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1 Outline

Integral Equation Methods

Reminder about Galerkin and Collocation
Example of convergence issues in 1D
First and second kind integral equations
Develop some intuition about the difficulties
Convergence for second kind equations
Consistency and stability issues

Nystrom Methods

High order convergence

2 Integral Equation Basics

2.1 Basis Function Approach
2.1.1 Basic Idea

Integral equation: ¥(z) = [ G(z,z')o(z')dS’
Represent o, (z) = Y1, 0ni wi(z)
N

Basis functions

.\
Example Basis
Represent circle with straight lines

Assume o is constant along each line \ /o
@

Note 1

As mentioned earlier, we are investigating methods for solving integral equa-
tions based on representing the solution as a weighted sum of basis functions.
Then, the original problem is replaced with the problem of determining the basis
function weights. In the next few slides we review the basis function approach.
The example basis that we have been considering is, for a 2-D problem, to
replace the original boundary curve with a collection of straight sections, like
the example circle in the slide. For the circle example, the result of using
this basis is to replace the circle with a polygon. Then, the charge density is
assumed constant on each edge of the polygon. The result is a piecewise constant
representation of the charge density on a polygon, not a representation of the
charge density on the circle.
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2.1.2 Piecewise Constant Straight Sections Example

X
/"\ 1) Pick a set of n Points on the
ln 1N\ surface
| 2) Define a new surface by
2 connecting points with n lines.
\\ *  3)Define ¢, (x) =1if x is on line |,
0/ otherwise, ¢, (x)=0
n n
Y(x)= [G(xx o .¢.(X)dS=% g_. [G(xX)dS
(9= 6000 3,07, (X)0S=13, oy [G0xx)

approx
surface

How do we determine the o,; 's?
Note 2

In the above slide, we give the algorithm for constructing these piecewise con-
stant straight section basis functions. First, one takes the boundary curve and
places points along the curve. These points are labeled z1, za, ...x,,. If the curve
is a closed curve (meaning that there are no end points), then one can define a
set of n straight line segments [y, 15, ...l,, where the end points of line segment
l; are z; and z; 41 for i < n. Line segment n is a special case and connects z,
with 21 and closes the approximation to the curve. In the circle example on the
slide, note that the line segments approximate the arcs of the circle.

Once the n line segments are defined, the n constant basis functions can be easily
determined. If z in on line segment I; then ¢;(z) =1, ¢;(x) = 0 otherwise.

> Exercise 1 Consider a radius one circle. If one represents the circle using
an inscribed polygon with n points, as is shown on the slide, the area inside
the polygon will be smaller than the area inside the circle. How does this area
error decrease with n? You may assume the points are uniformly placed on the
circle’s boundary. m

> Exercise 2 Suppose one wanted to allow the charge density to vary linearly
over each line segment, instead of being piecewise constant. Such a represen-
tation could be continuous on the polygonal curve. One approach would be to
assign a charge density value to each point z;, and then to determine the value
of the charge density on line segment [/;, one would use a weighted combination
of the densities at the line segments endpoints. What would the associated basis
be? (The basis functions you describe should be nonzero over MORE than one
segment). m

Note 3

If we substitute the basis function representation of ¢ into the integral equation,
as is done at the bottom of the slide, the result is to replace the original inte-
gration of the product of the Green’s function and the density with a weighted
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sum of integrals over straight lines of just the Green’s function. The next step is
then to develop an approach for determining the weights, in this case the a;’s.

2.1.3 Residual Definition and Minimization
n

— ' ot '

R@ =00~ [ oo G@a) Y owipila)ds
surface =1

We will pick the o,; ’s to make R(z) small.
General approach: Pick a set of test functions ¢, ..., ¢,, and force R(z) to be
orthogonal to the set;

/¢i(1‘)R(a¢)dS =0 foralli

Note 4

If the basis function represent ion happens to exactly represent the density, then
the residual R(z) defined on the top of the above slide will be zero for all z.
This is usually not the case, and instead, we will try to pick the basis function
weights, the o,;’s, to somehow minimize R(x). One approach to minimizing
R(x) is to make it orthogonal to a collection of test functions. As noted on the
bottom of the slide, enforcing orthogonality in this case means ensuring that
the integral of the product of R(x) and ¢(x) over the surface is zero.

