Iterative Methods:

Multigrid Techniques

Lecture 7

Background

- Developed over the last 25 years Brandt (1973)
 published first paper with practical results.
- Offers the possibility of solving a problem with work and storage proportional to the number of unknowns.
- Well developed for linear elliptic problems —
 application to other equations is still an active area of
 research.

Good Introductory Reference: *A Multigrid Tutorial*, W.L. Briggs, V.E. Henson, and S.F. McCormick, SIAM Monograph, 2000.

Some ideas

Basic Principles

1. Multigrid is an iterative method \rightarrow a *good initial* guess will reduce the number of iterations:

to solve $A_h \, u_h = f_h$ by iteration, we could take $u_h^0 \sim u_{2h},$ where $A_{2h} \, u_{2h} = f_{2h} \, \ldots$

but . . . the number of iterations needed to $\mathsf{solve}\ \pmb{A_h}\ \pmb{u_h} = \pmb{f_h}\ \mathsf{still}\ \pmb{O(n^2)}\ . \qquad \pmb{h} =$

Some ideas

Basic Principles

- 2. If after a few iterations, the error is smooth, we could solve for the error on a coarser mesh, e.g A_{2h} $e_{2h} = r_{2h}$.
 - Smooth functions can be represented on coarser grids;
 - Coarse grid solutions are cheaper.

Smoother

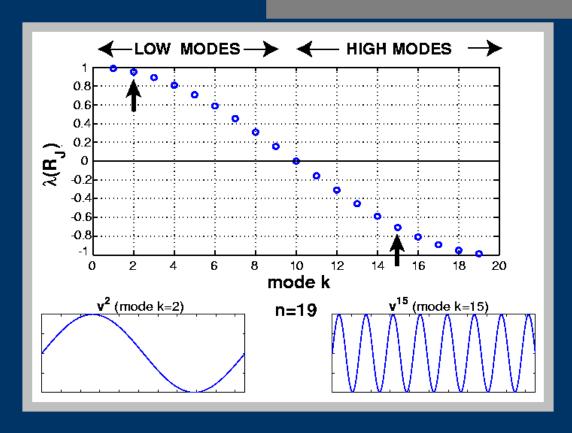
Basic Principles

If the *high frequency* components of the error decay faster than the *low frequency* components, we say that the iterative method is a *smoother*.

Smoother

Basic Principles

Jacobi

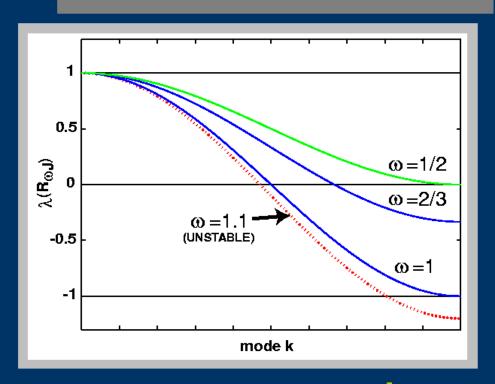


Is Jacobi a smoother?

Smoother

Under-Relaxed Jacobi...

$$R_{\omega
m J} = \omega R_{
m J} + (1-\omega)~I$$

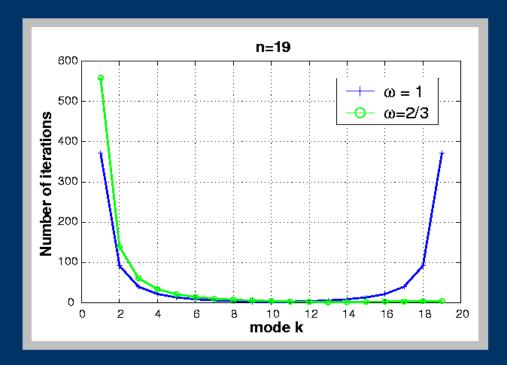


$$\lambda^k(R_{\omega \mathrm{J}}) = \omega \lambda^k(R_{\mathrm{J}}) + (1-\omega) = 1-\omega(1-\lambda^k(R_{\mathrm{J}})) \; , \ k=1,\ldots,n$$

