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Outline

Reminder about 1-D 1st and 2nd Kind Eqns
Three-D Laplace Problems

Interior Neumann Problem

Null space issue
First Kind Theory for 3-D Laplace

Informal Convergence Theory

FEM like approach
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1st Kind Example
1-D Reminder

V(e) = [ |z —|o(@)dS’ @€ [-1,1]

The potential is given The density must be computed
¥(x)=x"-x o(x) is unknown
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1st Kind Example

1-D Reminder
Discretization

U(x) = [}, ¢ —2|o(2)dS’ =€ [-1,1]

Centroid Collocated Piecewise Constant Scheme

U(2e) = 37, 00 [ e, — '|dS"
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1st Kind Example
1-D Reminder

X Xy

J. ‘.x:cl —x" as’ - J. ‘xcl —.x:" ds’
X, X,

5] Xy

4 4 4 7
ﬂx —x‘dS ”1 —X ‘CZS
X X,

One row for each collocation point
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1st Kind Example
1-D Reminder
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2nd Kind Example
1-D Reminder

U(e) = o(z) + [, ¢ —2|o()dS & €[-1,1]

The potential is given The density must be computed
W(x)=x"—x o (x) is unknown

JERIEEEN
e e
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2nd Kind Example

1-D Reminder
Discretization

U(x) =o(x) + [, |x — 2|o(x)dS’ x € [—1,1]

Centroid Collocated Piecewise Constant Scheme

V(Te,) = Oni+ D ;00 f;;f"_l |z, — «'|dS’
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2nd Kind Example
1-D Reminder

x x,
‘x(, —.x"dS' Hr(, —x"d-S'
1 1
! Xn-1

’( —r‘dS @Hr —r‘dS O

First and Second Kind 8



2nd Kind Example
1-D Reminder

Answers Are Improving!!!
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1st Kind Difficulty
1-D Reminder

Denote the integral operator as K

1

Ko = / |z — 2'|o(2")dS' = Ko =¥
—1

The integral operator is singular : K has a null space

1
Koy = f z — 2/|oo(2’)dS’ = 0
1
f Ko®* =¥ then K(o°+09) =W

First and Second Kind 10



1-D Reminder

-
20 =5 30 36 <40

Eigenvalues accumulating at zero.

First and Second Kind

11



1-D Reminder I

As the discretization is refined, ao(x) becomes better approximated

As the discretization is refined, K'’s null space can be
more accurately represented.
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o Reminder A

Second Kind equation

(I+K)o = a(ac)—l—/_ll lx—2'|o(x2")dS' = (I+ K)o = ¥

(I + K)(oo+0) # (I + K)o

o,(x)=0,x20, 6,(0)=1
P | ]

-1 1
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1-D Reminder

Eigenvalues do not get closer to zero.
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2nd Kind Theorem
1-D Reminder

Given (I + K)o =%and |[|[(I+ K) !||< C
(Equation uniquely solvable)
(I + K,)o, =Y,
(Discrete Equivalent )
Consistency:
If imy—oomax),, .. =1|[(K — K,)o|| — 0
and lim,_||¥ — ¥,|| — 0
Then

lim, oo ||l —0n|| — 0
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2nd Kind Theorem

1-D Reminder :
Theorem Meaning

Final result
lim,,_ool|(6n — 0)|| < Clim,_||(K — K,,))o|| =0

What does this mean?

The discretization convergence of a second kind
integral equation solver depends on how well the
integral is approximated.
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Interior Examples
3-D Laplace

Dirichlet Problem

Neumann Problem

dur(X) , ¢ 8 | i
= —2mo (& dr”’
o mo(@) + | o7 — _,,”0(33)
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Interior Examples

3-D Laplace

Cauchy Principle Value

If f(y) is singular at y = x,, the Cauchy principle
value integral is

C
/ f(dr = lim._ / f(§)dr
- [y—xo|>e€

when the limit exists.
If I" Is a flat 2-D surface in 3-D

© 0 | ,
/ —dI" =0 z cT.
r Onz||€ — &
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Neumann Analysis

3-D Laplace
Scaled Problem
Define 1 (2
U= ur(2)
2T On;
1 (¢ 8 1 e
K = / —o(&)dl’
27 Jr Ongl||d — &||

then the Neumann problem becomes
(I+ K)o =Y
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Neumann Analysis

3-D Laplace
Key Property

Main assumption of second kind theory:
(I+K)™
IS bounded.

