Numerical Methods for PDEs

Integral Equation Methods, Lecture 3
Discretization Convergence Theory
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Outline

Integral Equation Methods
Reminder about Galerkin and Collocation
Example of convergence issues in 1D
First and second kind integral equations
Develop some intuition about the difficulties
Convergence for second kind equations
Consistency and stability issues
Nystrom Methods
High order convergence
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Basis Function Approach

Integral
Equation Basics

Integral equation: ¥(x) = [ G(x, 2" )o(x')dS’
Represento,(x) =Y. 0n  @i(x)

Basts functions

ZaN

Example Basis (

L
Represent circle with straight lines )

Assume o is constant along each line \ /

Discretization Convergence Theory 2




Basis Function Approach

1) Pick a set of n Points on the

X, surface
2) Define a new surface by
connecting points with n lines.

3) Define @ (x)=1if x is on line /,
otherwise, ¢, (x)=0

Integral
Equation Basics

. S ST L ST
lP(-")_ _[G(l,l )lr ;lo-’”q%(l )dS _I EIO}” JG(,\,,\ )dS

" line!
i

£l Pp rex

How do we determine the o,,; 'S?
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Basis Function Approach

Integral

Equatlon Basics Residual Definition and Minimization

R@)=¥(@) ~ [0 G@a) Y guipi(a)ds
surface =

We will pick the o,,; ’s to make R(x) small.
General approach: Pick a set of test functions

o1, ..., Oy, and force R(x) to be orthogonal to the
set;

/fl')z'(a?)R(a?)dS =0 forallz
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Basis Function Approach

Integral
Eq uation Basics Residual Minimization Using Test Functions

| di(x)R(z)dS =

0=
/ Pilz)¥(e)d5- / approx G(z,2/) Z Onj¥Pj (z)dS'dS =0

surface

We will generate different methods by choosing the ¢4, ..., ¢,
Collocation : ¢;(x) = 6(x — x¢,) (point matching)

Galerkin Method : ¢;(x) = ¢;(x) (basis = test)

Weighted Residual Method : ¢;(z) = 1if ¢;(x) # 0
(averages)
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Basis Function Approach

Integral

Equation Basics Collocation

Collocation: ¢;(x) = d(x — =x¢,) (point matching)

| 6(xz—z¢, )R(x)dS=R(z¢,)=0 | =

A; ;

J\f‘?
2217 /approx G (z1;, @) pj(2')dS" = W(ay,)
surface
| A1,1 """ Al,n 1 Oni _ _ ‘I’(ﬂ?tl) _
An,l """ An,n Tnn \Il(ajtn)
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Basis Function Approach

Integral

Equation Basics Galerkin

Galerkin: ¢;(x) = ;(x) (test=basis)

fp.(x) R(x)ds= [o, () e(x)das- [ | p(x)G(x, )fa 9,(x)dsds =0
PN J=1
trfence

j 1;0,.(x’)'P(x)dS’:iO}U j j G(x,x)o (x) @, (x)dS'dS
capfp X =

J= LPPRON cpproY
SI": Lh 2 ﬂ": (L

If G(z, 2') = G(a', z) then A; ; = A, ; = A is symmetric
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Example Problems

V(e) = [ |z —|o(@)dS’ @€ [-1,1]

Convergence
Analysis

The potential is given The density must be computed
¥(x)=x"-x o(x) is unknown
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Example Problems

Convergence
Analysis Collocation Discretization of 1D Equation

U(x) = [}, ¢ —2|o(2)dS’ =€ [-1,1]

Centroid Collocated Piecewise Constant Scheme

U(2e) = 37, 00 [ e, — '|dS"
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Example Problems

Convergence
Analysis

‘Iﬂ
J. ‘1 —.x:" ds’

Hp—1

One row for each collocation point
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Convergence Numerical Results with Increasing n

Analysis
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Convergence
Analysis

Example Problems

U(e) = o(z) + [, ¢ —2|o()dS & €[-1,1]