2.1.4 Residual Minimization Using Test Functions

[ 6i(2)R(x)dS = 0| =

¢ (z)¥(z)dS — ¢:(2)G(z, ') ; onjpi(z')dS'dS =0
/ | [ approx >

surface
We will generate different methods by choosing the ¢1,...,¢n
Collocation : ¢;(z) = d(z — z¢;) (point matching)
Galerkin Method : ¢;(z) = ¢;(z) (basis = test)
Weighted Residual Method : ¢;(z) =1 if ¢;(z) # 0 (averages)

Note 5

As noted on the top of the above slide, substituting for the residual in the
orthogonality equation on the previous slide yields, given n test functions, n
equations each with two integrals. The first integral is over the surface of the
product of the given potential with a test function. The second integral is a dou-
ble integral over the surface. The integrand of the double integral is a product
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of a test function, the Green’s function, and the charge density representation.
It is also possible to use fewer or more than n test functions. In that case, the
resulting systems of equations is not square and must be solved using some kind
of least-squares technique. Such methods are used occasionally, but it is very
difficult to analyze their convergence.

Choosing different test functions generates methods with different names. If the
test functions are impulses, the resulting method is called a collocation scheme.
If the test functions are the same as the basis functions, the method is referred
to as a Galerkin method. One can also choose test functions with the same
support as the basis functions (a function’s support is the set of z values for
which the function is nonzero), but which only take on the value one or zero.
In that case, the test functions serve to average the residual over the support of
the basis function.

2.1.5 Collocation
SLIDE 6

Collocation: ¢;(xz) = d(z — z¢;) (point matching)

f 8(w—wt;)R(z)dS=R(wt;)=0 | =

Aij
A
- ~

Dim1 Oni /approx G(wy;, 2" )pi(z')dS" = (zy;)

surface
Aip oo 0 A Onl U (4, )
An,l et An,n Onn \I/(-'L'tn)

Note 6

The collocation method described in the above slide uses shifted impulse func-
tions as test functions, ¢;(z) = 6(xz — x;). As the summation equation in the
middle of the above slide indicates, testing with impulse functions is equivalent
to insisting that R(z;) = 0. Or equivalently, that the potential produced by the
approximated charge density should match the given potential at n test points.
That the potentials match at the test points gives rise to the method’s name,
the points where the potential is exactly matched is “co-located” with a set of
test points.

The n x n matrix equation at the bottom of the above slide has as its right-
hand side the potentials at the test points. The unknowns are the basis function
weights. The j** matrix element for the i** row is the potential produced at
test point z; by a charge density equal to basis function ¢;.




2.1.6 Galerkin
Galerkin: ¢;(z) = pi(x) (test=Dbasis)

[2.(x) R(x)ds= fg, (x) w(x)ds- | jma (x)G(x x')gam@ (x)dsds=0

[0 (x')w(x)us':ganj [ [ 6bex)a (s, (x)osos

b A

Arg e e Al On1 b

An,l e An,n Onn bn
If G(z,2') = G(2',z) then A; ; = A;; = A is symmetric

Note 7

In the slide above, we give the equations for the Galerkin method, in which the
test functions are equal to the basis functions. In particular, one generates n
equations for the basis function weights by insisting that R(z) is orthogonal to
each of the basis functions. Enforcing orthogonality corresponds to setting

/ o(z)R(z)dS = 0

and substituting the definition of R(z) into the orthogonality condition yields
the equation in the center of the above slide.

Note that the Galerkin method yields a system of n equations, one for each
orthogonality condition, and n unknowns, one for each basis function weight.
Also, the system does not have the potential explicitly as the right hand side. In-
stead, the i** right-hand side entry is the average of the product of the potential
and the i** basis function.

3 Convergence Analysis

3.1 Example Problems
3.1.1 1D First Kind Equation

(z) = [ |z —'|o(z)dS'  xze€[-1,1]

The potential is given The density must be computed
W(x)=x-x o (x) isunknown
W’ [
X e
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Note 8

In the next several slides we will investigate the convergence properties of these
discretization methods. How these methods converge depends on what kind of
integral equation is being solving. Examining this issue will introduce one of
the subtle points about integral equations.

