Finite Difference Discretization
of Elliptic Equations: FD Formulas and
Multidimensional Problems

Lecture 4



1 Finite Difference Formulas

1.1 Problem Definition

We have seen that one of the necessary ingredients in devising finite difference
approximations is the ability to accurately approximate derivatives in terms of
differences. Here we will consider two approaches to developing such approzi-
mations.

Given [ +r + 1 distinct points (21, %141, --,%0,-- -, Z), find the weights 67"
such that .
d™v
o] 20T
T=TO  j=—]
is of optimal order of accuracy.

e Lagrange interpolation
Two approaches:
e Undetermined coefficients

Note 1 Accuracy of a Finite Difference Approximation
If,
d™v L. »
(dw—m - Z(Sj v;) = O(Az?),
T=z; j=—1

for all sufficiently smooth functions v, we say that the difference scheme is p-th
order accurate.

1.2 Lagrange interpolation

Lagrange polynomials

(@—zg)---(@—zj1)(@—2j41) - (& — 2)
(@5 —xa) - (25— zj-1) (@) — xj) - (25 — 27)
We note that, by construction, L;(x) takes the value of one at x; and zero at
all the other r + 1 points.

Lj(z) =

Lagrange interpolant

o(x) = Z Lj(z)v,

j=—1
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The Lagrange interpolant is the polynomial of lowest degree that passes through

all the points (zj,v;5),j = —=1,...r.

Approximate
d™v dm "\ d™L;
dom N dam =) d m] Y
T T=T0 Z T=TQ j:,l T T=T0
Therefore,
5m— d™L;
I dym
T=x0

1.2.1 Example
Setl=1r = ]., (l‘jfl,.’L'j,.’L'j_’_l)
Second order Lagrange interpolant

(z—z;)(z—zj41) (z—zj1)(z—xjt1)

13(1') = (wj_1—$j)($j—1_wj+1)

vj—1 + T

(z—zj_1)(z—z;) )
(wj+1—w;—1)(wj+1j—wj) Vit

1

Assuming a uniform grid
m =1 (First derivative)

1 1 1

01 0 din
C_ 3 2 _ 1
i=7-—1 —5As Az Az Forward
.. 1 1
1= —5A 0 AT Centered
;= 4 1 _2 3
i=j+1 3AZ Az SAZ Backward

For example o second order backward difference approximation can be written

as v; = (3vj —4vj_1 +vj—2)/(2Az).

m =2 (Second derivative)

2 2 2
01 % Gin
1 2 1
A7 vy A Centered

v; +

zi—zj—1)(zj—zj41) J
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We note that since we are starting with three points, our interpolating polynomial
is second order, and therefore, the second derivative is constant everywhere. In
general, to approximate a derivative of order m we will require at least m + 1
points.

Note 2 Fornberg’s algorithm

The 07" can be computed very efficiently using a recursive algorithm developed

by Fornberg (Generation of Finite Difference Formulas on Arbitrarily Spaced
Grids, Mathematics of Computation, 51,184).

1.3 Undetermined coefficients

Start from

d™v

dx™

r
~ m.
NE 67 v

T

=i j=—|
Insert Taylor expansions for v; about z = z;

1
vj =v0+v('](.7;j—xi)+§v(')'(mj—a:,~)2+...,

determine coefficients 47" to maximize accuracy.

1.3.1 Example

m=2,l=r=1,i=0, (uniform spacing Azx)

2 3 4
vy = 6%,(vo — Azvly + AT”'U{)' — Avaf)" + %—ivé‘i) +...)
+ (58 Vo
2 3 4
+ 02(vo + Azvly + Ay 4 A2y Aty (D 4 )
Equating coefficients of v(()k)

k=0 = 2.+ +62=0
k=1 =  Az(6?-62)=0
k=2 = Ar(E24452)=1
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In general we will start with k = 0, and increase k until a sufficient number
of independent equations is generated so that all the coefficients are uniquely
determined.

Solve,

1 2 1
2 2 2 _

to recover the same second order central difference approximation to a second
derivative previously derived.

Note 3 Moultidimensional finite difference formulas

The Lagrange interpolation and undetermined coefficients approach we have
seen can be easily extended to multiple dimensions.