The potential is given The density must be computed
W(x)=x"—x o (x) is unknown

JERIEEEN
e e
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Example Problems

Convergence
Analysis Collocation Discretization of 1D Equation

U(x) =o(x) + [, |x — 2|o(x)dS’ x € [—1,1]

Centroid Collocated Piecewise Constant Scheme

V(Te,) = Oni+ D ;00 f;;f"_l |z, — «'|dS’
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Convergence Example Problems

Analysis

x x,
‘x(, —.x"dS' Hr(, —x"d-S'
1 1
! Xn-1

’( —r‘dS @Hr —r‘dS Onn
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Convergence Numerical Results with Increasing n

Analysis

Answers Are Improving!!!
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Example Problems

Convergence
Analysis 1D First Kind Equation Difficulty

Denote the integral operator as K

1

Ko = / |z — 2'|o(2")dS' = Ko =¥
—1

The integral operator is singular : K has a null space

1
Koy = f z — 2/|oo(2’)dS’ = 0
1
f Ko®* =¥ then K(o°+09) =W
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Example Problems

Collocation generates a discrete form of K

Convergence
Analysis

Ee] X,
4 4 4 4
ﬂxc —x.|dS ch —x|dS
'L 'L
Ap 1

The matrix K, is the not the operator K,,!
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Convergence Numerical Results with Increasing n

Analysis

L —

Eigenvalues accumulating at zero.
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Convergence
Analysis

Example Problems

As the discretization is refined, ao(x) becomes better approximated

As the discretization is refined, K'’s null space can be
more accurately represented.
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Example Problems

Convergence
Analysis Second kind Equation has Fewer Problems

Second Kind equation

(I+K)o = a(ac)—l—/_ll lx—2'|o(x2")dS' = (I+ K)o = ¥

(I + K)(oo+0) # (I + K)o

o,(x)=0,x20, 6,(0)=1
I ]
- 1
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Convergence Numerical Results with Increasing n

Analysis

Eigenvalues do not get closer to zero.
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Second Kind Theory

Convergence
Analysis General Framework

General Second kind integral equation

U(x) = a(cc)—l—/ G(z,2)o(x)dx' = ¥ = (I+K)o
Discrete equivalent

where ¥, and o,, are functions of x.
Whatisw¥,, ? K,,7
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Second Kind Theory

Convergence
Analysis Discrete Equivalent for Galerkin

Representation o,,(x) = > ", o,:p0:(x)
Projection o,, = Po _

Note Ka,(z) = KPo(z) =), 0ni | G(z,2")pi(2')d’
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Second Kind Theory

Convergence
Analysis Discrete Equivalent for Galerkin, contd..

P(kPo) =Y ( [ i@k Po@)dz) ¢i(2)

7=1

(Y 0i | [ ei@)G(a, w’)m')dwdw) 05(x)

or
(I + PKP)o, = P¥
(I + K,)o, =¥,
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Second Kind Theory

Convergence
Analysis Main Theorem

Given (I + K)o =%and |[|[(I+ K) !||< C
(Equation uniquely solvable)
(I + K,)o, =Y,
(Discrete Equivalent )
Consistency:
If imy—oomax),, .. =1|[(K — K,)o|| — 0
and lim,_||¥ — ¥,|| — 0
Then

lim, oo ||l —0n|| — 0
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Convergence
Analysis

Second Kind Theory

Operator Form for Discretized Integral Equation
the integral equation

(I+K)o =¥ I+ K, | % =9,
On =Y,

discretized |discretized
iscrefize

integral density Ignore

Subtracting\ operafor for simplicity

(1+K,)(%—-0) + (K, -K)o+(¥,-¥)=0

= (0,~0)=(I+K,)"V(K-K )o+(P-¥,)]
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Second Kind Theory

Convergence
Analysis Rough Proof Continued

The equation for the solution error (previous slide)
(6p,—0) =T+ K,) (K - K,)o

luti

Taking norms

llon —al] < ||+ Kn)7'||(K — K,)o|
'—/—f " "
Error which Needs a Goes to
should go to bound, that is zero
7ZE€TO as 1 stability by consistency
1ncreases
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Second Kind Theory

