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GOVERNING EQUATION
Consider the Parabolic PDE in 1-D
2
ou _ Ua—L; x0[0, 7]
ot ox
subjecttou=u, aax=0, u=u, aax=7m
U, U,
u(x,t)=2
Xx=0 X=7T
= If v=viscosity — Diffusion Equation
= If v=thermal conductivity — Heat Conduction Equation
Side3

STABILITY ANALYSIS
Discretization

K eeping time continuous, we carry out a spatial

discretization of the RHS of
ou _ 4%
_ U_
ot ox?
Xx=0 X=7T
or—-—o—o—— "\ "\ - 2
Xy X X, Xna Xy
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Thereisatota of N +1grid points such that x; = jAX,
j=012,..,N
Side4

STABILITY ANALYSIS
Discretization

2
Use the Central Difference Scheme for %
X

d°u Uj, — 205 +U;, 2
— | =————=+0(Ax
[ale AX? (B

which is second-order accurate.
. Schemes of other orders of accuracy may be constructed.
Side5
Congruction of Spatial Difference Scheme of Any Order p
Theidea of constructing a spatial difference operator isto represent the spatial

differential operator at alocation by the neighboring nodal points, each with its own
weightage.

The order of accuracy, p of aspatia difference scheme is represented as O(Axp) .

Generaly, to represent the spatial operator to a higher order of accuracy, more nodal
points must be used.

-2 -1 1 j+2

Consider the following procedure of determining the spatial operator (%} up to the
X

j

order of accuracy O(sz) ;
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Let (%} be represented by u at the nodesj-1, j, and j+1 with a_,, a, and
j
a, being the coefficients to be determined, i.e.

du
(&]j +a_ U, +agu, +aluj+1=O(Axp) (1)

Seek Taylor Expansionsfor u,_,, u; and u,,, about u; and present themina
table as shown below.

(Note that p is not known a priori but is determined at the end of the analysis
when the o’ s are made known.)

This column consists of al the terms on the
/ LHS of (2).

U| UI' ui” U]”'
uj' 0 1 0 0
1,2 1,3
a_u;_, a., -AxLdr, EAX lar_, —EAX &,
ag, ay 0 0 0
1,., 1,5
au; ., a, Ax Ly, EAX Lar, EAX Lar,
v v | v v v
, k=1
U + 2 a U, S S S S, i
k=-1

Each cell in this row comprises the sum
of its corresponding col umn.
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where (a,+a,+a)u,

(1-Ax@r, +Axr)u
(
a8

R T

S =
S
S, %Axm+ Axmj

J;(/)

%Axm +=A Db/]

Makeasmany S’sas possble vanish by choosing appropriate a, ’s.

In thisinstance, since we have three unknowns a_,, a, and a,, we can
therefore set:

§=0
5 =0
5,20

(Note that in the Taylor Series expansion, one starts off with the lower-order
terms and progressively obtain the higher-order terms. We have deliberately

set the § pertaining to the lower-order terms to zero, thereafter followed by
increasingly higher-order terms.)

Hence,
1 1 1ja, 0
-1 0 1j|a, |= —i
AX
1 0 1||a 0

Solving the system of equations, we obtain

1
a,=—
20X
a,=0
1
a=-—
20X
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k=1
Substituting the @, 'sinto u; + > a,U;, =S +S,+S,+S, +.... yields
£

=1

1

1
u —E(ujﬂ—uj_l)

=—Ax*[," + higher-order terms
6
In other words,

U-'=(%] :@4.0(&2)4.
b ldx 20X i

O(Axp),p=2

i.e. the above representation is accurate up to O(sz) .

Some useful points to note:

1.

These 4 steps are the genera procedure used to obtain the representation of the
spatial operator up to the order of accuracy O(Axp) .

2
For other spatial operators, say (%) , we simply replace (%} in (1) with
X ). X /.
] ]

the said gpatial operator.

For one-sided representations, one can choose nodal points u,,,k=>0. This
may be important especialy for representations on a boundary. For example

du
(— +agU, +a,, AU, = O(Axp)

de

One possibility is

(du] N 3u; —4u;,, +u,,
i

dx 2AX =0 (AXZ)

which is also second-order accurate.