Lagrange interpolants can be constructed in multiple dimensions by combining
one dimensional Lagrange polynomials. Given a lattice of ({+7r+1) x (d+u+1)
points

-l,u U
, (0,0)
0
-1
—1l,—d —101 r,—d

we can construct the following one-dimensional Lagrange polynomials for a typ-
ical point j, k

(@—z)- (@ —-2j 1)@= 2j4)--- (€= 2r)
(@j—z1) (25 —zj-1) (2 — @) - (5 — 27)

Lf- (x) =

(Y—vy-a) - (—=yr—1) Y —yrs1) - (¥ — Yu)
(e —y—a) - Yk — Yr—1) Wk — Yrt1) - (Y& — Yu)

Li(y)
The Lagrange interpolant is thus obtained as
o(z,y) = Z Z Lj (z) Li(y) vji -
j=—1 k=—d

We note that by construction L¥(x) Ly (y) takes a value of one at (z;,yx) and
zero at all other points in the lattice.



A general partial derivative can be approximated as

8m+"1} 6m+"f) I u 3m+n
~ — R .
j=—1 k=—d
Therefore, defining the weights
8m+n
it = a3 Lil@) Le(y)
k m n J
gy (20,30)
we have ) )
6m+n{}
dam Jyn ~ > > Tt

(xo,y0)  j=—1I k=—d

The method of undetermined coefficient extends to multiple dimensions in a
straightforward manner if we consider multidimensional Taylor series expan-
sions. Thus, assuming a uniform Az and Ay, we have

.. Ov v (jAz)? 8%
Uik = U(zo,y0) +) Az 6_.1’ + kAy 6_ 5 @
(z0,90) Yl (z0,50) (z0,y0)
H? kAy)? 5?2
+ (AT kAY) 5 ( 2?/) A e
LOY |(20,y0) Y l(zo,y0)

A finite difference approximation of the form

T u
mn
~ Z Z 5" Vjk

(zo,90)  j=—1I k=—d

oMty
ox™ Jyn

can be obtained by inserting the Taylor series expansions for v;; and determining
the 673" coefficients by equating the coefficients of the different derivative terms.

Note 4 Compact difference approximations

The finite difference approximations considered here are called divided differ-
ences approximations. More sophisticated, and accurate, difference approxima-
tions are also possible. These approximations are called compact approxima-
tions and take the form

T1 T
d™v m
Z dxm ~ Z 6j Yj s
j=—h T=zj =]
and a particular well known compact approximation to the first derivative is

L P Vi1 — V1
g(vj+1 + 4V +vjy) = By v

It is easy to verify, using Taylor expansions or otherwise, that this approximation
if fourth order accurate for a sufficiently smooth function, i.e. p = 4.




2 Poisson Equation in 2D

2.1 Definition

Yy
—V2U($7y) = f(way) in Q /I‘
u=0 on I’ T
If Q
02 02 z
2 0
Ve = w + 6—112’ fec f—L,—

We have seen that one of the critical requirements to obtain optimal a-priori
error estimates is that the solution be sufficiently reqular so that the derivatives
appearing in the leading terms of the truncation error exist. In 1D the reqularity
of the solution depends exclusively on the regularity of f (see Fourier analysis
in Lecture 1). In multidimensions however, the regularity of the boundary plays
also a very important role and, for general domains involving corners or non-
regular boundary data, the solution may not be very regular. This topic will be
dealt with in greater detail in the finite element lectures.

2.2 Discretization

Az

ke
m+1 —
J+1 1 —\
) v T
j—1 -

1 ——

0

01 T

i—1 tt1

L . .
Am:nﬂfl, Ay = 2 x; =iAx, y; =jAy

2.3 Approximation

For example ...

2
Ful Vi1, = i + Vi1,
2 2
ox? |, ; Az
2
Fvl  Vigrr — 2055 + i
2 ~ 2
oy i Ay

for Az, Ay small
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2.4 Equations

SLIDE 13
—Ugg — Uyy = [ suggests ...
Uiy, — 2055 + Uiy Uiy — 2045 + i1 Iy
Az? Ay? e
Upj =1Un; =0 1 <j<m
U0 = Ui =0 1 <i<n
= Aa = f
2.4.1 Example
SLIDE 14
y
I PELCIN
j=4
h
j=3 s
n=m=3 U1
j=2
Ar=Ay=nh
i=1
j=0 —x
1=01=1¢:=2:=31=4
The 9 unknowns are collected into a column vector unknown a, by, somehow ar-
bitrarily, stacking the unknowns row by row. Thus, & = {U1,1, 2,1, Us,1,U1,2,U2,2,-..,U3,3}
SLIDE 15