To begin, consider the example one-dimensional first-kind integral equation on
the top of the above slide. For this equation, we assume that the potential,
®(x), is known and that the charge density o(z) is unknown. Here, z is in the
interval [—1,1], and the integration is over that same interval. Note that for
this example, the Green’s function is given by G(z,z') = |z — z'|.

In the left plot below the equation, an example given potential, 23 —  is plotted
as a function of . On the right is a plot of a charge density as a function of z
which might be a solution to the integral equation. As we will see shortly, for
this problem the question of what is the solution is not so easy to answer.

3.1.2 Collocation Discretization of 1D Equation
U(z) = [1 |z —2'o(z)dS'  xze€[-1,1]

SLIDE 9

Centroid Collocated Piecewise Constant Scheme

X X, X,
AR B S R B Bt B I
%=1 % % X %=1
s ™ W(we) = Sy ong [ |70 — 2'|dS

Note 9

To compute the numerical solution to this one-dimensional problem, consider
solving the integral equation at the top of the slide using a piecewise-constant
collocation scheme. In such a scheme, we first select n+ 1 points on the interval,
in this case [—1,1]. We denote those points as {zg, 1, ...,Z, }, as shown in the
figure in the middle of the slide. For this example, g = —1 and z,, = 1 Then, we
can define a set of basis functions on the subintervals, {¢1(z), p2(z), ..., pn(2)},
where

vi(z) =1 =z € [z;-1,2;]pi(z) =0 otherwise. (1)

The charge density ¢ can then be represented approximately as

o(@) % on() = 3 onipi(a),
i=1



where 0,,; is the weight associated with the i¢* basis function. It may seem odd
that we used the same letter to represent the density and the basis function
weights, but there is a reason. The above basis set is such that only one basis
function is nonzero for a given z, and basis functions only take on the value zero
or one. Therefore, o,; will be equal to the approximate charge density when
T € [Ty, 2]

Plugging the basis function representation of the charge density into the integral
equation at the top of the slide yields

1 n
d(z) = / |z — 2| Z onipi(x')dS’, (2)
-1 i=1
which can be simplified by exploiting the specific basis functions to
R(z) = &(z) — Zonj / |z — z'|dS’ (3)
=1 zj-1

where we have introduced the residual, R(z).

If collocation is used to solve this equation, then R(z.,) = 0 for all i, where
z., is the it" collocation point. The collocation points shown in slide are the
subinterval center points, z., = 0.5 * (z;—1 + ;). There are other choices for
collocation points, such at z., = ;.

Using the fact that R(z.;) = 0 leads to

R(z.;) = ®(z.,;) — gam/ |

T
Tj—1

|z, —2'|dS" =0 4)

which can be reorganized into the equation at the bottom of the slide.

3.1.3 Collocation Discretization of 1D Equation-The Matrix

One row for each collocation point

Note 10

In the above slide, we generate a system of equations that can be used to solve
for the o,;’s, the piecewise constant charge densities for each of the subintervals.
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The right-hand side of this system of equations is a vector of known potentials at
interval centers (the collocation points). The it® row of the matrix corresponds
to unfolding the sum in the collocation equation

B(re) =3 0w /
i=1 @

and the entries in the j** column corresponds to how much the charge on the
4" interval contributes to the it* potential.
Note that the matrix is square and dense.

z;
|ze, — '|dS’,
1

i—

> Exercise 3 Is the above matrix symmetric? If we used z., = z;, would the
matrix still be symmetric? m

3.2 Numerical Results with Increasing n

st n=10 .

-20;  Answers Are Getting Worse!!!

-1 -0.5 0 0.5 1
X

Note 11

One usually believes that a discretization scheme should produce progressively
more accurate answers as the discretization is refined. In this case, as we di-
vide the interval into progressively finer subintervals, one might expect that
the piecewise constant representation of the charge density given by o, (z) =~
> onipi(x) would become more accurate as n increases.

Unfortunately, the plot in the above slide indicates that the method is not
converging. In the plot, which is hard to decipher without looking at a color
version, shows the g,,;’s produced using n = 10, n = 20 and n = 40 subintervals.
For each discretization, a point is plotted at o,;, x; for i = 1,..,n, so there are
ten points plotted for the coarsest discretization and forty points plotted for the
finest discretization, but all sets of points span the interval z € [-1,1].