Is (I + K)~! bounded for the Neumann Problem?
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: Inverses/Null spaces
Linear Algebra

Given Ax = b, A € R"*", z,b € R"
A~ exists and is bounded iff
Ay = 0implies y = 0 (no null space)
If Ay = 0 for y % 0 then either
Ax = b has an infinite # of solutions
Ax = bthen A(x + ay) = b
OR
Ax = b does not have a solution
b is not in column space of A
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Interior Neumann
3-D Laplace

Null Space

Consider ¢ defined by

ur(®) =1 = ———0(Z)dl" T T
r ||z — &
Then
Our(T) _ . | ,
=0=-2 ) dI’
s ) onlE— )

o is in the Null space of I + K
(I + K)~1is not bounded!!
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Interior Neumann

3-D Laplace
Fredholm Alternative
For I 4+ K either
(I + K)o = W has an infinite # of solutions

OR

(I + K)o = ¥ has no solution

For a solution to exist

6 —_—
/ ur(w)dr — 0
r ong

SMA-HPC (©2003 MIT First and Second Kind
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Interior Neumann

3-D Laplace

General Theorem

The 2nd Kind Integral equation has a
finite-dimensional Null Space (typically rank one).
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Interior Neumann

3-D Laplace

Fixes

Add a point constraint
Fix w at some point

Force o orthogonal to null space
Need the null space

May need to solve 1st kind equation
Use SVD to solve singular system

Can be computationally expensive
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First Kind Issues

3-D Laplace’s
Equation The singular Kernel Saves
the day

Spike Function=1 on a disk
o, =0 \/x2 +y? >R
o, =1 \/x2 +y? <R

4

R 2rx
/ / 1
Singular Kernel j o,(x)dS :j I—m’m’&’ =27 R
Case disk |[Xe, =X o ol

¢

Smooth Kernel j 1 o,(x")dS' =\7R*
Case disk

Smooth kernel — 0 faster as R — 0, more singular
SMA-HPC ©2002 MIT



Convergence Analysis

3-D Laplace’s
Equation Quick review of FEM
Convergence for Laplace

Partial Differential Equation form
Vu=f in Q Qis the volume domain
u=0 on I I' 1s the problem surface
“Nearly” Equivalent weak form

jVqudx:jfvdx forallve H' (Q)
Q Q

o _/

w0

Introduced an abstract notation for the equation u must satisfy
a(u,v)=I(v) forallve H' (Q)
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Convergence Analysis

3-D Laplace’s
Equation Quick review of FEM

Convergence for Laplace

Introduce an approximate solution " Z 20}

= u" 1s a weighted sum of basis functlons
The basis functions define a space

X, = {veXn |V=Z,Bi§0i for some f's }
i=1

“Hat” basis functions Piecewise linear Space
D, @y P

Dy Qs
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Convergence Analysis

3-D Laplace’s
Equation Quick review of FEM
Convergence for Laplace

a(u,u) defines anormon H, (Q)  a(u,u) = HMH
U is restricted to be 0 at 0 and1!!