Convergence
Analysis Stability Bound

Norm of solution error

[(on — )| < I+ Kp)HI(K — Ky)o||
Deriving the stability bouna
T+K) " =(+K-(K-K)'=(+K) (- ([ +K) (K- K,))"
Taking norms
I+ )7 < I+ E) 7 ([T = (I + K) (K - Ky))

Bounded by €
by Assumption

-1
|

SMA-HPC (©2003 MIT Discretization Convergence Theory 28



Second Kind Theory

Convergence
Analysis Stability Bound Contd...

Repeating from last slide 1
(I +K) 7 < I+ K7 I - I+ K) (K - K)) ||

Bounded by C
by Assumption
Bounding terms
-1 c
(I +K,)"| S1-l|(I+K) (K K) U_ £ < C for n > ny
Less than € for n larger
than ng by consistency
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Second Kind Theory

Convergence
Analysis Rough Proof Completed

Final result
lim,,_ool|(6n — 0)|| < Clim,_||(K — K,,))o|| =0

What does this mean?

The discretization convergence of a second kind
integral equation solver depends on how well the
integral is approximated.
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1D Second Kind Example

Nystrom Method

Collocation Discretization of 1D Equation

Integral Equation
U(x) = o(x) + [1, Gz, )o(x)dS 2z € [-1,1]

Apply quadrature to Collocation equation
W(x;) = o(x) + [2, G, x')o(2')dS"

= U(z;) = o(x;) + >, wiG(®i, xj)o (z;)

x; 1S a collocation point

x ;'S are quadrature points

Now set quadrature points = collocation points
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1D Second Kind Example

Nystrom Method

Collocation Discretization of 1D Equation, Contd...

Set quadrature points = collocation points

U(x1) = 0,1 + Z ’ij(xla wj)o'nj

=

U(x,) = 0,1 + Z W;G( Ty Tj)Op;
j=1
System of n equations in n unknowns
Collocation equation per quad/colloc point
Unknown density per quad/colloc point
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1D Second Kind Example
Nystrom Method

Nystrom Matrix

1+ w,G(x,x) -

wG(x,x) o 1+w,G(x,x,) ]|
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1D Second Kind Example

Nystrom Method

1D Discretization-Matrix Comparison, Contd..

Nystrom Matrix
Just Green’s function evals - No integrals
Entries each have a quadrature weight
Collocation points are quadrature points
High order quadrature=faster convergence?

Piecewise Constant Collocation Matrix

Integrals of Green’s function over line sections
Distant terms equal Green’s function
Collocation points are basis function centroids
Low order method always
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1D Second Kind Example

Nystrom Method
K,, and ¥, for Nystrom Method

Kuo = Y1y (X5 wiGl@i, @) (x)) ) i)

U, =D iy Y(@:)pi(e)
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1D Second Kind Example

Nystrom Method

Convergence Theorem

In the limit as n — oo (number of quad points — oo)
The discretization error =

mazx|q|=1||(K — Kp)o|| — 0

AT THE SAME RATE as the underlying quadrature!!

Gauss Quadrature = Exponential Convergence!
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1D Second Kind Example
Nystrom Method

cos2nx = o(x) + f_ll(cc — 2')°o(2")dS’

_ Piecewise-Constant
~—~._Centroid Collocation

Gauss-Quad
Nystrom
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1D Second Kind Example

Nystrom Method

Convergence Caveat

If Nystrom method can have exponential convergence,
why use anything else?

Gaussian quadrature has exponential convergence for
nonsingular kernels

Most physical problems of interest have singular
kernels (1 /r, exp itkr/r, etc)
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Summary

Integral Equation Methods
Reviewed Galerkin and Collocation
Example of Convergence Issues in 1D
1st and 2nd kind integral equations, null spaces
Convergence for second kind equations
Show consistency and stability issues
Nystrom methods
High order convergence

Did not address singular integrands
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