(We can dlso use asimilar procedure to construct the finite difference scheme
of Hermitian type for a spatial operator. Thisisnot covered here).
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STABILITY ANALYSIS
Discretization

We obtain at &:Z—L:=ﬁ(uo—2ul+u2)
X
du v
Xz3d—t2=E(U1‘2Uz"‘U3)
du. U
X, :d_tJ:F(uj'l_zuj +U;,,)

du,_ U
Xy - dl: 1 =E(UN_2 -2u,, +U,)

Note that we need not evaluate u at x = X, and X = X
since u, and u,, are given as boundary conditions.

Side 6
STABILITY ANALYSIS
Matrix Formulation
Assembling the system of equations, we obtain
|y, | - a1 [ou, ]
at -2 1 U e
dt 1 -2 . 1 u,
: U . ., ., .
: = - - o+
du, DX 1 21 u;
at U Y :
""". &3 1 0
duN_l L 1 _2_ _uN—l_ &NZ
d | _ LAX” ]
~
A
Side7
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STABILITY ANALYSIS
PDE to Coupled ODEs

Or in compact form

= Au+b
dt
where u :[ U L ICCICTIITNIRI uN_l]T
T
6 — ch; 0 Q seeeerrenesanns 0 ng
Ax Ax

We have reduced the 1-D PDE to a set of Coupled ODES!

Side 8

STABILITY ANALYSIS
Eigenvalue and Eigenvector of Matrix A

If Aisanonsingular matrix, asin this case, it isthen
possibleto find a set of eigenvalues

IS/ S O W
from det(A-A1)=0.

For each eigenvaue A;, we can evaluate the eigenvector V ]
consisting of a set of mesh point values v/, i.e.

Side9

STABILITY ANALYSIS
Eigenvalue and Eigenvector of Matrix A

The (N-1)x(N —-1) matrix E formed by the (N —1) columns
V! diagonalizes the matrix A by

EAE=A



where A\ =

STABILITY ANALYSIS
Coupled ODEs to Uncoupled ODEs

Starting from % = Au+b
Premultiplication by E™ yields

L di
dt

E =EAU+E™Db

< U E*A(EE?)u+E™b
dt N
|

E

E‘l% = (E‘lAE) E'u+E’Db
H_J

A

STABILITY ANALYSIS
Coupled ODEs to Uncoupled ODEs

Continuing from

L di

E =AEu+E™Db
dt

Let U =E ' andF = E'b, we have

16.920J/SMA 5212 Numerical Methods for PDEs

Side 10

Side 11
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which isaset of Uncoupled ODES!

STABILITY ANALYSIS
Coupled ODEs to Uncoupled ODEs

Expanding yields

du

dtlz/]lul"'l:l

du

T
U
—1=)QU +F

a rh
du,,

d'[N L= A Una t Ry

Since the equations are independent of one another, they
can be solved separately.

Theideathenisto solvefor U and determine G = EU

STABILITY ANALYSIS
Coupled ODEs to Uncoupled ODEs

Considering the case of b independent of time, for the
general | equation,

U =ce' 1 F.
] ] A

J
j

isthe solutionforj =1,2,....,N-1.

10

Side 12

Side 13
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Evaluating, U= EU :-

Complementary ~ Particular (St_eady-state)
(transient) solution solution

T

where (@) = [Cle“ g e e .t e CN_leAN_lt:|

The stability analysis of the space discretization, keeping
time continuous, is based on the eigenvalue structure of A.
The exact solution of the system of equations is determined
by the eigenval ues and eigenvectors of A.

Side 14

STABILITY ANALYSIS
Coupled ODEs to Uncoupled ODEs

We can think of the solution to the semi-discretized problem
U= E(@) —EAED
as a superposition of eigenmodes of the matrix operator A.

Each mode|j contributes a (transient) time behaviour of the form
e'' totheti me-dependent part of the solution.

Since the transient solution must decay with time,
Redl (4,)<0 for all |

Thisisthe criterion for stability of the space discretization (of a
parabolic PDE) keeping time continuous.

Side 15

11
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STABILITY ANALYSIS
Use of Modal (Scalar) Equation

It may be noted that since the solution U is expressed asa
contribution from all the modes of the initial solution,

which have propagated or (and) diffused with the eigenvalue
A,, and acontribution from the source term b, all the
properties of the time integration (and their stability
properties) can be analysed separately for each mode with
the scalar equation

(d—uz/\U +Fj
dt

i
Side 16

STABILITY ANALYSIS
Use of Modal (Scalar) Equation

The spatial operator A isreplaced by an eigenvalue A, and
the above modal equation will serve as the basic equation
for analysis of the stability of atime-integration scheme
(yet to be introduced) as a function of the eigenvalues A
of the space-discretization operators.

