Numerical Methods for PDEs

Integral Equation Methods, Lecture 3
Discretization Convergence Theory

Notes by Suvranu De and J. White

April 30, 2003

Outline

Integral Equation Methods

Reminder about Galerkin and Collocation

Example of convergence issues in 1D

First and second kind integral equations

Develop some intuition about the difficulties

Convergence for second kind equations

Consistency and stability issues

Nystrom Methods

High order convergence

Basis Function Approach

Basic Idea

Integral equation:
$$\Psi(x)=\int G(x,x')\sigma(x')dS'$$

Represent $\sigma_n(x)=\sum_{i=1}^n\sigma_{ni}$ $\varphi_i(x)$
 $\frac{\varphi_i(x)}{Basis\ functions}$

Example Basis
Represent circle with straight lines
Assume σ is constant along each line

Basis Function Approach

Piecewise Constant Straight Sections Example

- 1) Pick a set of n Points on the surface
- 2) Define a new surface by connecting points with n lines.
- 3) Define $\varphi_i(x) = 1$ if x is on line l_i otherwise, $\varphi_i(x) = 0$

$$\Psi(x) = \int_{\substack{approx \\ surface}} G(x, x') \sum_{i=1}^{n} \sigma_{ni} \varphi_{i}(x') dS' = \sum_{i=1}^{n} \sigma_{ni} \int_{\substack{linel_{i} \\ i}} G(x, x') dS'$$

How do we determine the σ_{ni} 's?

Basis Function Approach

Residual Definition and Minimization

$$R(x) \equiv \Psi(x) - \int_{\substack{ ext{approx} \ ext{surface}}} G(x,x') \sum_{i=1}^n \sigma_{ni} arphi_i(x') dS'$$

We will pick the σ_{ni} 's to make R(x) small.

General approach: Pick a set of test functions ϕ_1, \ldots, ϕ_n , and force R(x) to be orthogonal to the set;

$$\int \phi_i(x) R(x) dS = 0 \;\; for \; all \; i$$

Basis Function Approach

Residual Minimization Using Test Functions

$$\left|\int \phi_i(x) R(x) dS = 0 \right|$$
 \Rightarrow

$$\int \phi_i(x) \Psi(x) dS - \int \int_{\substack{\text{approx} \\ \text{surface}}} \phi_i(x) G(x, x') \sum_{j=1}^n \sigma_{nj} \varphi_j(x') dS' dS = 0$$

We will generate different methods by choosing the ϕ_1, \ldots, ϕ_n

Collocation: $\phi_i(x) = \delta(x - x_{t_i})$ (point matching)

Galerkin Method : $\phi_i(x) = \varphi_i(x)$ (basis = test)

Weighted Residual Method : $\phi_i(x) = 1$ if $\varphi_i(x) \neq 0$

(averages)

Basis Function Approach

Collocation

Collocation: $\phi_i(x) = \delta(x - x_{t_i})$ (point matching)

$$\int oldsymbol{\delta(x-x_{t_i})R(x)dS} = R(x_{t_i}) = 0$$

$$\sum_{j=1}^{n} \sigma_{nj} \overbrace{\int_{ ext{approx}} G(x_{t_i}, x') arphi_j(x') dS'}^{A_{i,j}} = \Psi(x_{t_i})$$
 surface

$$egin{bmatrix} A_{1,1} & \cdots & \cdots & A_{1,n} \ dash & \ddots & dash \ dash & \ddots & dash \ A_{n,1} & \cdots & \cdots & A_{n,n} \end{bmatrix} egin{bmatrix} \sigma_{n1} \ dash \ dash \ \sigma_{nn} \end{bmatrix} = egin{bmatrix} \Psi(x_{t_1}) \ dash \ dash \ dash \ \Psi(x_{t_n}) \end{bmatrix}$$

Basis Function Approach

Galerkin

Galerkin: $\phi_i(x) = \varphi_i(x)$ (test=basis)

$$\int \varphi_{i}(x) R(x) dS = \int \varphi_{i}(x) \Psi(x) dS - \int \int_{\text{approx surface}} \varphi_{i}(x) G(x, x') \sum_{j=1}^{n} \sigma_{nj} \varphi_{j}(x') dS' dS = 0$$

$$\int_{\text{approx surface}} \varphi_{i}(x') \Psi(x) dS' = \sum_{j=1}^{n} \sigma_{nj} \int_{\text{approx approx surface}} G(x, x') \varphi_{i}(x) \varphi_{j}(x') dS' dS$$

$$\int_{i} \varphi_{i}(x') \Psi(x) dS' = \sum_{j=1}^{n} \sigma_{nj} \int_{\text{approx surface}} G(x, x') \varphi_{i}(x) \varphi_{j}(x') dS' dS$$

$$\int_{i} \varphi_{i}(x') \Psi(x) dS' = \sum_{j=1}^{n} \sigma_{nj} \int_{\text{approx surface}} G(x, x') \varphi_{i}(x) \varphi_{j}(x') dS' dS$$

$$egin{bmatrix} A_{1,1} & \cdots & \cdots & A_{1,n} \ dash & \cdots & dash dash \ dash & \cdots & dash dash \ A_{n,1} & \cdots & \cdots & A_{n,n} \end{bmatrix} egin{bmatrix} \sigma_{n1} \ dash dash \ \sigma_{nn} \end{bmatrix} = egin{bmatrix} b_1 \ dash \ dash \ dash \ b_n \end{bmatrix}$$