4 -1 -1
-1 4 -1 -1
-1 4 -1
LT 4 1 -1
A= — -1 -1 4 -1 -1
h2
-1 -1 4 ~1
-1 4 -1
-1 -1 4 -1
I -1 -1 4




2.4.2 Numbering

SLIDE 16
11 fin
Un1 fnl
4= ) f =
ﬁ/"m fnm
(i,j) becomes component (jm + i)
2.4.3 Block Matrix SLIDE 17
Ap +2I, —I, 0 .- 0
-1, A,+2I, -I, :
A= 0 : 0
: . -I, A, +2I, -1,
0 ‘e 0 -1, Ap +2I,
Block (m x m) tridiagonal matrix
Az, Iy (nxn), ‘A: (nmxnm)‘
SLIDE 18
Block Definitions
2 -1 0 0 1 0 O 0
-1 2 -1 " 1 0
1 ) 1
=351 0 SRR v A 0
-1 2 -1 0 1
0 0o -1 2 0 0 0 1

A has a banded structure
Bandwidth : 2n +1

We note that when m < n the unkowns can be assembled into 4 by columns
rather than rows in which case A will be (n x n) block tridiagonal with blocks of
size (m x m), and the bandwidth in this case will be 2m + 1.



2.4.4 SPD Property

The system of equations At = f will have a unique solution provided the matriz
A is non-singular. It can be easily verified that for any vector v,

SLIDE 19
n+1m+41 1

1
GEUEDIDY (R Wi —vi14)” + A—yz(vz’j —ij-1)’]

i=1 j=1

Hence | vT Av > 0, for any v Z 0 ‘ (Ais SPD)

At = f : 4 exists and is unique

If m =~ n are large, Gaussian elimination (or LU ) is expensive = O(n*)

For a matrix of size N x N the cost of performing Gaussian elimination is
proprotional to N3. If the matriz is banded with bandwidth M, the matriz
structure can be exploited to reduce the cost to NM?. Gaussian elimination
will be discussed in much greater detail in future lectures. For our matriz A,
N =n? and M = 2n+1 hence a total cost of O(n*). Iterative methods can also
be pursued — these will depend on the condition number, discussed below.

2.5 Error Analysis

2.5.1 Truncation Error

Recall from Lecture 1 that the trucation error is obtained by inserting the exact
solution into the difference scheme.

SLIDE 20

_w(@iv1,¥5) — 2u(@i, ;) + w(@io1, yj)
Az?
_u(@i, yi1) — 2u(@i, ;) + w(@i,yi-1)
Ay?
Az? 9y Ay? 8*u Y
_F%(% + 67 Az,y;) — ﬁa—gﬁ(mi,yj + 07 Ay)

~
Tij

= f(xzay])

For u € C*

7,5 ~ O(Az?, Ay?) ‘ for all i,j




2.5.2 [ || Stability
SLIDE 21
It can be shown that

—

47 o < 2

oo

The above estimate can be proved following essentially the same steps as we
followed in Lecture 1 for the one dimensional case (see [TW]).

Ingredients:
e Positivity of the coefficients of A~!

e Bound on the maximum row sum

2.5.3 |- |lcc Convergence

Error equation Ae=717 = m

- _ 1
1A oo <A oo lI7lloo < glITlloo

SLIDE 22

llelloo

1
< —(A2x? )| £ Aqy? (4)
- 96( v (zr,rgl/?}eco fuz”| + Ay mn;}?gnwy Y

If uelC' |ello~ O(AZ?, Ay?)

Here, the issue of regularity of the solution u must be stressed, since in most
practical situations (e.g. involving general domains), the solution may not have
sufficient reqularity for the above estimate to hold.