This analysis provides a general technique for the
determination of time integration methods which lead to
stable algorithms for a given space discretization.

Side 17

EXAMPLE 1
Continuous Time Operator

Consider a set of coupled ODESs (2 equations only):

%: u, + u
dt a111 a122

%: u, + u
dt a’211 a’222

Side 18
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EXAMPLE 1
Continuous Time Operator

Proceeding as before, or otherwise (solving the ODEs directly),
we can obtain the solution

u = lelle)llt +Cy¢, ueﬁzt

— At Aot
u2 - QI.EZle T CZEZZG ’

where A, and A, are eigenvalues of A and F”} and Liﬂ are
21 22

eigenvectors pertaining to A, and A, respectively.

Asthe transient solution must decay with time, it is imperative that
Real (/) <0forj=12.

Side 19
EXAMPLE 1
Discrete Time Operator
Suppose we have somehow discretized the time operator on the
LHS to obtain
uln = ailuln_l + aﬂzuzn_l
U, = 2" +a,u,
where the subscript n stands for the n™ time level, then
U=Al" whereu’ =[u1” UZ”]T and A= {aﬂ a”}
& 8y
Since A isindependent of time,
—-n —-n-1 -n-2 -0
u=Au =AAU =..=Alu
In later examples, we shall apply specific time discretization schemes
such asthe “ leapfrog” and Euler-forward time discreti zation schemes.
Side 20

13
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EXAMPLE 1
Discrete Time Operator
As A=EAE™,
U' = EAE[EAE[..[EAE P

A A A

u = EA"EWS Where/\”zﬁ; 0}

uln = Aln‘ltllcl‘ + /]2”4{1202‘
uzn = Aln‘ltZlCl + /]2”{2202

} = E'u’ are constants.
Side 21

Alternative View

Alternatively, one can view the solution as:

Un . . UO
iR v

U"=A"U° whereU=E"

EXAMPLE 1
Comparison

Comparing the solution of the semi-discretized problem where
time is kept continuous

U :[ C] & & | et
u, o % &y &l €M

to the solution where time is discretized

|:ul:|n_[ 1 |]|:<tll gt12:| Aln
o | 1% e e, | A

14
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The difference equation where time i s continuous has exponentia
solution .

The difference equation where time is discretized has power
solution A".

Side 22

EXAMPLE 1
Comparison

In equivalence, the transient solution of the difference
eguation must decay with time, i.e.

A<l

for this particular form of time discretization.

Side 23

EXAMPLE 2
Leapfrog Time Discretization

Consider atypica modal equation of the form

(%z/]u+ae“]
dt

J

where A, isthe eigenvalue of the associated matrix A

(For simplicity, we shall henceforth drop the subscript ).

We shall apply the “leapfrog” time discretization scheme given as

n+l _, n-1
du S where h=At
dt 2h

Substituting into the moda equation yields

U = (s ae)

t=nl

= Au" + ae™

Side 24

15
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Reminder

Recall that we are consdering a typical modal equation which had been obtained
from the origina equation

du_ AG+b
dt

EXAMPLE 2
Leapfrog Time Discretization: Time Shift Operator

A" +ae’™ = u"™-2hAu"-u"'= 2ha(e’”‘“)

Solution of u consists of the complementary solution c", and the
particular solution p", i.e.

un=Cﬂ+pﬂ

There are severa ways of solving for the complementary and
particular solutions. One way is through use of the shift operator
Sand characteristic polynomial.

The time shift operator Soperateson ¢" such that
" =c™
S =s(%") =™ =™
Side 25

EXAMPLE 2
Leapfrog Time Discretization: Time Shift Operator

The complementary solution ¢" satisfies the homogenous equation

c"™-2hAc" -c"* =0

16
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(S*c" - 2hAsc” —c”)l =0
S
2 c’
(8°-2hAS-1)—=0
S
H—/
characteristic polynomial

p(S) =(S? -2h1S-1) =0
Side 26

EXAMPLE 2
Leapfrog Time Discretization: Time Shift Operator

The solution to the characteristic polynomial is

o(Ah) =S=Ah++1+A°n? <)=|' 0, and 0, are the two roots

The complementary solution to the modal equation would then be
c"=p0,"+ B0,

2ahe/™Me
e —2hae" -1’