What is clear from comparing the blue points (n=10) to the red points (n=20)
and to the green points (n=40), is that the charge density seems to be ap-
proaching infinity as the discretization is refined. The results are certainly not
converging.
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Why is this happening? Is the numerical technique at fault, or is the integral
equation a problem?

3.3 Example Problems
3.3.1 1D Second Kind Equation

U(z) =o(x) + f,ll |z — 2'|o(2")dS" =z €[-1,1]
The potential is given The density must be computed
W(x)=x-x o(x) isunknown

Note 12

We are going to postpone examining what went wrong in the first-kind example,
and instead look at a Second Kind equation. For this equation, we assume that
the potential, ®(z), is known and that the charge density o(x) is unknown.
Here, z is in the interval [—1,1], and the integration is over that same interval.
Once again, the Green’s function is given by G(z,z') = |z — 2'|. What makes
this equation Second-Kind instead of first is circled in the equation on the top
of the slide. The unknown charge density appears both inside and outside of
the integral. In the first-kind equation, the density appeared only inside the
integral. This seemly small difference has enormous numerical ramifications.
In the left plot below the equation, an example given potential, 2> — z is plotted
as a function of . On the right is a plot of a charge density as a function of
x which satisfies this second kind integral equation. As we will see below, this
equation is easily solved numerically.

3.3.2 Collocation Discretization of 1D Equation
U(z) = o(z) + [ |& — 2'|o(z')dS" = e€[-1,1]

Centroid Collocated Piecewise Constant Scheme

X X, X,
R R B B e R A A
%=-1 % % X X%, =1
n ™ (@) = ot Yy 0ng [ 2 — @'|dS'
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Note 13

To compute the numerical solution to the one-dimensional second-kind equation
at the top of the slide, once again consider using a piecewise-constant collocation
scheme. Once again, we select n + 1 points on the interval and denote those
points as {zg,Z1,...,Zn}, as shown in the figure in the middle of the slide.

For this example, o = —1 and x, = 1. The corresponding basis functions,
{01(2),92(), -y o (x)}, are once again

vi(z) =1 € [zi_1,%: (5)

pi(x) =0 otherwise. (6)

The charge density o is approximately represented by
o(x) = on(2) =) onipi(a), (7)
i=1

where o; is the weight associated with the i** basis function.
Plugging the basis function representation of the charge density into the second
kind integral equation at the top of the slide yields

n 1 n

3(@) = 3 onis @) + / &= 2'|' S onigi(a')dS', (8)

j=1 -1 i=1
which can be simplified by exploiting the specific basis functions to
n n z

8(@) =3 ongi (@) + 3 om; / o — o/ |dS". )
j=1 j=1 zj-1

As shown in the middle of the slide, the collocation points are the subinterval

center points, z., = 0.5 x (x;_1 + x;). When collocation is used, (9) must be
satisfied exactly at the collocation points and therefore

n n z;
B(ze) = 3 ouiite) + Yo ows [ loe —alas" (10)
i=1 j=1 ZTi-1

Note that ¢;(z.;) = 0 when i # j, and ¢;(z.;) = 1. Using this fact yields the
equation on the bottom of the slide.

3.3.3 Collocation Discretization of 1D Equation-The Matrix

@k, -x|ds - []x, ~x|as
X0 Xa-1

4s 9nn \P(Xcﬂ)

Xy
@ @D [ -x
X1

X
I, -x
L %

10
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Note 14

Just as in the discretized first-kind equation, we generate a system of equations
that can be used to solve for the o,;’s, the piecewise constant charge densities
for each of the subintervals. The right-hand side of this system of equations is a
vector of known potentials at interval centers (the collocation points). The it*
row of the matrix corresponds to unfolding the sum in the collocation equation

n z;
(I)(xci) =0n; t+ Zo'nj / |$Ci - wlldsl
j=1 Tj—1

and the entries in the j** column corresponds to how much the charge on the
4" interval contributes to the it* potential.

The major difference between the matrix in this discretized second-kind example
and the first-kind example is circled on the slide. There is an additional one on
the diagonal of the discretized second-kind equation that did not appear in the
first-kind equation. More precisely,

Asecond kind =1 + Afirst kind-

3.4 Numerical Results with Increasing n

2

1500

n=20"

1 0.5 o 0.5 1

Answers Are Improving!!!