If G(x,x')=G(x',x) then $A_{i,j}=A_{j,i}\Rightarrow \mathsf{A}$ is symmetric

Example Problems

1D First Kind Equation

$$\Psi(x) = \int_{-1}^{1} |x - x'| \sigma(x') dS' \quad x \in [-1, 1]$$

The density must be computed $\sigma(x)$ is unknown

Example Problems

Collocation Discretization of 1D Equation

$$\Psi(x) = \int_{-1}^{1} |x - x'| \sigma(x') dS' \quad x \in [-1, 1]$$

Centroid Collocated Piecewise Constant Scheme

$$x_0 = -1 \qquad x_1 \qquad x_2 \qquad x_{n-1} \qquad x_n = 1$$

$$x_{n-1} \qquad x_n = 1$$

$$\Psi(x_{c_i}) = \sum_{j=1}^n \sigma_{nj} \int_{x_{j-1}}^{x_j} |x_{c_i} - x'| dS'$$

Example Problems

Collocation Discretization of 1D Equation-The Matrix

Numerical Results with Increasing n

Example Problems

1D Second Kind Equation

$$\Psi(x) = \sigma(x) + \int_{-1}^{1} |x - x'| \sigma(x') dS' \quad x \in [-1, 1]$$

The potential is given

$$\Psi(x) = x^3 - x$$

The density must be computed $\sigma(x)$ is unknown

Example Problems

Collocation Discretization of 1D Equation

$$\Psi(x) = \sigma(x) + \int_{-1}^{1} |x - x'| \sigma(x') dS' \quad x \in [-1, 1]$$

Centroid Collocated Piecewise Constant Scheme

$$x_0 = -1 \qquad x_1 \qquad x_2 \qquad x_{n-1} \qquad x_n = 1$$

$$x_{n-1} \qquad x_n = 1$$

$$\Psi(x_{c_i}) = \sigma_{ni} + \sum_{j=1}^n \sigma_{nj} \int_{x_{j-1}}^{x_j} |x_{c_i} - x'| dS'$$

Example Problems

Collocation Discretization of 1D Equation-The Matrix

$$\begin{bmatrix}
1+\int_{x_0}^{x_1} |x_{c_1}-x'| dS' & \cdots & \int_{x_{n-1}}^{x_n} |x_{c_1}-x'| dS' \\
\vdots & \ddots & \vdots & \vdots \\
\int_{x_0}^{x_1} |x_{c_n}-x'| dS' & \cdots & 1+\int_{x_{n-1}}^{x_n} |x_{c_n}-x'| dS'
\end{bmatrix}
\begin{bmatrix}
\sigma_{n1} \\
\vdots \\
\sigma_{nn}
\end{bmatrix} = \begin{bmatrix}
\Psi(x_{c_1}) \\
\vdots \\
\Psi(x_{c_n})
\end{bmatrix}$$

Numerical Results with Increasing n

Example Problems

1D First Kind Equation Difficulty

Denote the integral operator as K

$$K\sigma \equiv \int_{-1}^{1} |x-x'| \sigma(x') dS' \Rightarrow K\sigma = \Psi$$

The integral operator is singular : K has a null space

$$\sigma_0(x) = 0, x \neq 0, \sigma_0(0) = 1$$

$$K\sigma_0=\int_{-1}^1|x-x'|\sigma_0(x')dS'=0$$

If $K\sigma^a=\Psi$ $then$ $K(\sigma^a+\sigma_0)=\Psi$

Example Problems

1D First Kind Equation Difficulty from the Matrix

Collocation generates a discrete form of K

$$K\sigma = \Psi \ \ o K_n\sigma_n = \Psi_n$$

$$\begin{bmatrix}
\int_{x_{0}}^{x_{1}} |x_{c_{1}} - x'| dS' & \cdots & \int_{x_{n-1}}^{x_{n}} |x_{c_{1}} - x'| dS' \\
\vdots & \ddots & \vdots \\
\int_{x_{1}}^{x_{1}} |x_{c_{n}} - x'| dS' & \cdots & \int_{x_{n-1}}^{x_{n}} |x_{c_{n}} - x'| dS'
\end{bmatrix} \begin{bmatrix} \sigma_{n1} \\ \vdots \\ \sigma_{nn} \end{bmatrix} = \begin{bmatrix} \Psi(x_{c_{1}}) \\ \vdots \\ \Psi(x_{c_{n}}) \end{bmatrix}$$

$$\underline{K}n$$

The matrix \underline{K}_n is the not the operator K_n !