The particular solution to the modal equationis p" =

Combining the two components of the solution together,

v ~(e)+(w)
[ﬁl()lmm)” +ﬁ2()|h—\/1+hiz)|2)”j+[ 2ahe/ Mg ]

e’ - 2hAe!" -1

Side 27

EXAMPLE 2
Leapfrog Time Discretization: Stability Criterion

For the solution to be stable, the transient

(complementary) solution must not be allowed to grow
indefinitely with time, thus implying that

alz(/]h+\/1+h2/12)
o, =(/\h—\/1+h2/12)

<1

<1

17
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is the stability criterion for the leapfrog time
discretization scheme used above.

Side 28

EXAMPLE 2

Leapfrog Time Discretization: Stability Diagram

The gtability diagram for the leapfrog (or any genera)

time discretization scheme in the o-plane is

A Im(o)
Region of Stability
1 Reo)

Side 29

Stability Diagram in the Ah-plane

Alternatively, we can express the stability criterion for the leapfrog time discretization
scheme as

/\h=£[a—ij st. |o]<1
2 g

Since |o| <1and o =exp(if)

. - Im(Ah)
Ah=isin@ for stability. A
The gtability diagram for the leapfrog time ‘1/ Region of Stability
discretization scheme in the Ah-plane would
therefore be as shown: 1 o
Re(Ah)
-1

18
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EXAMPLE 2
Leapfrog Time Discretization

In particular, by applying to the 1-D Parabolic PDE

ou _ d%

ot ox?

the central difference scheme for spatial discretization, we obtain

0
e, e,
e, e,
o N

0
......
o, R

which isthe tridiagonal matrix

Side 30

EXAMPLE 2
Leapfrog Time Discretization

According to analysis of a generd triadiagona matrix B(a,b,c), the
eigenvalues of B are

A =b+2\/§cos(%), ji=1..,N-1

) = _2+2ms(£] Y
! N ) |AX?

The most “dangerous’ mode is that associated with the eigenvaue
of largest magnitude

4u

p I —
A

g, (/]maxh) = /]maxh+ /]Zmaxh2 +1
g, (/]maxh) = /]maxh_ /]Zmaxh2 +1

i.e

which can be plotted in the absolute stability diagram.

19
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One may note that A; isalwaysreal and negative, thereby satisfying

the criterion for stability of the space discretization of a parabolic
PDE, keeping time continuous.

Side 31

EXAMPLE 2
Leapfrog Time Discretization: Absolute Stability Diagram for o

As applied to the 1-D Parabolic PDE, the absolute stability diagram for gis

Im(o)
A
Region of
Instability Unit circle

Gwithh /0000 Gwithh

increasing [l [ increasing
D SE—

/

cah=At=0

Region of :E:::::::::::::::::::::::.
Stability bl

In thiscase, o, and o, start out being on the unit circle (h = 4t = 0). However, the

spurious root (refer to following dide) leaves the unit circle as h startsincreasing.
Therefore, the spurious root causes the leapfrog time discretization scheme to be
unstable, irrespective of how small h = At is, although it does not affect the accuracy.
The leapfrog time discretization for the 1-D Diffusion Equation isungtable.

Side 32

20
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STABILITY ANALYSIS
Some Important Characteristics Deduced

A few features worth considering:

1.

Stability analysis of time discretization scheme can be carried out for
al the different modes A;.

If the stability criterion for the time discretization schemeisvalid for
al modes, then the overall solution is stable (sinceitisalinear
combination of all the modes).

When there is more than oneroot o, then one of them is the principal
root which represents an approximation to the physical behaviour.
The principal root is recognized by the fact that it tends towards one
asih - 0ie lim o(Ah)=1. (The other roots are spurious, which

affect the stability but not the accuracy of the scheme.)