3 Eigenvalue Problem in 2D
3.1 Statement
—V2u=Ms in
u=2~0 on T /1“

SLIDE 23

Assume (for simplicity) ;L Q
L,=L,=1 1

Solutions (u(z,y), A)

10



3.2 Exact Solution

SLIDE 24
Eigenvalues
uPl(z,y) = sin(knz) sin(Iry)
In the two dimensional case, it can be verified by direct substitution, that the
eigenfunctions are simply the product of the eigenfunctions in the x and y di-
rections. Note that by construction, the eigenfunctions satisfy the boundary
conditions.
_v2uk,l — (k2ﬂ_2 +l2ﬂ_2) uk,l
Eigenvectors
Aol = k2% 4 Pr?, kiI=1,...
3.3 Discrete Problem
3.3.1 Eigenvectors
SLIDE 25
Ad=Ai| = (@A)
It can be verified that in the two dimensional case, the eigenvectors of the discrete
operator A, conicide with the eigenfunctions of the continuous operator —V?,
evaluated at the grid points.
ol sin(krz;) sin(lmy;)
irj i Y
sin(kmiAz) sin(lrjAy)
., kmi ., Img
= s s
1n(n+ 1) 1n(m+ 1)
ki=1,...,n Lj=1,....m
3.3.2 Eigenvalues
SLIDE 26

By direct substitution into the Al = 5\@ we find that

11



“ 2 2
ki _ _ -
A s {1 = cos(krAz)} + Ay {1 = cos(IrAy)}

Low Modes High Modes
Az, Ay — 0 (k,! fixed) kxn,lxm
el = k272 4 272 ABL = 4(n + 1) + 4(m + 1)
+ O(Az?, Ay?) as Az,Ay =+ 0

3.4 Condition Number of A

4n? + 4m?
ﬁA—)u as Az, Ay —0
272
Im=n
4n?
I‘GA—>—2
™

grows (in IR?) as number of grid points.
(better than in 1D, relatively speaking !!)

3.5 Link to —Viu=f

3.5.1 ||| Error Estimate

The norm || - || should approzimate the continuous p = 2 norm. In two dimen-
stons this requires multiplication of the vector p = 2 norm by the area factor
VAzAy.

Error equation Ae=717 =|e=A"'r

lelle = 114 2zl < 14 o il < 5l
1
(Aat) el < 5y (Aady) Pl
S el <~ izl ~ O(AZ?, Ay?)
€|l < ;\1,1 T , AY

12
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4 Discrete Fourier Solution

4.1 Poisson Problem 2D

In most practical situations, the solution to the Poisson equation will be required
on general domains, and with more complicated boundary conditions than those
considered here. In this case, some of the solution techniques that will be con-
sidered later on in this course may be more appropriate. However, in those
specific situations where the Poisson equation has to be solved on a rectangle
with sufficiently simple boundary conditions, dicrete Fourier techniques may be
employed to solve the system of equations Au = f very efficiently. SLIDE 29

ASPD =

A diagonal matrix of eigenvalues (nm x nm)
7 is matrix of eigenvectors (nm x nm)

ﬁ/l’l ,a2,1 ,&n,m
Z = 2/AzA ;
Y10 !
SLIDE 30
ZNZTa=f = ZTa=A1Z"f |a=2ZA'Z7f
ALGORITHM
L [=7"f
2. at=A
3 i =Zu"
Still cost is O(n*) (n ~m) ...BUT ... SLIDE 31

e Matrix multiplications can be reorganized (tensor product evaluation)

= 0(n®)

Ak A

o f =ZTf (4= Z4*) is a (Inverse) Discrete Fourier Transform

Using FFT = O(n?logn)

Note 5 Tensor Product Evaluation

An alternative representation of the system A4 = f is the matrix equation

13



A, U+UA, =F

where the unknowns 4; ; and the right hand side f; ;, have been rearranged into
an n x m matrices

Q11 dip iz - U1m fun iz s - fim
g1 Uzy Gz - : f21 fzz f‘zs .
U= 7 A : . » F= f31 ’
ﬁn—lm A: R fn:lm
'anl e ‘ ﬁnm—l 'anm fnl e - fnm—l fnm

and the 4, and A, are simply the “one dimensional” matrices, in the z and y
directions respectively, of size n x n and m X m respectively,

2 -1 0 --- 0 2 -1 0 --- 0
-1 2 -1 : -1 2 -1 :
A=x=| o0 0 | A=az]| o 0
oo -1 2 -1 R S |
0 --- 0 -1 2 0 --- 0 -1 2

Let Z, and Z, be the matrices that contain the normalized eigenvectors of A,
and A, respectively (see slide 8). Thus, we can write

