - - + ayzt)dz = Zwipl(mi)
0 0

i=1
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which is the same as
ao/ dx+a1/ zdr+-- -+al/ zldz = ag Zwi+a1 Zwimﬁ- -a Zwiwil
0 0 0 i=1 i=1 i=1

For this to be an identity for the (I 4+ 1) arbitrary coefficients a;, we must have
the (I + 1) conditions

n 1
Zwi:cij:/ #ide  forj=0,1,...,1
i=1 0

3.3.6 Meeting the Exactness Criteria

Exactness condition will be satisfied if and only if

1 n
/ dw:Zwi-l
0 i=1
1 n
/ zdr = Zw,- - T
0 i=1

1 n
/ rldr = E w; - T
0 i=1

3.3.7 Meeting the Exactness Criteria

Reorganizing exactness equations

1 1 - 1w
X X o X (W |

RN .
X% o lw ]| [Xax
0

Nonlinear, since z;’s and w;’s are unknowns

Note 12

Now what is a practical way of computing the evaluation points and weights?
We can write the exactness criteria into a matrix from. The system of equations
is not easy to solve since x;’s and w;’s are unknowns.

10
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3.3.8 Computing the Points and Weights
Could use Newton’s Method

Fly)=0=Jp (Z/k) (Z/k+1 - Z/k) =-F (yk)

The nonlinear function for Newton is then

. : L
X% o lw ]| X
0

Note 13

Newton’s method is an iterative technique for finding a value y such that F'(y) =
0. The method is based on linearizing the problem about a guess at y, and then
updating the value of y by solving the linearized problem. In particular, the
iterate y**! is determined from y* by solving the linear system of equations

Fy*) + Jr(y") (" —y*) =0

where Jr(y*) is the Jacobian (multidimensional derivative) of the nonlinear
function F(y). The iteration is continued until the updated y is sufficiently
close to the exact solution, a criterion that can be difficult to verify. Newton’s
method does not always converge, a phenomenon that is more likely when Jr(y)
is nearly singular. For more about Newton’s method, see the 6.336/16.920/2.096
course notes.

3.3.9 Computing the Points and Weights

Newton Method Jacobian reveals problem

0 0
W2 Wn
g, *

Columns become
linearly dependent for
high order

Note 14

Looking at the Jacobian of the problem, we realize that the first ‘n’ columns
become increasingly linearly dependent for large [. This is bound to happen since

11
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we are looking into the space span{1,z,...,z'}. This basis always becomes ill
conditioned with increasing /. The solution is to obtain a polynomial basis that
is "normalized" in some sense so that it is properly conditioned.

3.3.10 Use Different Polynomials
Exactness criteria will be satisfied if and only if

1

z \
oo (x)dx = wicy (%) BUT
0 i=1
b -~ Each ¢, polynomial must
JQ(X)dX:—;vv,cl(x) Containan X' term

Be linearly independent

Note 15

The only difference from the previous set of criteria is that these polynomials
have better properties than the ones we chose before.

3.3.11 Orthogonal Polynomials

For the normalized integral, two poynomials are said to be orthogonal if

/1 ci(x)cj(x)de =0  for j#i
0

The above integral is often referred to as an inner product and ascribed the
notation

(ciscj) = /1 ci(@)e;(w)dz
0

The connection between polynomial inner products and vector inner products
can be seen by sampling.

3.3.12 Exploiting the Different Polynomials

Consider rewriting the exactness criteria

oo (x) o= Zn:w,co(&) Jea ()

0 o i

fgv\/.cn(x)

:Icnfl(X)dx > W, (x) ;[czﬂfl(X)dXigW.%nfl(x)

Low order terms High Order Terms

12
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Recall that I(# polys) = 2n — 1(# of coef ficients)

Note 16

We just call the first (n — 1) conditions as the "lower order terms" and the last
n conditions as the "higher order terms".