Side 33
STABILITY ANALYSIS
Some Important Characteristics Deduced
4. By comparing the power series solution of the principal root to ™",
one can determine the order of accuracy of the time discretization
scheme. In this example of leapfrog time discretization,
1 1
2 1 202y
0, = A+(1+1°A?)2 = Ah+1+ = (h°A?) + 22 h')
2 2!
212
o, =1+hA+ h'A +...
and compared to
212
M =1+ AL
2
isidentical up to the second order of hA. Hence, the above scheme
is said to be second-order accurate.
Side 34

21
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EXAMPLE 3
Euler-Forward Time Discretization: Stability Analysis

Analyze the stability of the explicit Euler-forward time discretization

n+l n

du _u™-u
at At

as applied to the modal equation

%z/lu
dt

Substituting  u™* =u"+ h% where h = At
into the modal equation, weobtain  u™ —(L+Ah)u" =0

Side 35

EXAMPLE 3
Euler-Forward Time Discretization: Stability Analysis

Making use of the shift operator S
c™ —(1+Ah)c" = X" - (1+ Ah)c" =[S—(1+ Ah)]c" =0
H_J

characteristic polynomial

Therefore o(Ah) =1+ Ah
and c"=pBo"

The Euler-forward time discretization scheme is stable if

lo=1+2h/<1

or boundedby Ah=0-1  st. |o|<linthe Ah-plane.

Side 36

22
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EXAMPLE 3
Euler-Forward Time Discretization: Stability Diagram

The gtability diagram for the Euler-forward time
discretization in the Ah-planeis

Unit Circle A Im(Ah)

| __— Region of Stability

0 " Re(h)

Side 37

EXAMPLE 3
Euler-Forward Time Discretization: Absolute Stability Diagram

—4u
AXZ

As applied to the 1-D Parabolic PDE, A=A, =

A Im(o)

oleavesthe unit circleat Ah=-2

The stability limit for largest h = At :/]_

max

oleavestheunitcircleat o= -1,i.e o= 1+ Ah= -1

Ah=-2 = h=—2 sinceit isthe extreme.

Side 38

23
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Predictor-Corrector Time Discretization

Consider the numerical stability of the following predictor-corrector time
discretization scheme

n
™ =y +h
dt"
AN+l
un+1 :E un +L’jn+l+hdu
2 "™

as applied to the typical modal equation

d—u=/1u+ae‘“
dt

of the parabolic PDE. Substituting % and % into the predictor-corrector scheme
yields
amt=u" +h(/1u” +a “”) wheret = nAt =nh

Ut :%[un +0n+1+h(Aan+1+ae,uh(n+1)):|

Utilizing the shift operator

S.,In - un+1
Sjn - 0n+1

and rearranging the equations into matrix form, we obtain

S -(1+4h) i h
1 1 =1, |
-=(1+An)s  s-= S

2 2

To determine the characteristic polynomial, set

S —(1+4h)

24
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P(g)=P(S)= S(S—l—/\h—%/\zhzj =0

= o =0 (trivia root)

o=1+4h +%/\2h2

i.e. the schemeis a one-root method. Compared to
Ah 1 212
e =1+ Ah+=Ah"+....
2
the scheme is second-order accurate.

To obtain the particular solution, one can perform a matrix inversion and obtain

;ahe/’““(e"n +1+ Ah)

p:

e —1- ah- pn?
2
with the complementary solution being

"= fo" = ,3(1+ Ah+%/12h2]

The absolute stability diagram (showing A = —%) for the 1-D Parabolic PDE is
X

Im(o)

A
Region of
Instability

--------------- hincreasing further

K5 hincreasing from O

Region of Sl B

Stability

25
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When h increases from zero, odecreasesfrom 1.0. Ash continues to increase, o
reaches a minimum of 0.5 with Ah = =1 and then increases. As h increases further, o
returnsto 1.0 with Ah = -2, Prior to this point, the scheme is stable. Increasing h and
thus o beyond this point renders the scheme ungtable.

Hence, this predictor-corrector scheme is stable for small h's and unstable for large
h's; the limit for stability is Ah = =2 (from above).

In general, we can anayze the absolute stability diagram for the predictor-corrector
time discretization method in terms of

2
. a(/]h)=1+/1h+%

or
Ah: Ah=-1+y20-1

A, the eigenvalue(s) of the A matrix can take on complex forms depending on the
governing equation (as opposed to negative rea values for the 1-D parabolic PDE
with central differencing for the spatial derivative).

RELATIONSHIP BETWEEN o AND Ah
o = a(Ah)

Thus far, we have obtained the stability criterion of the time
discretization scheme using a typicad modal equation. We can
generalize the relationship between g and Ah asfollows.

