Numerical Methods for PDEs

Integral Equation Methods, Lecture 6
Discretization and Quadrature

Notes by Suvranu De and J. White
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Outline

Everything is Galerkin
Reminder of 1-D and 3-D 2nd Kind
Collocation is Galerkin
Single Point Quadrature
Qualocation
Nystrom is Galerkin
N point quadrature
Multidimensional Quadrature
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Equation
Examples

“Volume” Integral Equations
First King
U(x) = /1 G(x, 2o (x)dx' = € [—1,1]
Second Kind -
U(x) =o(x) + /11 G(z, 2 )o(x)dx' = € [-1,1]
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Equation
Examples

“Surface” 3-D Potential Integral Equations

First Kind

1
ur(.rrs')zf L s@)dr’ FeT
r||[Z — &

Second Kind
Bup( )
on;

0 |
= 27r0'(£)—|—/ ——o(Z)dI" £ €T
r Ong||z — &'
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2nd Kind

Discretization
Collocation

Introduce a Basis Representation

on(x) = Z T nipi(T)

Make Residual Zero at Collocation Points x;

12 1 2
lI'(zc@,) — Z Un@',(p?;(a??;)—/ G(GUQ,, GU,) Z crmcpz-(cc’)daz’
i—1 o i—1
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2nd Kind

Discretization
Galerkin

Make Residual orthogonal to basis

| @w(@)ds =

1

/P. pi(e) Zanj%(ﬂ?)dw
—I—/P. <p@-(a:)Zanj /P. G(x,x")p;(x')dx'dx

Note: P, is the support of ¢;(x).
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2nd Kind

Discretization
Galerkin Cont.

Assume Orthonormal Basis
Orthogonality
| e@ei@)de =0
P,UP;
Normalization

| e@eia)dn =1

1
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2nd Kind
Discretization

Comparison

Collocation = Galerkin with one point quadrature

One point quadrature implies

/P. pi(x)¥(z)dr =~ wip;(x;)P(z;)

7

x; = quadrature point
w; = quadrature weight
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2nd Kind
Discretization

Comparison Cont.

One point quadrature implies

/P. pi(x) Z onipi(e)dr = wip;(x;) Z 0P (T;)

[ 0@ 0u [ G2 da'de
Py j=1 &
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2nd Kind
Discretization

Comparison Cont II.

Putting together
w;pi(@;) ¥ (x;) =

w;pi(T;) Z 0P (T:)
j=1

wipi() Y o | Glaia!)pi(a)do
j=1 P;

SMA-HPC (©2003 MIT First and Second Kind



2nd Kind
Discretization

Comparison final.

Dividing by w;p;(x;) and reorganizing

+ [ 3 0niGlas, )i
=
which is precisely the collocation equations.
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Qualocation

Discretization
Alternative

[ @)Y 0u [ Go,a)pi(e)do'de
P j=1 P;

wipi(Ti) Y Onj / G(x;, ') pj(z")da’
=1 Fy
J or

> ouwiei@) | G e)ea)ds
j=1 ;
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Qualocation

Discretization
3-D Piecewise Constant Basis

8’11,1‘ (Cl_f )
67?,5;

o 1
— 210 (Z) + / L (@)dr
r Ong||Z — &'||

Discretize Surface into
Panels

i=1 , ]
Basis Functions

9, (x)=1 if x is on panel j
Panel j 9. (x)=0 otherwise
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Qualocation

Discretization e
Integration Difficulty

top curve:

o 1
[ 5l
r Ong @ — 7|

Bottom curve:

3 1 ,
[0
r Ong||d — @
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Qualocation

Discretization
Nystrom Method

Set quadrature points = collocation points

\11(5[31) — + Z ’ij(iBl, CBj)O'nj

j=1

\I!(azn) — 041 + Z ’ij(iBm ﬂ?j)O’nj
j=1
System of n equations in n unknowns
Collocation equation per quad/colloc point

Nystrom = Galerkin with n point quadrature
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2-D Integration Reminder

(from 3-D problems)

Calculating Matrix Elements

X Collocation
z o " "¢ point

‘r. 4,= | G(x,.x)as’
.‘- panel j
\ Panel |

One point pu |
quadrature " ‘ Ai,j ~ Area e G (xci ,Xcemmidj )
Approximation |

Four point 4 Area
y V.4
quadrature (i iy ‘ Z A ( ‘xpointj)
Approximation J=1
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Symmetrically Quadrature Scheme

Normalized 2-D
Problem General n-point formula

j‘j‘f(x,y)dx =

=1l =l

Xis Vi

n points, n weights
2n parameters

-] &— x —1
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Symmetrically Quadrature Scheme

Normalized 2-D _
Problem 2-D Gaussian Quadrature

Exacltnless for |I-th order polys

jjpl(x,y)dx —

=1l =l

l-th order 2- D poly definition

pzxy Z

(i+7)<I

(/+1)(/+2)
2

Number of terms =
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Symmetrically Quadrature Scheme

Normalized 2-D
Problem Product Method

1) Get a 1-d formula jf(x)dx =

H\ 1d _1d
X,V, =X ,X,

2) Form a “product” grid
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Symmetrically Quadrature Scheme

Normalized 2-D
Problem Product Method Continued

3) Determine the weights

|
jjf(x,y)dx ~
~1-1
o 1d. 1d
Wiy =W W,

Note that n = mxm
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Symmetrically Quadrature Scheme

Normalized 2-D
Problem Product Method Theorem

Theorem: The product method is exact
for all 2-d polys up to order 2m

Proof:

Using the I-th order poly def

J-jpm x,y)dxdy = jj .,jxiyjdxdy
11 _1 =1 (i+/)<m
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Symmetrically Quadrature Scheme

Normalized 2-D
Problem Product Theorem Cont.

Using the properties of integration

j j o, x'y'dxdy = j U X dxj Idy

~1-1 l+] <m (z+])Sm 1\ =1
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Symmetrically Quadrature Scheme

Normalized 2-D
Problem Product Theorem Cont.

Since the 1-d quadrature is exact for polys
of order less than 2m

SMA-HPC ©2002 MIT



Symmetrically Quadrature Scheme

Normalized 2-D
Problem Product Theorem Cont.

Rearranging the sums
T a, (S ) | S )=
>yt 3 e () () =

[=1 k=l (i+7)<m

m m

Zzwk Wz pm (xkd»xz )

[=1 k=1
Which proves the theorem
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Basis Function Approach

3-D Laplace’s

Equatlon Calculating “Self-Term”
7 X Collocation
‘%  point
y

- —
\ panel i
Panel |

One point

ARRR " ARARRY" a 1,i
quadrature oA ‘ /(1

Approximation D

G G

] ;. . . .
A = j —dS" 1s an integrable singularity
| X, —X H

Ci

panel i
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Basis Function Approach

3-D Laplace’s
Equation Calculating “Self-Term”

Tricks of the trade

X Collocation
%  point 1

I Aii — dS,
Panel | , pw;[“ X, _

. | , 1 )
Integrate in two 4., = j —dS" + j —dS
pieC@S disk ‘xcl- —X rest of panel xcl. —X

Disk Integral has 1 271
singularity but has j - j J; rdrd@
analytic formula 9% e X 0 0
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Basis Function Approach

3-D Laplace’s
Equation Calculating “Self-Term”
Other Tricks of the trade

Z

X Collocation

‘i point , _ J‘ 1 g5’

i,

Panel i panel i

Integrand is singular

1) If panel is a flat polygon, analytical formulas exist

2) Curve panels can be handled with projection
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