Solution Methods:
Iterative Techniques

Lecture 6



1 Motivation

Consider a standard second order finite difference discretization of
—V2u = f:

on a regular grid, in 1, 2, and 3 dimensions.

-
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1.3 3D Finite Differences
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‘ Cost of Gaussian elimination O(b?n?) = O(n")! ‘

This means that we we halve the grid spacing, we will have 8 times (22) more
unknowns and the cost of solving the problem will increase by a factor of 128
(27). It is apparent that, at least for practical three dimensional problems, faster
methods are needed.

2 Basic Iterative Methods

2.1 Jacobi
2.1.1 Intuitive Interpretation
Instead of solving

—Ugy = [,

%:Umc"‘fa

starting from an arbitrary u(z,0).

we solve

We expect u(z,t — 00) = u(z).

That is, we expect the solution of the time dependent problem to converge to the
solution of the steady state problem.

Note 1 Solution by relaxation

By adding the time dependent term %’ we have now a parabolic equation. If

the boundary conditions are kept fixed, we expect the solution to “converge”
to the steady state solution (i.e., %—? = 0). Recall that the time dependent
heat transfer problem is modeled by this equation. In this case, we expect
the temperature to settle to a steady state distribution provided that the heat

source, f, and the boundary conditions, do not depend on ¢.
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To solve
ou
= = Ugz + f
we use an inexpensive (explicit) method. Thus avoiding the need to solve a
linear system of equations.
artt —ar o ar, —2af 44,

For instance, — = + fi

At h?
w={d;}7, f={fi}ia
Here, we use the super indez r to denote iteration (or time level). u will denote
the solution vector. An approzimation to w at iteration r will be denoted by u”.

wtl = u” + At(f — Au”) = (I — AtA) u” + Atf .
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Stability dictates that
h2
At < —
- 2
Thus, we take At as large as possible, i.e. (At = h%/2).
h? h2
u™t (I - — A) I
2
AT+l 1 :
= a; 2( LAl + R fi) for i=1,...n
2.1.2 Matrix Form
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Split A
D: Diagonal
A=D-L-U L: Lower triangular
U: Upper triangular
Au=f becomes (D—L—-U)u=Ff
Tterative method
|Du*' = (L+U)u" +f|
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u™tt = L+U)u" +D7! f
YD-A)u +D1f
—D'A)u"+D71 f

I
/:.Ub

w



‘u’"“ =Ryu"+D7'f ‘
R; = (I — D7 'A) : Jacobi Iteration Matrix

D;;' = h?/2

Note that, in order to implement this method we would typically not form any
matrices, but update the unknowns, one component at a time, according to

1 ~
= ﬁ:+1 :§(a:+1 +'L’lz‘71+h2 fz) fOI" 'l:].,’n/

2.1.3 Implementation
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X X X X X X X
s }. : : : : >: >.< >: « known values
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i,r 41 ®
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./:\.
i—1,r 7T i+ 1,r
Jacobi iteration
1
upth =3 (Ui Ui + 121
2.2 Gauss-Seidel
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Assuming we are updating the unknowns according to their index i, at the time
ug"'l needs to be calculated, we already know u:fll The idea of Gauss-Seidel

iteration is to always use the most recently computed value.

X X X X X X X
1‘ 1 L] [ [ . X X X
H T . . . . o o ° ¢ known values
. . . ) . ) . *unknown values
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. xr
o— »obsT+1
i— A
t—1,r+1 b .
1,7 i+ 1,r

Gauss-Seidel iteration (consider most recent iterate)

r+1 .
U:H = % (ug—l—l + u'ifj_ + W fi)



2.2.1 Matrix Form

Split A
D: Diagonal
A=D-L-U L: Lower triangular
U: Upper triangular

Au=f becomes (D—-L—-U)u=7Ff

Iterative method

(D-L)w+ =Uw +f]

The above matriz form assumes that we are updating through our unknowns in
ascending order. If we were to update in reverse order, i.e., the last unknown
first, the iteration matriz would become Rgs = (D — U) ! L.

