Numerical Methods for PDEs Integral Equation Methods, Lecture 5 First and Second Kind Potential Equations Notes by Suvranu De and J. White May 7, 2003 #### **Outline** # Reminder about 1-D 1st and 2nd Kind Eqns Three-D Laplace Problems Interior Neumann Problem Null space issue ## First Kind Theory for 3-D Laplace Informal Convergence Theory FEM like approach ## 1-D Reminder ## 1st Kind Example #### **First Kind Equation** $$\Psi(x) = \int_{-1}^{1} |x - x'| \sigma(x') dS' \quad x \in [-1, 1]$$ The potential is given $$\Psi(x) = x^3 - x$$ The density must be computed $\sigma(x)$ is unknown #### 1st Kind Example #### 1-D Reminder Discretization $$\Psi(x) = \int_{-1}^{1} |x - x'| \sigma(x') dS'$$ $x \in [-1, 1]$ #### Centroid Collocated Piecewise Constant Scheme $$\Psi(x_{c_i}) = \sum_{j=1}^n \sigma_{nj} \int_{x_{j-1}}^{x_j} |x_{c_i} - x'| dS'$$ #### 1st Kind Example ### 1-D Reminder Matrix # 1-D Reminder ## 1st Kind Example #### **Numerical Results** ## 1-D Reminder ## 2nd Kind Example **Second Kind Equation** $$\Psi(x) = \sigma(x) + \int_{-1}^{1} |x - x'| \sigma(x') dS' \quad x \in [-1, 1]$$ The potential is given $$\Psi(x) = x^3 - x$$ The density must be computed $\sigma(x)$ is unknown #### 2nd Kind Example #### 1-D Reminder Discretization $$\Psi(x) = \sigma(x) + \int_{-1}^{1} |x - x'| \sigma(x') dS' \quad x \in [-1, 1]$$ #### **Centroid Collocated Piecewise Constant Scheme** $$x_0 = -1 \qquad x_1 \qquad x_2 \qquad x_{n-1} \qquad x_n = 1$$ $$x_{n-1} \qquad x_n = 1$$ $$\Psi(x_{c_i}) = \sigma_{ni} + \sum_{j=1}^n \sigma_{nj} \int_{x_{j-1}}^{x_j} |x_{c_i} - x'| dS'$$ ## 2nd Kind Example #### 1-D Reminder **Matrix** $$\begin{bmatrix} 1+\int_{x_0}^{x_1} |x_{c_1}-x'| dS' & \cdots & \int_{x_{n-1}}^{x_n} |x_{c_1}-x'| dS' \\ \vdots & \ddots & \vdots \\ \int_{x_0}^{x_1} |x_{c_n}-x'| dS' & \cdots & 1+\int_{x_{n-1}}^{x_n} |x_{c_n}-x'| dS' \end{bmatrix} \begin{bmatrix} \sigma_{n1} \\ \vdots \\ \sigma_{nn} \end{bmatrix} = \begin{bmatrix} \Psi(x_{c_1}) \\ \vdots \\ \Psi(x_{c_n}) \end{bmatrix}$$ ## 2nd Kind Example ## 1-D Reminder #### **Numerical Results** ### **1st Kind Difficulty** ## 1-D Reminder Denote the integral operator as K $$K\sigma \equiv \int_{-1}^{1} |x-x'| \sigma(x') dS' \Rightarrow K\sigma = \Psi$$ The integral operator is singular : K has a null space $$\sigma_0(x) = 0, x \neq 0, \sigma_0(0) = 1$$ $$K\sigma_0=\int_{-1}^1|x-x'|\sigma_0(x')dS'=0$$ If $K\sigma^a=\Psi$ $then$ $K(\sigma^a+\sigma_0)=\Psi$ ## 1-D Reminder ### **1st Kind Difficulty** #### **Numerical Results** ## **1st Kind Difficulty** ## 1-D Reminder #### **Eigenvalues** As the discretization is refined, $\sigma_0(x)$ becomes better approximated As the discretization is refined, K's null space can be more accurately represented. #### 1-D Reminder #### Second Kind equation $$(I+K)\sigma \equiv \sigma(x) + \int_{-1}^{1} |x-x'|\sigma(x')dS' \Rightarrow (I+K)\sigma = \Psi$$ $(I+K)(\sigma_0+\sigma) \neq (I+K)\sigma$ #### 2nd Kind ## 1-D Reminder #### **Numerical Results** #### 2nd Kind Theorem #### 1-D Reminder Given $$(I+K)\sigma=\Psi$$ and $||(I+K)^{-1}||< C$ (Equation uniquely solvable) $$(I+K_n)\sigma_n=\Psi_n$$ (Discrete Equivalent) #### **Consistency:** If $$lim_{n o\infty}max_{||\sigma_{smooth}||=1}||(K-K_n)\sigma|| o 