Note 15

Unlike the results from discretizing the first kind equation, progressively refining
the discretization of the second kind equation produces more accurate answers.
Once again, the plot is a little hard to decipher without looking at a color version.
It shows the o,;’s produced using n = 10, n = 20 and n = 40 subintervals. For
each discretization, a point is plotted at o,;, x; for ¢ = 1, .., n, so there are ten
points plotted for the coarsest discretization and forty points plotted for the
finest discretization, but all sets of points span the interval z € [—1,1].

What is clear from comparing the blue points (n=10) to the red points (n=20)
and to the green points (n=40), is that the charge density seems to be approach-
ing a smooth solution.

11
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What is the essential difference between first and second kind equations. Is it
some aspect of the numerical technique or are these two equations really that
different. In the next slides, we will try to answer this question.

3.5 Example Problems
3.5.1 1D First Kind Equation Difficulty
Denote the integral operator as K
1
Ko = /1 |z —2'|o(z")dS’ = Ko =T
The integral operator is singular : K has a null space

[ E | g,(x)=0,x20, g,(0)=1
1 0 1

1
Khm:/ Iz — o' o0 (2')dS" = 0

-1

If Ko* =T then K(o"+00) ="

Note 16

On the top of the above slide, we introduce the abstract notion that

1
/ & — o' |o(2)dS"
-1
is an operator on the function o, which we denote with the symbol K. As shown
on the top of the slide, this notation makes writing the integral equation look
just like writing a matrix equation.

The key problem is that the operator K is singular. And if

Ko=9®&

were a matrix equation with a singular K, one would not be surprised to discover
the system of equations is hard, or impossible, to solve.

We will not try, in this lecture, to be formal about the concept of a singular
operator. To do so, we would necessarily be examining details about certain
types of function spaces. Instead, we will try to develop some intuition. In
particular, we will draw an analogy to matrices and note that if an operator is
singular, it must have a null space.

To see that K does have a null space, consider the spike function oq(z) depicted
in the middle of the slide. This spike function is one at = 0 and zero otherwise.
Note, this function is not an impulse function. Unlike the impulse function, the
spike’s value at z = 0 is finite and the area under its curve is obviously zero.

12
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As noted in the middle of the slide, Koo = 0. To see this consider that since g
is nonzero only at z = 0, and therefore

1 1
/ |z — 2'|oo(2")dS" = |:c|/ oo(z')dS’.
1 -1

Since f_ll oo(z')dS' = 0, as the area under o¢’s curve is zero, then Koo = 0.
The equation at the bottom of the slide shows that if K has a null space, and
there exists a solution, then there exist infinitely many solutions.

One last comment should be made. The spike function we generated is not
unique. Simply shifting the nonzero point would generate and infinite number
of spike functions which would all be in the null space of K. That is, K has an
incredibly rich null space.

13



3.5.2 1D First Kind Equation Difficulty from the Matrix

Collocation generates a discrete form of K
Koe=9 - K,o,=9Y,

* X
T -4as -~ f-xles
%o X1

F\l . ¥ ()%)

X X
L T R

Kn

The matrix K, is the not the operator K,!

Note 17

As noted above, discretizing the integral equation by combining a piecewise
constant charge density representation with collocation at subinterval centers
results in a system of equations which relates the subinterval o;’s to the collo-
cation point potentials. From this perspective, the matrix on the above slide
can be thought of as a discrete representation of the operator K. We denote
the matrix with K, to indicate the matrix was generated using a discretization
with n basis functions.

Below, we will have to be more precise about the discrete representation of the
operator K, but for the moment, the matrix is sufficient.

3.6 Numerical Results with Increasing n

n=10

n =20

Eigenvalues accumulating at zero.

Note 18

If the operator K is singular, one might expect to see that reflected in the eigen-
values of a matrix generated by discretizing K. In particular, one would expect
the matrix to have eigenvalues that are near zero. In the above slide, the eigen-
values of matrices generated by discretizing K for the 1-D problem are plotted.
Discretizing using 10 subintervals generates a matrix with 10 eigenvalues plot-
ted in blue. The blue eigenvalue closest to zero is & 0.01. As the discretization

14
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is refined to 20 subintervals, the minimum eigenvalue (plotted in red) drops to
~ 0.003, and with 40 subintervals the minimum eigenvalue (plotted in green)
drops to ~ 0.0009. Examining this data suggests that as the discretization
is refined, the generated matrix more accurately reflects the operator K, and
therefore the matrix is becoming closer to being singular.