Note 2 Updating order

We see that, unlike in the Jacobi method, the order in which the unkowns are
updated in Gauss-Seidel changes the result of the iterative procedure. One could
sweep through the unknowns in ascending, descending, or alternate orders. The
latter procedure is called symmetric Gauss-Seidel.

Another effective strategy, known as red-black Gauss-Seidel iteration, is to up-
date the even unknowns first (red)

1
Ugiﬂ =3 (ubipq +ud; 4 + n’ f2i)

and then the odd components (black)
usti = 5 (ubfiy +usit + 12 fair) -

The red-black Gauss-Seidel iteration is popular for parallel computation since
the red (black) points only require the black (red) points and these can be
updated in any order. The method readily extends to multiple dimensions. In
2D, for instance, the red and black points are shown below.

@ Red
@ Black
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wtl = (D-L)'Wu +(D-L)"f

lw*' = Rosu’+(D-L) ' f |

Rgs = (D — L)™'U : Gauss-Seidel Iteration Matix

2.3 Error Equation

Let u be the soution of Au = f.

For an approximate solution u”, we define

Iteration Error: e"=u—u"
Residual: T’ —Au"
Subtracting Au” from both sides of Au = f,
Au —Au"=f —Au"

ERROR EQUATION —

We note that, whereas the iteration error is not an acessible quantity, since it
requires u, the residual is easily computable and only requires u”.

Note 3 Relationship between error and residual.

We have seen that the residual is easily computable and in some sense it mea-
sures the amount by which our approximate solution u” fails to satisfy the
original problem.

It is clear that if » = 0, we have e = 0. However, it is not always the case that
when 7 is small in norm, e is also small in norm.

We have that Au = f and A~!r = e. Taking norms, we have

£l < 1Al flullz,— llellz < [JATHl2 lIrfl2 -

Combining these two expressions, we have

llel2 —ayp Il

< [|All2 |4l :

lfulla =~ [I£ll2
cond (A)

From here we see that if our matrix is not well conditioned, i.e., cond (A) is
large, then small residuals can correspond to significant errors.
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2.3.1 Jacobi

SLIDE 15
utl = DY L+U)u"+D7'f
u = DY L+U)u+D7'f
subtracting
et = D—I(L+U) e"=Rje"
—_—
Ry
2.3.2 Gauss-Seidel SLIDE 16
Similarly,
et =(D-L)"'U e =Rgse”
—_———
Ras
It is clear that the above equations satisfied by the error are not useful for prac-
tical purposes since € = u —u°, will not be known before the problem is solved.
We will see however, that by studying the equation satisfied by the error we can
determine useful properties regarding the convergence of our schemes.
2.4 Examples
2.4.1 Jacobi SLIDE 17
—Ugy =1 u(0) = u(1) = 0; u® =0
’ — n=10
n=20
— n=40
# lterations
2.4.2 Gauss-Seidel SLIDE 18

—Ugy = 1 u(0) =u(1) =0; u’ =0
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2.4.3 Observations SLIDE 19

— The number of iterations required to obtain a certain level of convergence
is O(n?).

— Gauss-Seidel is about twice as fast as Jacobi.

Why?
3 Convergence Analysis
SLIDE 20
e"=Re" '=RRe"2=---=R"e€.
The iterative method will converge if
lim R" =0 <= p(R) = max|\(R)| < 1.

r—00

p(R) is the spectral radius.

The spectral radius is the radius of the smallest circle centered at the origin
that contains all the eigenvalues. The above condition indicates that the nec-
essary and sufficient condition for the scheme to converge, for arbitrary intial
conditions, is that the largest eienvalue, in modulus, lies within the unit circle.