3.3.13 Exploiting the Different Polynomials

Can write the higher order terms differently
Jy eal@)de = Y7 wica(z:) = [ ca(@)co()de = Y7 wicn(i)co(x:)

[ eon_1(@)dz = 7 wicon—1(2:) = [y en(€)cn1 (z)de =
0 = 0
iz1 Wicn(Ti)cn—1(;)

The products ¢, (z)c;(x) are linearly independent!

Note 17

In this slide we express the "higer order terms" as conditions involving "lower
order terms".

3.3.14 Using Orthogonality and Roots

1 n
\JEn‘f x)dx = > wef ) (%
) b)) Zl ()% (%)
1 n
Tt = S K x)
i=1
Use orthogonal polynomials ’

Pick the z;’s to be n roots of ¢, ()
The higher order constraints are exactly satisfied!

Note 18

This elegant step relies on polynomial orthogonality. If we choose the poly-
nomial ¢,(z) such that it is orthogonal to all polynomials of inferior degree
(i.e. co(z),c1(x),...,cn—1(z)) and the z;’s are roots of this polynomial, then

13
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the higher order n conditions are automatically satisfied. Note that for this
derivation we used polynomials which are orthogonal on the interval [0,1]. Such
polynomials are shifted and scaled versions of the classical Legendre polynomi-
als, which are orthogonal on the interval [-1,1].

3.3.15 Satisfying the Lower Order Constraints

An abbreviated exactness equation
1
co(z1) oo co(zn) w1 fo co(w)dzr
cn—1(x1) - cp-1(zn) Wp fol en—1(z)dx

Now linear, x;’s are known
Rows are sampled orthogonal polynomials.

Note 19

By using the roots of ¢,(z) for the z;’s, the higher order constraints are au-
tomatically satisfied. Since the z;’s are now known, only the weights are still
unknown. The lower n constraints can be used to determine the weights, gen-
erating a linear system.

3.4 Gaussian Quadrature Summary
3.4.1 Algorithm Steps

1. Construct n + 1 orthogonal polynomials
1
/ ci(z)cj(x)de =0  for j#i
0

2. Compute n roots, z;, i = 1,...,n of the nt"® order orthogonal polynomial
such that ¢, (z;) =0

3. Solve a linear system for the weights w;

4. Approximate the integral as a sum fol flz)ydz =31 w; f(z;)

Note 20

This slide summarizes the technique of finding weights and integration points
for Gauss quadrature.

14
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3.4.2 Accuracy Result

SLIDE 24
1 n
| f@s =3 wif(@)
0 i=1
Key properties of the method
e An n-point Gauss quadrature rule is exact for polynomials of order 2n—1
e Error is proportional to (%)271
3.5 Simple Quadrature Scheme
3.5.1 General n-Point Formula
SLIDE 25
[ =540 (5
fae =y 1r(2)
0 z:zl n n
f I(x)
0 1ox
Key property of the method
e Error is proportional to 25
> Exercise 2 Do you see that the simple quadrature scheme is a special case
of Gauss quadrature? m
3.6 Comparing Simple Quad and Gauss Quad
SLIDE 26
: - ,,,,,VSVinpPIe Quad |
E10“
' 1 Approximately Gauss—Quadr

r'e  Integrating

’ IcosZﬂxdx
1

Number of Points

Note 21

Notice that for a smooth function f(z) = cos(2wz), which is infinitely differen-
tiable, Gauss quadrature far outperforms the simple quadrature scheme
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3.7 Comparing Simple Quad and Gauss Quad

3.7.1 Evaluation Point Placement

SLIDE 27
Simple-Quadr_ature Points
1 0 1
Gauss-Quadre:lture Points
HEE 4 b b b b
-1 0 1
Notice the clustering at interval ends
Note 22
In the Gauss quadrature scheme the evaluation points are roots of Legendre
polynomials which are clustered at the ends of the interval.
4 The Singular Kernel Problem
4.1 3D Laplace Example
4.1.1 Calculating the "Self-Term"
SLIDE 28
z Xcl Collljooxiﬁ%ion
b 1
= ds’
SRR
Panel i

; anel Area
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Approximation 1

1
Ac |
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dS' isanintegrable singularity

Note 23

Now lets go back to our problem of solving Laplace’s equation on a 3D domain
using boundary integral representation. We realize that we now have some
sophisticated tools to handle integrals of functions that are smooth. But what
about the integral on the panel where the centroid ., is located? The Green’s
function blows up at the centroid. However, the function is integrable because
the integrand blows up at a rate that is slower than the rate at which the
surface measure goes to zero in the vicinity of the singularity. So we know that

16



the integral exists and is finite, but is Gauss quadrature capable of performing
well in the presence of this singularity?

