lterative Methods:
Multigrid Techniques

Lecture 7



Background

— Developed over the last 25 years — Brandt (1973)
published first paper with practical results.

— Offers the possibility of solving a problem with work
and storage proportional to the number of unknowns.

— Well developed for linear elliptic problems —
application to other equations is still an active area of

research.

Good Introductory Reference: A Multigrid Tutorial, W.L. Briggs,
V.E. Henson, and S.F. McCormick, SIAM Monograph, 2000.
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Basic Principles

1. Multigrid is an iterative method — a good initial
guess will reduce the number of iterations:

to solve A, up = fn Dby iteration, we could take

up ~ usp, Where Agp, usp = fap

but... the number of iterations needed to

solve Ap, up = [ still O(n?) . h=i5
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Basic Principles

2. If after a few iterations, the error is smooth, we could
solve for the error on a coarser mesh, e.g Ay esp, = rap.

—Smooth functions can be represented on coarser
grids;

—Coarse grid solutions are cheaper.
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Basic Principlcs IR

If the high frequency components of the error decay
faster than the low frequency components, we say that
the iterative method is a smoother.
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Basic Principles

6 8 10 14 0
mode k

2 4 16 18 2
vz mode k=2 — v15 mode k=15
n=19

Is Jacobi a smoother? ..— NO
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Basic Principles m

RwJ:wRJ—I—(l—w)I

®=1.1 "')‘

{(UNSTABLE)

ANe(Ru3) = wA*(Ry) + (1 —w) =1—-w(1—-A(R3)),
k=1,...,n
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Basic Principles m

lterations required to reduce an error mode by a factor of 100
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Basic Principles

Recall,

8 8 1C

o 12 14 18 18 20
mode k

V2 {mode k=2) n=19 v'3 imode k=15)

(O

Is Gauss-Seidel a good smoother?
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Basic Principles m

lterations required to reduce an A error mode by a factor of 100
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... GS Is a good smoother.
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Basic Principles

Given w;, we obtain ws; by restriction

_ 71h
Wopn = IZh wp

I : restriction operator (matrix).

Simplest procedure is injection

_ - nn—1
th’i_wh,Zi forz e 1,...,7
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Basic Principles

Intuitively,
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Basic Principles

If we write v®: eigenvectors of A

T
w, = > ¢ v"
k=1

—1
Only the modes k = 1,...,"

are “visible” by grid 2h.

“‘visible” by grid 2h aliased
g n—1 nn+1 A
1, 2, LR 9 s 0o s o n - 1, n

2 7 2
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Basic Principles

2nd Eigenvector (n=19) ) 1 Bth Eigenvec1or (n=139)

-4 ) 0 B 4 3
0 02 04, 06 08 1 0 02 04 06 08 1

¥ M

2nd Eigenvector (n=9) ] 2nd Eigenvector (n=9)

-1 = | B
0 02 04 06 08 1 o 02 04 06 08 A1

Mode k > (n — 1)/2 on grid h becomes (n — k) mode on grid 2h.
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Basic Principles

—Only low modes in h can be represented well in 2h.

—Low modes on h become higher modes in 2h.

B —1 n—1 n+1

2 2 "
HIGH grid h

o on
"
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_ - Prolongation
Basic Principles

Given wsq; we obtain w;, by prolongation

— T2h
wp — Ih Waop,

I?": prolongation operator (matrix).

N1

Typically, we use interpolation. i=1,..., 01
Wh,2i = W3h,i
1
Wh,2i+1 — 3 (th,i + th,,z'-|-1)
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_ - Prolongation
Basic Principles
2"7&—/&

WAt
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: - Interpolation Error
Basic Principles

02 03 04 05 06 07 08 09

Interpolation error

02 03 04 05 06 07 08 09 1

Interpolation introduces high frequency errors.
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Two Grid
(Correction) Scheme

One cycle u, ™ MG(ub, fr)
— Relax v iterations of A, up = f, with initial guess
r+1/3
u; — U, .

—Compute r,, = f — Apu T3

—Solve Ajp, eap, = 725 0N 2h.
2 1
— Prolongate e}, = I" e3,, and correct u” /3 = ’u,;_" B tepn

— Relax vs iterations of Ay up = fp with initial guess

T—|—2/3 r+1
u, — U u, .

. and restrict rop, = 12, 7y,
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moarid [

(Correction) Scheme

We solve u(0) =u(l) =0
—Ugy = —25(sin(57x) + 9sin(157x)) .

Initial guess: u® =0

Solution: v = sin(57rx) + sin(157x)

1 1

T | h - h=—, 2h = —
wo grid scheme: h 32’ h T:

Solve using under-relaxed Jacobi with w = 2
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Two Grid
(Correction) Scheme

Initial condition

Solution
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moarid [

(Correction) Scheme

After 1y = 2 iterations on the fine mesh
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moarid [

(Correction) Scheme

After coarse grid correction (4 iterations)
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moarid [

(Correction) Scheme

After o = 2 post smoothing iterations (end of cycle 1)
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moarid [

(Correction) Scheme

After v; = 2 iterations
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moarid [

(Correction) Scheme

After coarse grid correction
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moarid [

(Correction) Scheme

After v, = 2 iterations (end of cycle 2)
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moarid [

(Correction) Scheme

Mutligrid convergence vs. single grid

- - Weighted Jacobi, m=2/3
Zlevel multigrid: v1:2_, v.=2

10 15
# lterations
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Multiple Grids

One cycle wu, < VGr(ul, fn)

—Relax v times on A, u;, = f;, W|th initial guess
r+1/3
uh % h "
—If h = coarsest grid, go to (SKIP)
Else ron < I (fn — Ap ut1/3)
Eop VGZh(O,‘T‘zh) .

—Correct u[t?/? = u[ T3 4 12 ey,
— (SKIP) Relax v, times on Ay up, = f, with initial

r+2/3 r+1
guess u,, — Uy, -
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Multiple Grids m
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V-Cycle

Multiple Grids
2D Example...

Solve

—(ugy + uyyy) =1, e €2 = unit square

u—=20 on the boundary
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Multiple Grids

Parameter dependence

075 08 085 DB
w
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Multiple Grids m

Convergence as a function of grid levels (same fine mesh)

-- 2levels
3 levels

— 4 |levels
5 levels

-- Blevels

# |terations
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Multiple Grids m

Convergence as a function of grid levels (same coarse mesh)

--- 4levels
5 levels
—— 6B levels
7 levels

) 10 12 14 18 18 20
# lterations
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Multiple Grids
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Full Multigrid Schematically

Scheme

Putting it all together . ..
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More Advanced Topics

— Anisotropic grids/equations.
— Algebraic multigrid.
— Convergence theory.

— How to deal with other operators.
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