Using the norm properties, it is possible to show

a",p,)=1(p,) forall ¢, e{p,p,,...0,}

nl||| _ . o
H‘u —u ||=min, . H‘u w
Solution Projection
Error Error
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Convergence Analysis

3-D Laplace’s
Equation Quick review of FEM
Convergence for Laplace

The question is only

How well can you fit u with a member of X
But you must measure the error in the ||| ||| norm

1
For piecewise linear: H‘u —u" ‘H < H‘u —Iu Hz 0(—
. v n
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Convergence Analysis

3-D Laplace’s
Equation Applying FEM approach to
first kind integral equations

“Weak” Form for the integral equation

” HX XH (x')ds'ds = j ¥ (x)dS
(o) J z(&) J

The difficulty is deﬁning H(T) with right properties

)dS' =0

Must exclude CT S where

It
H (T') is a fractional Sobolev Space
We won’t say more about this
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Convergence Analysis

3-D Laplace’s
Equation Applying FEM approach to
first kind integral equations

a(o,0) defines anormon H (I') a(o,0) = H‘G‘H

o = Zal. @, (x) X, = {veXn |v:lzzl:,6’igoi for some f's }

Basis Functions

Using the norm properties, it is possible to show

a(o-nﬂwi) — l((ﬂl) fOI' al gﬂi = {¢19¢29’“9 gﬂn}

nl{| _ > o
H‘G —o'||=min,, HG w
Solution Projection
Error Error
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MEMS Performance Depends on Air Damping of
Complicated 3-D Structures

Bosch angular rate sensor

ADXIL76 accelerometer

TI 3x3 mirror array

Resonator

Lucent micromirror
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Drag In MEMS is Incompressible Stokes

Velocity integral equation for Stokes flow
- | S s -
uj(xo)z—g Ji(0G,(x—x,)ds

where
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Null Space of the Stokes Equation

Constant pressure a singular mode, generates zero velocity.

Differential Form of Stokes, Integral Form of Stokes,
independent of absolute constant pressure must not
pressure change Velocity
(0=—VP+ uVZi L
< s U, () =—— j FRIG (—)ds
Veiu=0 ST,

It P=constant, u =0;f, =—Pn
=[G, (x—x)n(X)ds =0
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Null Space of the Singular BEM Operators

« Stokes Integral Operator has a null space
— The solution is not uniquely defined.
— A pressure boundary condition 1s needed.

e Null space must be removed

— so as to avoid numerical error.

F _ Fcorrect solution + XN + g

* Two-step method:
1. Modifty GMRES to calculate a null-space-free solution.

2. Use pressure condition to adjust solution
SMA-HPC ©2002 MIT



Krylov Subspace Iterative methods

Linear System
Start wit]

nAx=b

Determine the Kry

ov Subspace 7’ =b— Ax’

Krylov Subspace = Span{rO,ArO,...,Ak ro}

Select Solution fro

m the Krylov Subspace

kel _ 0, _k
XU =x 4y,

GMRES picks

SMA-HPC ©2002 MIT

y* e Span{ro,ArO,...,AkrO}

: 5 o o ¢ k
a residual-minimizing y .



Modity Krylov-Subspace Method to Calculate
Null-Space-Free Solution

» The discretized Stokes equation (/' ={/

* The Krylov subspace 1s
K =span{U,GU,G°U,G'U,G*U,-----|

It K1 Null(G) then F=F~ 1 Null(G)

Remove Null(G) from every Krylov subspace vector
SMA-HPC ©2002 MIT



FastStokes Simulation Result

Fx

-1.781
-3.3998
-5.01859

| -6.63738

| -8.25618
-9.87497

= -11.4938

thmr AR
rw\r\ururuﬂ'“llll Yy HH
""\r”ﬂu!" ,‘nflrﬂlrl“l

| LA
Jnn N v TYNTY

‘r\l'ii AR

Drag Force (nN)

Total | Bottom | Top | Inter- [End and
finger | others
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-13.1126
-14.7313
| -16.3501
| -17.9689
-19.5877
-21.2065
-22.8253
-24 4441




Micromirror Q-factor

Mirror
1
Mirrror

2 10.16 10.63
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Summary

Reminder about 2" Kind theory
Convergence Theory

Fredholm Alternative for 2" Kind
Finite Dimensional Null Space

First Kind Convergence Theory, sort of
Connection to the FEM results

MEMS Drag Example