A, = Z, N, 7T, Ay = Z,N, 7],

where A, and A, are the diagonal matrices of eigenvalues.
By inserting the above expressions for A, and A, into our matrix equation,
premultiply by ZI and postmultiply by Z,, we obtain

NZY0Zy+ 2F02Z,A, = 2L FZ,.
Defining U* = ZTUZ, and F* = ZT FZ, we propose the followoing algorithm
1. F*=27TFz,
2. {U*}y = ﬁ{ﬁ*}k,, fork=1,...,n,1=1,...,m.
3. U =2,U*ZF

We observe that the most expensive steps 1 and 3 only involve multiplication of
matrices of size n or m. Thus, if n & m, the cost of the above algorithm scales
like O(n?).

We have already indicated above that the very special structure of the matrices
Z, and Z, allow for an even more efficient implementation of the matrix prod-
ucts, using Fast Fourier Transforms (or Fast Sine Transforms in this case) to
obtain a nearly optimal solution cost O(n?logn).

14



5 Non-Rectangular Domains

5.1 Poisson Problem 2D

SLIDE 32
Here we consider the extension of the finite difference method to non-rectangular
domains.
We are interested in solving
—Vu = f in 0 I
Y \ /"
u = g on FD
ou
8_’!1 = h on FN = F\FD z
where f, g, and h are given.
We assume that the boundary of 2, T', can be divided into T'p and T'n, such
that Tp NT'x = 0. On T'p Dirichlet (u = g) boundary conditions are applied
whereas Neumann conditions (g—z = h) are applied on T'n. Mized, or Robin,
type boundary conditions involving the function and the normal derivative could
also be easily incorporated.
5.1.1 Mappin
pping SLIDE 33

We require a non-singular mapping between a rectangular region Q, and the
domain of interest ).

n Y
R z = xz(&,n)
e y=y(&n)
13 — 3
? 9 —Vu=f

Can we determine an equivalent problem to be solved on 07

In order to solve our problem on Q, we need our differential equation to be
expressed in such a way that oll derivatives are taken with respect to the inde-
pendent variables £ and 7.

15



Depending on the complezity of ), devising this mapping may be very difficult, or
simply not possible. There are a number of grid generation techniques specifically
devoted to this type (see [TSW] for more details).

5.1.2 Transformed equations

SLIDE 34
By simple chain rule differentiation we have that ...
Uy = §zu§ + Tz Uy
u(z,y) =u(z(n),y&mn) =
~ uy = Eyue +nyuy
u(§,m)
How do we evaluate terms &;, 1, &, and 7,7
SLIDE 35
§=E&(z,y) z =z(£,n)
n=n(z,y) y=y(&n)
dn Nz Ty dy dy Ye Yn 1
—1
= = = —
e & Ye  Un T\ —ue ¢
J = @eyn — Tnye
L SLIDE 36
Ug 7 (Ynue — Yeun)
Uy = % (—Tnue + TEUy)
0 0 0
and Upy = e (ugy) = (&w 8_§ + Ny 8_7)> Uy
1 0 0
= j Yn 8_‘5 - yga—n Uy
Uyy =
SLIDE 37

Finally, —(ugzz + uyy) = f, becomes

-1
¥E (auge —2bugy +cupy +duy +eue) =f

16



a, b, ¢, d, and e depend on the mapping.

B — ypo
a=al+y: e=—"T1—" a = azge — 2bxey + CTyy

J
Yyea — zef
b= ey + yeyy d= % B = ayee — 2byen + ¢y

) 2
c—m£+y§

We note that in this equation all partial derivatives, including the mapping co-
efficients, a, b, ¢, d, and e, are with respect to £ and 1.

5.1.3 Normal Derivatives
Yy
n
/ = const
£ = const
T

n = (n®,nY) is parallel to Vn (or V§); e.g., on 'y
1 1

—— e, 1y) = ———= (¢, %¢)
/M3 g NERET:

Similarly, expressions for n can be obtained for the other boundaries.

n —=

Thus,

[(yan® = @gn¥) ue

~ e

u
= = Ugn” Fuyn?¥ =

on
+ (—yen® + zen®y) uy)
1

(_yﬁaxﬁ)'
2 2
\/ Te T Y

with (n®,n¥) =
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