As the discretization is refined, the matrix is larger and has more eigenvalues.
Notice that as the discretization is refined from n = 10 to n = 20 to n = 40, all
the additional eigenvalues are closer to zero.

3.7 Example Problems
3.7.1 Intuition About the Eigenvalues

As the discretization is refined, oq(z) becomes better approximated

. L

[
1
X %=1

% =-1x X, =1

As the discretization is refined, K’s null space can be more accurately
represented.

Note 19

To give a different view of why refining the discretization for the first kind
equation produces a matrix with more and more smaller eigenvalues, consider
the plots in the slide above. In the top plot, one of the basis functions is plotted
for a coarse discretization. In the bottom plot, one of the basis functions is
plotted for a finer discretization. What is notable about these two plots is that
as the discretization is refined, these basis functions look progressively more like
the spike function mentioned above. And since the spike function is in the null
space of K, one would expect that finer discretizations would generate “spikier”
basis functions whose associated eigenvalues would be near zero.

3.7.2 Second kind Equation has Fewer Problems
Second Kind equation
1
(I + K)o = o(z) + / o — o'|o(a')dS" = (I + K)o = ¥

—1

I+ K)(og+o0)# I+ K)o

15
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Note 20

As shown in the first equation on the above slide, the abstract operator for the
second-kind equation is denoted by I + K, where I here is just the identity
operator and K is the integral operator.

To see why the spike function, o, is not in the null space of the operator I + K,
or equivalently that

I+ K)(og+o0)# I+ K)(o)

consider the plots on the bottom of the above slide. If a spike is added to a
smooth o, the (I + K) operator will preserve the spike. Another way to see this
is to consider that since oy is in the null space of K,

(I+K)0’0:(I)0'0+K0'0:0'0¢0. (].].)

3.8 Numerical Results with Increasing n

n =10

n =20

Eigenvalues do not get closer to zero.

Note 21

As we noted before, the matrix associated with discretizing the operator I + K
is identical to the sum of the identity matrix and the matrix associated with
discretizing K alone. In the plot above, we once again present the eigenvalues
generated by discretizing the 1-D example problem. Discretizing using 10 subin-
tervals generates a matrix with 10 eigenvalues plotted in blue. The blue eigen-
value closest to zero is & 0.2. As the discretization is refined to 20 subintervals,
the minimum eigenvalue (plotted in red) is still ~ 0.2, and with 40 subintervals
the minimum eigenvalue (plotted in green) is still ~ 0.2. Examining this data
suggests that as the discretization is refined, and the generated matrix more ac-
curately reflects the operator I + K, the matrix is not becoming more singular.

16
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In fact, the eigenvalues are accumulating near one, an unsurprising result given
that the eigenvalues of the discretized K operator were accumulating at zero.

> Exercise 4 Estimate how many iterations will be needed for a Krylov-
subspace based algorithm to converge for the 1-D discretized second-kind ex-
ample. Will the number of iterations increase as the discretization is refined?
|

> Exercise 5 Suppose the integral equation were changed to

B(z) = o(z) + % L o — oo (a")dS".

For what value of A would the solution no longer be unique. (you can answer
this just by looking at the eigenplot above). m

Note 21

As the above exercise makes clear, a second-kind integral equation does not
always have a unique solution. However, a first-kind equation almost never has
a unique solution, the exception being when the Green’s function is singular, as
we will investigate next lecture.

3.9 Second Kind Theory
3.9.1 General Framework SLIDE 22
General Second kind integral equation

U(z) =o(x) + /G(:c,:c')a(:c')da:' >0 =(I+K)o

Discrete equivalent
U, =(I+K,)o,

where ¥,, and o, are functions of z.
What is ¥,, ? K,,?