. Starting from the set of coupled ODEs

|

U pi+b
dt

. Apply a specific time discretization scheme like the
leapfrog time discretization asin Example 2

Side 39

26
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RELATIONSHIP BETWEEN o AND Ah

o = a(Ah)
. The above set of ODES becomes
SN+l =n-l ~n
7] U AG"+D
2h
. Introducing the time shift operator S

S =“§+ 2hAG" + 2hD"

gl —n
{A—S S qu“ - b

2h

. Premultiplying E™ on the LHS and RHS and introducing
| = EE™ operating on u"

E} Ei=-E"

RELATIONSHIP BETWEEN o AND Ah
o = a(Ah)

. Putting U"=E", F"=E'b
Y o . .
we obtain {/\—E‘lszf E}Un =-F"

-
S-st

2h

- -1 . .
i.e /\—S S U"=-f"
2h

which isa set of uncoupled equations.

27
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Hencefor eachj, j =1,2,....,N-1,

_ o1

2h
Side 41

RELATIONSHIP BETWEEN o AND Ah
o = o(Ah)

Note that the analys's performed above isidentical
to the analysis carried out using the modal equation

(d—uz/\U +Fj
dt

]
All the analysis carried out earlier for a single modal
equation is applicable to the matrix after the

appropriate manipulation to obtain an uncoupled set
of ODEs.

Each j™ equation can be solved independently for
U! and the U{"s can then be coupled through t" = EU".

Side 42

RELATIONSHIP BETWEEN o AND Ah
o = a(Ah)

Hence, applying any “consigent” numerical technique

to each equation in the set of coupled linear ODEs is
mathematically equivalent to

1. Uncoupling the set,

2. Integrating each equation in the uncoupled set,

3. Re-coupling the results to form the final solution.

These 3 steps are commonly referred to as the

ISOLATION THEOREM

Side 43

28
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IMPLICIT TIME-MARCHING SCHEME

Thus far, we have presented examples of explicit time-marching
methods and these may be used to integrate weakly stiff equations.

Implicit methods are usually employed to integrate very stiff
ODEs efficiently. However, use of implicit schemes requires
solution of a set of simultaneous algebraic equations at each
time-step (i.e. matrix inversion), whilst updating the variables at
the same time.

Implicit schemes applied to ODESs that are inherently stable will
be unconditionally stable or A-stable.

Side 44

IMPLICIT TIME-MARCHING SCHEME
Euler-Backward

Consider the Euler-backward scheme for time discretization

% n+l _ um™t ="
dt h

Applying the above to the modal equation for parabolic PDE

%z/lu+aef“
dt

yields

n+l n

u "—u

— |:Aun+1 + ae,u(n+1)h:|
(1-hA)um - u" = ahe! "
Side 45

IMPLICIT TIME-MARCHING SCHEME
Euler-Backward

Applying the S operator,

[(1-n1)s-1]u" = ahe!™"

29
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the characteristic polynomia becomes
P(o)=P(s)=[(1-M)s-1]=0
The principal root istherefore

ath=1+/lh+/12h2+....

which, upon comparison with " =1+/]h+%/]2h2 +....,isonly

first-order accurate.

The solution is

n (u+1)h
Unzﬁ( 1 ]Jr ahe’’ :
1-ih)  (1-Ah)e" -1

Side 46

IMPLICIT TIME-MARCHING SCHEME
Euler-Backward

For the Parabolic PDE, A isawaysrea and < 0.
Therefore, the transient component will always tend

towards zero for large n irregardless of h (= At).
The time-marching scheme is always numericaly stable.

In thisway, the implicit Euler/Euler-backward time
discretization scheme will alow usto resolve different
time-scaled events with the use of different time-step
sizes. A smal time-gep sizeis used for the short time-
scaled events, and then a large time-step size used for
the longer time-scaled events. Thereis ho constraint on

P

Side 47

IMPLICIT TIME-MARCHING SCHEME
Euler-Backward

However, numerica solution of u requires the solution

of a set of simultaneous dgebraic equations or matrix
inversion, which is computationally much more
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intensive/expensve compared to the multiplicatiory
addition operations of explicit schemes.

Side 48
SUMMARY
. Stability Analysis of Parabolic PDE
= Uncoupling the set.
= Integrating each equation in the uncoupled set —
modal equation.
= Re-coupling the results to form fina solution.
. Use of modal equation to analyze the stability |o(Ah)| < 1.
. Explicit time discretization versus Implicit time discretization.
Side 49
Reference:

Numerical Computation of Internal and External Flows, Vol | & 11 by C. Hirsch,
1992, Wiley Series.
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