0$$ and $lim_{n o\infty}||\Psi-\Psi_n|| o 0$ #### Then $$lim_{n o\infty}\left\|\sigma-\sigma_{n} ight\| o0$$ #### 2nd Kind Theorem #### 1-D Reminder **Theorem Meaning** Final result $$|lim_{n o \infty}||(\sigma_n - \sigma)|| \leq C |lim_{n o \infty}||(K - K_n)\sigma|| = 0$$ What does this mean? The discretization convergence of a second kind integral equation solver depends on how well the integral is approximated. #### **Interior Examples** ## 3-D Laplace #### **Dirichlet Problem** $$u_{\Gamma}(ec{x}) = \int_{\Gamma} rac{1}{||ec{x} - ec{x}'||} oldsymbol{\sigma}(ec{x}') d\Gamma' \;\; ec{x} \in \Gamma$$ #### Neumann Problem $$rac{\partial u_{\Gamma}(ec{x})}{\partial n_{ec{x}}} = -2\pi\sigma(ec{x}') + \int_{\Gamma}^{C} rac{\partial}{\partial n_{ec{x}}} rac{1}{|ec{x}-ec{x}'|} \sigma(ec{x}') d\Gamma'$$ ## **Interior Examples** #### **Cauchy Principle Value** If f(y) is singular at $y = x_0$, the Cauchy principle value integral is $$\int_{\Gamma}^{C} f(ec{y}) d\Gamma \;\; \equiv lim_{\epsilon o 0} \int_{|y-x_0| \geq \epsilon} f(ec{y}) d\Gamma$$ when the limit exists. If Γ is a flat 2-D surface in 3-D $$\int_{\Gamma}^{C} rac{\partial}{\partial n_{ec{x}}} rac{1}{\|ec{x}-ec{x}'\|} d\Gamma' \;\; = 0 \;\; x \in \Gamma.$$ ### **Neumann Analysis** #### **Scaled Problem** Define $$\Psi \equiv rac{-1}{2\pi} rac{\partial u_{\Gamma}(ec{x})}{\partial n_{ec{x}}}$$ $$K \equiv - rac{1}{2\pi}\int_{\Gamma}^{C} rac{\partial}{\partial n_{ec{x}}} rac{1}{||ec{x}-ec{x}'||} \sigma(ec{x}') d\Gamma'$$ then the Neumann problem becomes $$(I+K)\sigma=\Psi$$ ## **Neumann Analysis** **Key Property** Main assumption of second kind theory: $$(I+K)^{-1}$$ is bounded. Is $(I + K)^{-1}$ bounded for the Neumann Problem? #### Inverses/Null spaces # Linear Algebra ``` Given Ax=b, A\in\Re^{n\times n}, x,b\in\Re^n A^{-1} exists and is bounded iff Ay=0 implies y=0 (no null space) If Ay=0 for y\neq 0 then either Ax=b has an infinite # of solutions Ax=b then A(x+\alpha y)=b OR ``` Ax = b does not have a solution b is not in column space of A #### **Interior Neumann** # 3-D Laplace #### **Null Space** Consider o defined by $$u_{\Gamma}(ec{x}) = 1 = \int_{\Gamma} rac{1}{||ec{x} - ec{x}'||} ilde{\sigma}(ec{x}') d\Gamma' \;\; ec{x} \in \Gamma$$ Then $$rac{\partial u_{\Gamma}(ec{x})}{\partial n_{ec{x}}} = 0 = -2\pi ilde{\sigma}(ec{x}') + \int_{\Gamma}^{C} rac{\partial}{\partial n_{ec{x}}} rac{1}{|ec{x}-ec{x}'|} ilde{\sigma}(ec{x}') d\Gamma'$$ $\tilde{\sigma}$ is in the Null space of I+K $(I+K)^{-1}$ is not bounded!! #### **Interior Neumann** # 3-D Laplace #### Fredholm Alternative For $$I + K$$ either $$(I+K)\sigma=\Psi$$ has an infinite # of solutions OR $$(I+K)\sigma = \Psi$$ has no solution For a solution to exist $$\int_{\Gamma} rac{\partial u_{\Gamma}(ec{x})}{\partial n_{ec{x}}} d\Gamma \;\; = 0$$ #### **Interior Neumann** **General Theorem** The 2nd Kind Integral equation has a finite-dimensional Null Space (typically rank one). #### **Interior Neumann** **Fixes** #### Add a point constraint Fix \mathbf{u} at some point #### Force orthogonal to null space Need the null space May need to solve 1st kind equation #### Use SVD to solve singular system Can be computationally expensive #### **First