3.9.2 Discrete Equivalent for Galerkin

SLIDE 23
Representation o, (2) = > | oni;(2)
Projection o, = Po

Oni
A

Pr=3", ( [ows (x)da:)‘w)

17



Note Kop(z) = KPo(z) =Y., oni [ G(z,2")pi(z")dz’

3.9.3 Discrete Equivalent for Galerkin, contd..

P(KPo) = Z (/ cpj(x)KPa(w)d:c) v;(x)
3 (s Oni @j(2)G(z,2")p; (w')d$d$'> p;j(z)
5(Ee/ ]

(I + PKP)o, = PU
I+ K)o, =0,

Note 22

For second-kind integral equations, one can prove a convergence theory for al-
most any reasonable discretization scheme, assuming that the integral equation
has a unique solution. As noted above, this is not necessarily the case, but we
will assume it to analyze convergence. In particular, as noted on the above slide,
we will assume that the second-kind integral equation operator has a bounded
inverse.

Before beginning the derivation given in the slide, some notation must first be
defined. We start with the general integral equation at the top of the above
slide.

Let K denote the integral operator, and therefore

Ko = /G(m,w')o(w')dx' (12)

Let o, denote a numerical approximation to ¢ on z based on using n basis
functions. Note here that o, is a function of x and would typically be given by

Gn(m) = Zanz@z(m) (13)

Let K, be the discrete representation of the integral operator. Note that K, is
not a matrix (but K, is a matrix), but an operator which maps a function of z
into another function of . For example, if the discretization scheme uses a basis
to approximate o, and the coefficients of the discretization were combined with
a collocation scheme, a not necessarily unique associated K,, could be given by

Kpo=V ( / G(m,m')Pa(m')dm') (14)
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where
Po@) =3 ([ otaete)ie' ) pita), (15)

and

Vu(z) =) ulwe,)pi(z). (16)
i=1

Equations (15) and (16) deserve some explanation. The piecewise constant basis
is orthonormal, so the formula in (15) is a simple projection of o(z) onto the
basis. If centroid collocation is used, then the discrete potentials computed by
evaluating the integral operator at the collocation points must be converted to a
function of z by interpolation. In (16), the ¢;(z)’s act as interpolation functions.
The main theorem is given at the bottom of the above slide. The theorem states
that if the discretization scheme generates progressively more accurate repre-
sentations of the integral operator, then the discretization method converges.

That is,
limn—wo“U - Un” =0 (17)

> Exercise 6 Suppose a nonorthogonal basis is used to represent o. How would
the projection operator in (15) change? m

3.9.4 Main Theorem

Given (I + K)o =T and ||(I + K) Y| < C
(Equation uniquely solvable)
I+ Ky)o,=19,
(Discrete Equivalent )
Consistency:
If limpeemax)g,,, . ,.1=1||(K — Ky)o|| =0
and limy,0o||¥ — Tp|| = 0
Then
limpsoo|lo—on|| = 0

3.9.5 Rough Proof

Operator Form for Discretized Integral Equation
the integral equation

(1+K)o=Ww I+ K, | %0 =¥,

—
discrized | disoretized
integral density

\ubtraotm operator i
(1+K Un a + K)o+(W,-4)=0

:(an—a)—(l +Kp)~ H(K—Kn)m(w—wn)}
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Note 23

To derive a relationship between the errors in the computed solution and the
errors in the operator representation, we write the exact equation alongside
the discrete equation, shown at the top of the above slide. Then, subtraction
combined with operator inversion yields the equation at the bottom of the above
slide.

3.9.6 Rough Proof Continued

SLIDE 27
The equation for the solution error (previous slide)
(on—0) =T +K,) YK - Ko
—
solution error
Taking norms  ||o, —o|| < ||+ K,) Y| ||(K - K,)o||
S— ~ ~~ - ~ ~~ -
Error which Needs a Goes to
should go to bound, that is zero
Z€ero as n stability by consistency
increases
Note 24
In the above slide, we complete deriving a relationship between the errors in
the computed solution and the errors in the operator representation. In order
to establish that consistency implies convergence, the inverse of the discretized
operator must be bounded.
3.9.7 Stability Bound
SLIDE 28

Norm of solution error
l(on = o)I| < [T+ Kn) H[[(K = Kn)ol|

Deriving the stability bound (I + K,)™' = I+ K — (K — K,))"! = (I +

K)=' (I = (I + K)~'(K — K,,))”" Taking norms

IT+E)TH < [[A+E)7H [[(I-T+E)™NEK - Ky))~
—_——

Bounded by C
by Assumption

1

Note 25

Bounding the inverse of the discretized operator requires several steps of algebra,
as described on the above slide.