Numerical Results with Increasing n

Example Problems

Intuition About the Eigenvalues

As the discretization is refined, $\sigma_0(x)$ becomes better approximated

As the discretization is refined, K's null space can be more accurately represented.

Example Problems

Second kind Equation has Fewer Problems

Second Kind equation

$$(I+K)\sigma \equiv \sigma(x) + \int_{-1}^{1} |x-x'|\sigma(x')dS' \Rightarrow (I+K)\sigma = \Psi$$

$$(I+K)(\sigma_0+\sigma)
eq (I+K)\sigma$$

20

Numerical Results with Increasing n

Second Kind Theory

General Framework

General Second kind integral equation

$$\Psi(x) = \sigma(x) + \int G(x, x') \sigma(x') dx' \Rightarrow \Psi = (I+K) \sigma$$

Discrete equivalent

$$\Psi_n = (I + K_n) \, \sigma_n$$

where Ψ_n and σ_n are functions of x.

What is Ψ_n ? K_n ?

Second Kind Theory

Discrete Equivalent for Galerkin

Representation
$$\sigma_n(x) = \sum_{i=1}^n \sigma_{ni} \varphi_i(x)$$

Projection $\sigma_n = P\sigma$

$$P\sigma \equiv \sum_{i=1}^n \left(\int \sigma(x) arphi_i(x) dx
ight) arphi_i(x)$$

Note
$$K\sigma_n(x) = KP\sigma(x) = \sum_{i=1}^n \sigma_{ni} \int G(x,x') \varphi_i(x') dx'$$

Second Kind Theory

Discrete Equivalent for Galerkin, contd..

$$egin{aligned} P(KP\sigma) &= \sum_{j=1}^n \left(\int arphi_j(x) KP\sigma(x) dx
ight) arphi_j(x) \ &= \sum_{j=1}^n \left(\sum_{i=1}^n \sigma_{ni} \int \int arphi_j(x) G(x,x') arphi_i(x') dx dx'
ight) arphi_j(x) \end{aligned}$$

$$(I+PKP)\sigma_n=P\Psi \ (I+K_n)\sigma_n=\Psi_n$$

Second Kind Theory

Main Theorem

Given
$$(I+K)\sigma=\Psi$$
 and $||(I+K)^{-1}||< C$ (Equation uniquely solvable)
$$(I+K_n)\sigma_n=\Psi_n$$
 (Discrete Equivalent)

Consistency:

If
$$lim_{n o\infty} max_{||\sigma_{smooth}||=1}||(K-K_n)\sigma|| o 0$$
 and $lim_{n o\infty}||\Psi-\Psi_n|| o 0$

Then

$$lim_{n
ightarrow\infty}\left\Vert \sigma-\sigma_{n}
ight\Vert
ightarrow0$$

Second Kind Theory

Rough Proof

Second Kind Theory

Rough Proof Continued

The equation for the solution error (previous slide)

$$\underbrace{(\sigma_n - \sigma)}_{solution\ error} = (I + K_n)^{-1}(K - K_n)\sigma$$

Taking norms

$$\lfloor |\sigma_n - \sigma| \rfloor \le \lfloor |(I + K_n)^{-1}| \rfloor \lfloor |(K - K_n)\sigma| \rfloor$$

Error which Needs a Goes to

should go to bound, that is zero

zero as n stability by consistency

increases

Second Kind Theory

Stability Bound

Norm of solution error

$$||(\sigma_n-\sigma)||\leq ||(I+K_n)^{-1}||||(K-K_n)\sigma||$$

Deriving the stability bound

$$(I+K_n)^{-1} = (I+K-(K-K_n))^{-1} = (I+K)^{-1} (I-(I+K)^{-1}(K-K_n))^{-1}$$

Taking norms

$$||(I+K_n)^{-1}|| \le ||(I+K)^{-1}|| ||(I-(I+K)^{-1}(K-K_n))^{-1}||$$

Bounded by C
by Assumption

Second Kind Theory

Stability Bound Contd...

Repeating from last slide

$$||(I + K_n)^{-1}|| \le ||(I + K)^{-1}|| ||(I - (I + K)^{-1}(K - K_n))^{-1}||$$
Bounded by C
by Assumption

Bounding terms

$$||(I+K_n)^{-1}|| \leq \frac{C}{1-||(I+K)^{-1}(K-K_n)||} \leq \frac{C}{1-\epsilon} < C \text{ for } n \geq n_0$$
Less than ϵ for n larger
than n_0 by consistency

Second Kind Theory

Rough Proof Completed

Final result

$$|lim_{n o \infty}||(\sigma_n - \sigma)|| \leq C |lim_{n o \infty}||(K - K_n)\sigma|| = 0$$

What does this mean?