Kind Issues** The singular Kernel Saves the day ## Spike Function=1 on a disk $$\sigma_0 = 0 \qquad \sqrt{x^2 + y^2} > R$$ $$\sigma_0 = 1 \qquad \sqrt{x^2 + y^2} \le R$$ Singular Kernel $$\int_{disk} \frac{1}{\left\|x_{c_i} - x'\right\|} \sigma_0(x') dS' = \int_0^R \int_0^{2\pi} \frac{1}{r} r dr d\theta = 2\pi R$$ Smooth Kernel $$\int_{disk} 1 \, \sigma_0(x') dS' = \pi R^2$$ Smooth kernel $\rightarrow 0$ faster as $R \rightarrow 0$, more singular #### **Convergence Analysis** **Quick review of FEM Convergence for Laplace** #### Partial Differential Equation form $$\nabla^2 u = f$$ in Ω $\nabla^2 u = f$ in Ω is the volume domain $$u = 0$$ on Γ u = 0 on Γ Γ is the problem surface "Nearly" Equivalent weak form $$\int_{\Omega} \nabla u \nabla v \, dx = \int_{\Omega} f \, v \, dx \quad \text{for all } v \in H^1(\Omega)$$ Introduced an abstract notation for the equation u must satisfy $$a(u,v) = l(v)$$ for all $v \in H^1(\Omega)$ #### **Convergence Analysis** **Quick review of FEM Convergence for Laplace** Introduce an approximate solution $u^n = \sum_i \alpha_i \varphi_i$ $\Rightarrow u^n$ is a weighted sum of basis functions The basis functions define a space $$X_n = \left\{ v \in X_n \mid v = \sum_{i=1}^n \beta_i \varphi_i \text{ for some } \beta_i \text{'s } \right\}$$ # Example "Hat" basis functions Piecewise linear Space #### **Convergence Analysis** Quick review of FEM Convergence for Laplace #### <u>Key Idea</u> $$a(u,u)$$ defines a norm on $H_0^1(\Omega)$ $a(u,u) \equiv ||u||$ U is restricted to be 0 at 0 and1!! Using the norm properties, it is possible to show If $$a(u^n, \varphi_i) = l(\varphi_i)$$ for all $\varphi_i \in \{\varphi_1, \varphi_2, ..., \varphi_n\}$ Then $$||u-u^n|| = \min_{w_n \in X_n} ||u-w^n||$$ Solution Projection Error #### **Convergence Analysis** **Quick review of FEM Convergence for Laplace** # The question is only How well can you fit u with a member of X_n But you must measure the error in the || || norm For piecewise linear: $$||u-u^n|| \le ||u-\Pi_n^a u|| = O\left(\frac{1}{n}\right)$$ #### **Convergence Analysis** Applying FEM approach to first kind integral equations "Weak" Form for the integral equation $$\iint_{\Gamma} v(x) \frac{1}{\|x - x'\|} \sigma(x') dS' dS = \int_{\Gamma} v(x) \Psi(x) dS \quad \text{for all } v \in \overline{H}(\Gamma)$$ $$a(\sigma, v) \qquad l(v)$$ The difficulty is defining $\overline{H}(\Gamma)$ with right properties Must exclude $$\sigma(x)$$'s where $\int \frac{1}{\|x - x'\|} \sigma(x') dS' = 0$ $\overline{H}(\Gamma)$ is a fractional Sobolev Space We won't say more about this #### **Convergence Analysis** Applying FEM approach to first kind integral equations #### <u>Use FEM key Idea</u> $$a(\sigma, \sigma)$$ defines a norm on $\overline{H}(\Gamma)$ $a(\sigma, \sigma) = \|\sigma\|$ $$\sigma^{n} = \sum_{i=1}^{n} \alpha_{i} \quad \varphi_{i}(x) \qquad X_{n} = \left\{ v \in X_{n} \mid v = \sum_{i=1}^{n} \beta_{i} \varphi_{i} \text{ for some } \beta_{i} \text{'s } \right\}$$ Basis Functions Using the norm properties, it is possible to show If $$a(\sigma^n, \varphi_i) = l(\varphi_i)$$ for all $\varphi_i \in \{\varphi_1, \varphi_2, ..., \varphi_n\}$ Then $$\|\sigma - \sigma^n\| = \min_{w_n \in