20



3.9.8 Stability Bound Contd...
SLIDE 29

Repeating from last slide
_ _ _ -1
T+ K)THI < JA+E)H [[(T-T+E)7H(K - Ky) ™ |l
| S ——

Bounded by C
by Assumption
Bounding terms

(T + Kp) HI < - <& <C for n>mng

1—e

]
- T+ K) (K - Kl

Less than € for n larger
than ng by consistency

Note 26

Bounding the inverse of the discretized operator requires several steps of algebra,
as described on the above slide. Notice that

_ -1 ..
H(I— (I+K)" (K - K,)) H ianE”:lI\I—(I—ll-K)—l(K—Kn)II’by de finition

< S S
= inf| ) |=1 [[2][(1—¢)

where € = ||(I + K)"'(K — K,,)|| < 1

3.9.9 Rough Proof Completed
SLIDE 30

Final result
limp—ool|(n — 0)|] < C limy ool |(K — Kp)o|| =0
What does this mean?

The discretization convergence of a second kind integral equation solver
depends on how well the integral is approximated.

Note 27

The final result, noted on the above slide, is that the solution error is bounded
by a constant multiplying the error in the integral operator representation. This
suggests that any method which can accurately represent the integral operator
can be used to discretize a second-kind integral equation.
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4 Nystrom Method

4.1 1D Second Kind Example

4.1.1 Collocation Discretization of 1D Equation

Integral Equation
U(z) =o(z) + [, Gz, 2')o(z')dS" =z €[-1,1]
Apply quadrature to Collocation equation

¥(z;) = o(z:) + [1, Glai,')o(a')dS’

= U(z:) = o(z) + X0, w;Glas,2;)0(a;)

x; is a collocation point

x;’s are quadrature points

Now set quadrature points = collocation points

4.1.2 Collocation Discretization of 1D Equation, Contd...

Set quadrature points = collocation points

n

‘I’(.Z‘l) =0np1 + ijG(.Z‘l,.Z'j)O'nj
7j=1

n

U(z,) =0opn1 + ijG(xn,xj)anj
7j=1

System of n equations in n unknowns
Collocation equation per quad/colloc point
Unknown density per quad/colloc point

4.1.3 1D Discretization-Matrix Comparison

Nystrom Matrix

L+ wG (%, %) -~ wG(x.x,) rﬂ [‘P(_xl)
wolxx) o rwe(sx) o] [¥(x)
Piecewise Constant Collocation Matrix
1+Je(x,1,x')ds' :{G(&,x')ds' 0. [(x)
y]‘G(xt“,x')ds' 1+Y]'G(>g“.x’)d5’ ’UHJ W(xq)
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4.1.4 1D Discretization-Matrix Comparison, Contd..
SLIDE 34
Nystrom Matrix

Just Green’s function evals - No integrals
Entries each have a quadrature weight
Collocation points are quadrature points
High order quadrature=faster convergence?
Piecewise Constant Collocation Matrix
Integrals of Green’s function over line sections
Distant terms equal Green’s function
Collocation points are basis function centroids
Low order method always

4.1.5 K, and ¥, for Nystrom Method

Koo = 21 (S5m0 w,Glanz))o(@)) eile)
U, =300 U(zi)pi(x)

SLIDE 35

4.1.6 Convergence Theorem
SLIDE 36
In the limit as n — oo (number of quad points — c0)

The discretization error = maz||q|=1||(K — Ky)o|| = 0
AT THE SAME RATE as the underlying quadrature!!

Gauss Quadrature = Exponential Convergence!

4.1.7 Convergence Comparison
SLIDE 37

cos2nz = o(z) + fil(m —z')20(z")dS’

E 107 L

100 | Gauss-Quad
0 Nystrom

4.1.8 Convergence Caveat
SLIDE 38
If Nystrom method can have exponential convergence, why use anything else?

Gaussian quadrature has exponential convergence for nonsingular kernels
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Most physical problems of interest have singular kernels (1/r, exp ikr/r, etc)

5 Summary

SLIDE 39
Integral Equation Methods

Reviewed Galerkin and Collocation

Example of Convergence Issues in 1D

1st and 2nd kind integral equations, null spaces
Convergence for second kind equations
Show consistency and stability issues
Nystrom methods

High order convergence

Did not address singular integrands
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