Note 4 Condition on p(R)
The condition that

lim R"=0 ifandonlyif p(R)<1

T—>0Q



can be easily shown for the case where R is diagonalizable. In this case R =
X1 A X, where A is the diagonal matrix of eigenvectors. We have that R" =
X1 A" X and hence we require that

lim A"=0

=00

which is equivalent to p(R) < 1.

3.1 Theorems

— If the matrix A is strictly diagonally dominant then Jacobi and Gauss-
Seidel iterations converge starting from an arbitrary initial condition.

A ={a;;} is strictly diagonally dominant if

n
lai j| > > |a;;| for all i.
=1

— If the matrix A is symmetric positive definite then Gauss-Seidel iteration

converges for any initial solution.
Note 5 Convergence of Jacobi iteration for diagonally dominant
matrices

For the Jacobi iteration, Ry = D~!(L + U), it can be easily seen that R has
zero diagonal entries. It can be shown (Gershgorin Theorem - see GVL) that a
matrix with zeros in the main diagonal, p(R;) < ||Rj||oc- Hence

n

Qi s

p(Ry) = [|Rsll2 < [|Rslloo = max -1
1<j<n ‘=

i#1

<1,

(751

the last inequality follows form the diagonal dominance of A.

Note 6 Convergence of Gauss-Seidel for SPD matrices
(See Theorem 10.1.2 of GVL)
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3.2 Jacobi

SLIDE 22
Unfortunately none of the above convergence theorems helps us to show that
Jacobi iteration will converge for our model problem. However, since for our
model problem we can calculate the eigenvalues of A explicitly (see previous
lectures), convergence can be shown directly.
h2
R;=D ' (L+U)=D"1 (D—A):I—D‘1A=I—7A
If Avk = Nk gk |
h? h?
then R;v¥ = (I— 5 A) vk = (1 -3 )\k(A)> v¥
[ ——
Ak (Ry)
h2
MN(Ry)=1- =7 A¥(4)
Eigenvectors of Ry = Eigenvectors of A
SLIDE 23
Recall ...
AvF = ey k=1,...,n
2 -1 0 0
. i . - 1
1 9 _—1 - Eigenvectors: = 71T
1 S . : . kT
- = 0 . - 0 k= = —
A= 3 L vj = sin(kmhj) = sin (n n 1)
: .o =1 2 -1
0 ... 0 -1 2 Eigenvalues: ,
nxn  SPD NE(4) = 7 [1 — cos(kmh)]
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h2
MN(Ry) = 1- 5 M (A) =1 —[1 — coskmh]
km
cosn+ 7 <1, yeres Tl
Jacobi converges for our model problem.
Ryv* = M (Ry)vk
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Since A has a complete set of eigenvectors v*, k=1,...n,

n

Write e® = > ¢ v
k=1
n
el = Re’=3 cp A¥(Ry)v*
k=1
n
e = R e =Y ¢ (W(Ry)) vF
k=1
3.2.1 Example

v*, k-th eigenvector of R;

We consider the situation in which the initial error only contains to modal
components corresponding to k =1 and k = 5.

n=20

The figure below show the evolution of the error for each iteration. The faster
decay of the k = 5 mode can be readily observed.

11
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3.2.2 Convergence rate

SLIDE 29
M (Ry) = cos(kmh), k=1,...n
Largest |\f(Ry)| for k=1,...n
Worst case € = c;v! — e” = ¢; p(Ry)" v!
lle”] r m2h?\"
= ~ 11—
T (cos(mh)) 5
SLiDE 30
2h?
For h small (n large) mh ~ 0 and cos(mh) can be approzimated as 1 — 5
To obtain a given level of convergence; e.g., 1079
lle”| -5
<10
lle°]]
w2h?\" -0 20 26(n+1)?
1- 107 5 7r= ~ -
7 ( 2 ) < " log(1 — m2h%) ™ 72h? 2
z?2
We have used the fact that for x small log(l + ) = x — 5 + 3

- r = 0(n?)