4.2 Symmetrized 1D Example
4.2.1 Example

1

R b

a5l Quad Point
1 Notenox =0
ke j

In 1D we look at a function f(z) = —i= which is integrable on [—1, 1] but has

N

Note 24

a singularity at x = 0.

4.2.2 Integrable and Nonintegrable Singularities

1 1
fx) = fx) = —
NE o <]
os
25}
Area - finite Area — o
: 15

4.3 Comparing Quadrature Schemes

Approximately

4 Integrating J. ;
1.2‘

. A\ Gauss-Quad

1SN N Large errors -
N even with many
98 S~ . points! \
08 Simple Qua[j T T

2 4 6 8 10 12 ‘M””; 16
Number of Points
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Note 25

We observe that Gauss quadrature is not very good at integrating this function.
The convergence is rather poor. As a matter of fact, it is more inaccurate than
the simple quadrature scheme. In the next few slides we present several tech-
niques of handling integrals with singularities (which are integrable, of course)

e Subinterval (adaptive) quadrature
e Change of variables of integration

e Singular (Gaussian) quadrature

4.4 Improved Techniques
4.4.1 Subinterval (Adaptive) Quadrature

Subdivide the 1ntegrat10n interval
1 0.1
I, \/1‘— =/ 1 de+ [° o1 \/—da:+f \/—da:+f0 L \/_da: Use Gauss
quadrature in each sublnterval
Polynomials fit subintervals better
Expensive if many subintervals used.

4.4.2 Change of Variables - for Simple Cases

Change variables to eliminate singularity
2
y =z

= 2ydy = dx

f_ —dm— 2f0

2dy

Apply Gauss quadrature on desingularized intergrand

18
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4.4.3 Singular Quadrature - Complicated Cases
SLIDE 34

Integrand has known singularity s(z)
fil f(z)s(xz)dz where f(z) is smooth

Develop a quadrature formula exact for
fil pi(z)s(z)dx where p;(x) is polynomial of order {

Calculate weights like Gauss quadrature

Note 26

It is possbile to generate Gaussian quadrature schemes of the form

/ (@) f2)de = Y wif (@)

-1

for functions which have a known singularity s(z) > 0. The quadrature formula
needs to be exact when f(z) is a polynomial of order at most I. Not surprisingly,
it turns out that the integration points are the n roots of a polynomial ¢, (x)
of degree n = (I + 1)/2 which is orhogonal to all polynomials of inferior degree
with respect to the weight s(x), i.e.

/1 s(x)en(x)ej(z) =0 forj=0,1,...,(n—1).

-1

An example is the singular integral

I / b f@)
—1V1—22
Here, s(z) = 1/v/1 — 22 and the corresponding orthogonal polynomials turn out
to be the Chebyshev polynomials. The integration points are given in closed

form by
2i—1
;i = coS (71' o )

and the corresponding weights are w; = w/n.

19



4.4.4 Singular Quadrature Weights

co(z) -+ co(my) w1 fil co(z)s(z)dz

cn—1(z1) - cn-1(Tn) (8 fil cn,l(‘m)s(m)dx

Need (analytic) formulas for integrals of ¢(x)s(x)

Note 27

The lower order constraints can be used to compute the integration weights.

5 Summary

Easy technique for computing integrals
Piecewise constant approach

Gaussian quadrature

Faster convergence

Essential role of orthogonal polynomials
Techniques for singular kernels
Adaptation and Variable Transformation
Singular quadrature

What about multiple dimensions?

20
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