The discretization convergence of a second kind integral equation solver depends on how well the integral is approximated.

Nystrom Method

Collocation Discretization of 1D Equation

Integral Equation

$$\Psi(x) = \sigma(x) + \int_{-1}^{1} G(x, x') \sigma(x') dS' \qquad x \in [-1, 1]$$

Apply quadrature to Collocation equation

$$\Psi(x_i) = \sigma(x_i) + \int_{-1}^1 G(x_i, x') \sigma(x') dS'$$

 $\Rightarrow \Psi(x_i) = \sigma(x_i) + \sum_{j=1}^n w_j G(x_i, x_j) \sigma(x_j)$
 x_i is a collocation point
 x_j 's are quadrature points

Now set quadrature points = collocation points

Nystrom Method

Collocation Discretization of 1D Equation, Contd...

Set quadrature points = collocation points

$$\Psi(x_1) = \sigma_{n1} + \sum_{j=1}^n w_j G(x_1,x_j) \sigma_{nj}$$

$$\Psi(x_n) = \sigma_{n1} + \sum_{j=1}^n w_j G(x_n, x_j) \sigma_{nj}$$

System of *n* equations in *n* unknowns

Collocation equation per quad/colloc point

Unknown density per quad/colloc point

Nystrom Method

1D Discretization-Matrix Comparison

Nystrom Matrix

$$\begin{bmatrix} 1 + w_1 G(x_1, x_1) & \cdots & w_n G(x_1, x_n) \\ \vdots & \ddots & \vdots \\ w_1 G(x_n, x_1) & \cdots & 1 + w_n G(x_n, x_n) \end{bmatrix} \begin{bmatrix} \sigma_{n1} \\ \vdots \\ \sigma_{nn} \end{bmatrix} = \begin{bmatrix} \Psi(x_1) \\ \vdots \\ \Psi(x_n) \end{bmatrix}$$

Piecewise Constant Collocation Matrix

$$\begin{bmatrix} 1 + \int_{x_0}^{x_1} G(x_{c_1}, x') dS' & \cdots & \int_{x_{n-1}}^{x_n} G(x_{c_1}, x') dS' \\ \vdots & \ddots & \vdots \\ \int_{x_0}^{x_1} G(x_{c_n}, x') dS' & \cdots & 1 + \int_{x_{n-1}}^{x_n} G(x_{c_n}, x') dS' \end{bmatrix} \begin{bmatrix} \sigma_{n1} \\ \vdots \\ \sigma_{nn} \end{bmatrix} = \begin{bmatrix} \Psi(x_{c_1}) \\ \vdots \\ \Psi(x_{c_n}) \end{bmatrix}$$

Nystrom Method

1D Discretization-Matrix Comparison, Contd..

Nystrom Matrix

Just Green's function evals - No integrals Entries each have a quadrature weight Collocation points are quadrature points High order quadrature=faster convergence?

Piecewise Constant Collocation Matrix

Integrals of Green's function over line sections Distant terms equal Green's function Collocation points are basis function centroids Low order method always

Nystrom Method

 K_n and Ψ_n for Nystrom Method

$$K_n \sigma = \sum_{i=1}^n \left(\sum_{j=1}^n w_j G(x_i, x_j) \sigma(x_j) \right) arphi_i(x)$$

$$\Psi_n = \sum_{i=1}^n \Psi(x_i) arphi_i(x)$$

Nystrom Method

1D Second Kind Example

Convergence Theorem

In the limit as $n \to \infty$ (number of quad points $\to \infty$)
The discretization error =

$$max_{||\sigma||=1}||(K-K_n)\sigma|| o 0$$

AT THE SAME RATE as the underlying quadrature!!

Gauss Quadrature → Exponential Convergence!

Nystrom Method

Convergence Comparison

$$cos2\pi x = \sigma(x) + \int_{-1}^{1} (x - x')^2 \sigma(x') dS'$$

Nystrom Method

Convergence Caveat

If Nystrom method can have exponential convergence, why use anything else?

Gaussian quadrature has exponential convergence for nonsingular kernels

Most physical problems of interest have singular kernels $(1/r, \exp ikr/r, \text{ etc})$

Summary

Integral Equation Methods

Reviewed Galerkin and Collocation

Example of Convergence Issues in 1D

1st and 2nd kind integral equations, null spaces

Convergence for second kind equations

Show consistency and stability issues

Nystrom methods

High order convergence

Did not address singular integrands