The number of iterations required to obtain a given level of convergence is n>.
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3.2.3 Convergence rate (2D)
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This analysis can be extended to two and three dimensions in a straightforward
manner.
In two dimensions, and for a uniform, n x n, grid,
we have

ot h? 1

MR = 1- s AMA) = 3 [cos(kmh) + cos(€mh)]
Ry) = h) = T h= -1

p(R;) = cos(mh) = cos P =5
Therefore, r = 0(n?)
It is important to note that in 1D, 2D and also in 3D, r = O(n?). This,
combined with the fact that the number of unknowns in 1, 2, and 8D is n, n>
and n3, makes iterative methods potentially attractive for 2, and specially, 3D
problems.
3.3 Gauss-Seidel SLIDE 32

The convergence analysis for the Gauss-Seidel method is analogous to that of
the Jacobi method. The expressions for the eigenvectors and eigenvalues, for the
model problems, can also be found in closed although the procedure is somewhat
more involved.

Rgs = (D — L)_l U
It can be shown (try it !) that
| XE(Ras) = cos?(kmh) = [N (Ry)2< 1|

Gauss-Seidel converges for our problem
The eigenvalues are always positive.
But, Eigenvectors of Rgs # Eigenvectors of A

The eigenvectors v* = {vF}7_, of Rgs are

v}“ = [\/ Mk (Ras)) sin(kmhy)
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These eigenvectors, although not orthogonal, still form a complete basis and can
be used to represent the error components.

SLIDE 33
, n=20
8 °s o o o
j * 2 ° o °
;8 . ‘ Q.0.0-9 o?
‘ ’ m;de I‘(Z
v? (mode k=2) v'® (mode k=15)
3.3.1 Convergence rate
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To obtain a given level of convergence; e.g., 1079
T
Il _ 1
lle]]
(1N g =68 st
2 © 2log(l - Tk2) T w22 T w2
- r = 0(n?)
Same rate as Jacobi, but requires only half the number of iterations.
4 Comparative cost
SLIDE 35
Gauss
Tteration Elimination
1D nxn O(n? n)=0(n?) O(n)

2D n?xn? O(n? n?)=0(n*) O(n*)

3D n3xn? O(n? n®)=0(nd) 0o(n")

red # iters
green cost /iter

Only in 3D, give iterative methods some cost advantage over Gaussian elimina-
tion.
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5 Over/Under Relaxation

5.0.2 Main Idea

Typically
wth = Ru” + f* f* = D7'f Jacobi
f* = (D—L)"'f Gauss-Seidel
Can we “extrapolate” the changes?
't = wRU + )+ (1-w)u"
= wWR+(1-w)]] u" +wf* w>0
(S —
R,

5.1 How large can we choose w?
M(R,) =w M (R)+ (1 —w)

Jacobi ME(Ry) = coskrmh
GS M (Rgs) = cos? krh
= p(R,)<1= 0 < wy < 1 canonlybe

under-relaxed

0 < wags 2 can be over-relaxed

IA

Note 7 Succesive Over-Relaxation (SOR)

Over-relaxed Gauss-Seidel is about a factor of two faster than standard GS but
still requires O(n?) iterations.

The idea of over-relaxation can be used to improve convergence further. If
instead of extrapolating the changes for all the unknowns at the same time, we
extrapolate the change of each unknown as soon as it has been computed, and
use the updated value in subsequent unknown updates we obtain what is called
successive over-relaxation (SOR). In a component form SOR is written as

1 h? .
ut = w §(u§+1+u2f11)+?fz +(1—w)ul .

with 1 < w < 2 and typically w ~ 1.5.
In matrix form SOR can be written as we

utl = (D—-wL) '[(1-w)D+wl)u+wf]
= RSORuT-I-(D—wL)_l.

It can be shown that the spectral radius of Rsor, for our model problem, is
1 — O(h) and hence the number of iterations scales like n rather than n*>. SOR
was very popular 30 years ago. Nowadays, we can do better.
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