X_n} \|\sigma - w^n\|$$ Solution Projection Error # MEMS Performance Depends on Air Damping of Complicated 3-D Structures Bosch angular rate sensor ADXL76 accelerometer TI 3x3 mirror array Resonator Lucent micromirror ## Drag In MEMS is Incompressible Stokes Velocity integral equation for Stokes flow $$u_j(\vec{x}_o) = -\frac{1}{8\pi\mu} \int_{s}^{s} f_i(\vec{x}) G_{ij}(\vec{x} - \vec{x}_o) ds$$ where $$G_{ij} = \frac{\delta_{ij}}{R} + \frac{\hat{x}_i \hat{x}_j}{R^3};$$ $$R = |\vec{x}_o - \vec{x}|; \qquad \hat{x}_i = x_{oi} - x_i$$ # **Null Space of the Stokes Equation** Constant pressure a singular mode, generates zero velocity. Differential Form of Stokes, independent of absolute pressure $$\begin{cases} 0 = -\nabla P + \mu \nabla^2 \vec{u} \\ \nabla \bullet \vec{u} = 0 \end{cases}$$ Integral Form of Stokes, constant pressure must not change velocity $$u_{j}(\vec{x}_{o}) = -\frac{1}{8\pi\mu} \int_{s} f_{i}(\vec{x}) G_{ij}(\vec{x} - \vec{x}_{o}) ds$$ If $$P = \text{constant}$$, $u_i = 0$; $f_i = -Pn_i$ $$\Rightarrow \int_{S} G_{ij}(\vec{x} - \vec{x}_o) n_i(\vec{x}) ds = 0$$ ## Null Space of the Singular BEM Operators - Stokes Integral Operator has a null space - The solution is not uniquely defined. - A pressure boundary condition is needed. - Null space must be removed - so as to avoid numerical error. $$F = F^{\text{correct solution}} + XN + \varepsilon$$ - Two-step method: - 1. Modify GMRES to calculate a null-space-free solution. - 2. Use pressure condition to adjust solution # Krylov Subspace Iterative methods # Linear System Start with Ax = b Determine the Krylov Subspace $r^0 = b - Ax^0$ Krylov Subspace $$\equiv span\{r^0, Ar^0, ..., A^k r^0\}$$ Select Solution from the Krylov Subspace $$x^{k+1} = x^0 + y^k, \quad y^k \in span\{r^0, Ar^0, ..., A^k r^0\}$$ GMRES picks a residual-minimizing y^k. # Modify Krylov-Subspace Method to Calculate Null-Space-Free Solution - The discretized Stokes equation GF = U - The Krylov subspace is $$K = span\{U, GU, G^2U, G^3U, G^4U, \cdots\}$$ • If $\mathcal{K} \perp Null(G)$ then $F = F^{\perp} \perp Null(G)$ Remove *Null(G)* from every Krylov subspace vector #### **FastStokes Simulation Result** In-plane motion, 3-D steady incompressible Stokes, 16k panels | | Drag Force (nN) | | | | | Q | |---------------|-----------------|--------|-------|--------|---------|-------| | | Total | Bottom | Top | Inter- | End and | | | | | | | finger | others | | | Couette Model | 123.7 | 108.9 | | 14.8 | | 50.1 | | 1-D Stokes | 137.1 | 108.9 | 13.5 | 14.8 | | 45.20 | | FastStokes | 223.7 | 123.0 | 26.8 | 73.8 | | 27.7 | | | | (55%) | (12%) | (33%) | | | | Measurement | Measurement | | | | | | Computation finished in 10 minutes # **Micromirror Q-factor** | | Mode | Q | | Error | |---------|---------------|-----------|----------|-------| | | | Simulated | Measured | (%) | | Mirror | Mirror+Gimbal | 2.36 | 2.31 | 2.16 | | 1 | Mirror | 3.14 | 3.45 | 8.99 | | Mirrror | Mirror+Gimbal | 4.69 | 4.27 | 9.84 | | 2 | Mirror | 10.16 | 10.63 | 4.42 | ## Summary Reminder about 2nd Kind theory Convergence Theory Fredholm Alternative for 2nd Kind Finite Dimensional Null Space First Kind Convergence Theory, sort of Connection to the FEM results MEMS Drag Example