Smoother

...Under-Relaxed Jacobi

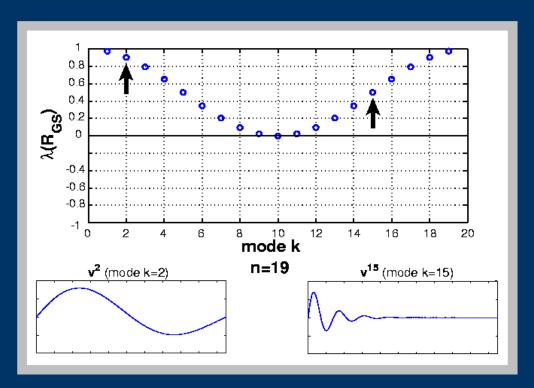
Iterations required to reduce an error mode by a factor of 100



Smoother

Gauss-Seidel...

Recall,



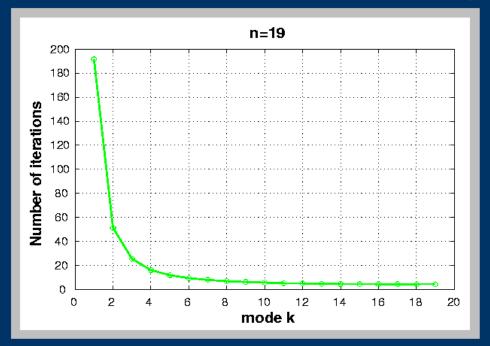
Is Gauss-Seidel a good smoother?

Smoother

Basic Principles

...Gauss-Seidel

Iterations required to reduce an A error mode by a factor of 100



... GS is a good smoother.

Basic Principles

Given w_h we obtain w_{2h} by restriction

$$oldsymbol{w_{2h}} = oldsymbol{I_{2h}^h} oldsymbol{w_h}$$

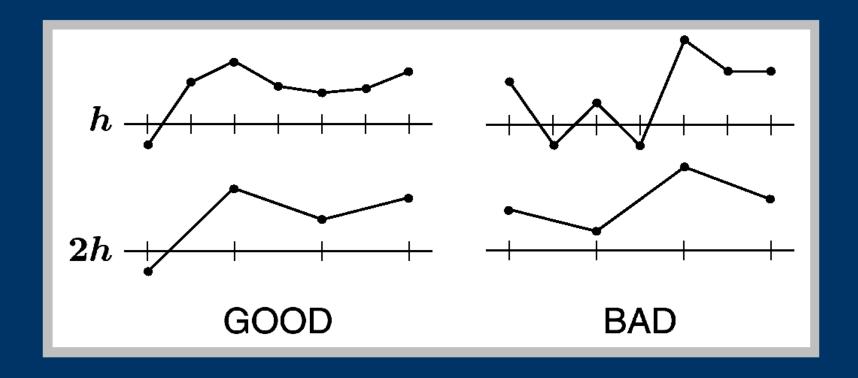
 I_{2h}^h : restriction operator (matrix).

Simplest procedure is injection

$$oldsymbol{w}_{2h,i} = oldsymbol{w}_{h,2i} \quad ext{ for } oldsymbol{i} = 1,\dots,rac{n-1}{2}$$

Basic Principles

Intuitively,



Basic Principles

If we write

 v^k : eigenvectors of A

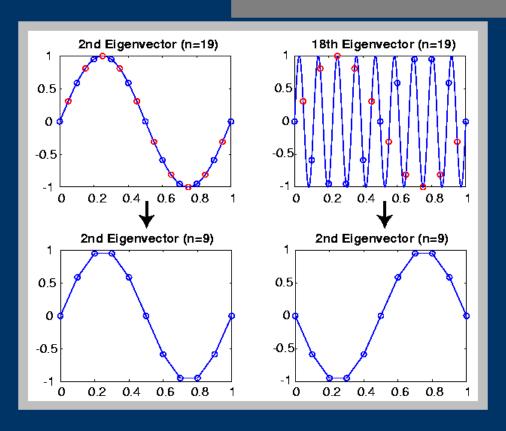
$$w_h = \sum\limits_{k=1}^n \, c_k \, v^k$$

Only the modes $k = 1, \dots, \frac{n-1}{2}$ are "visible" by grid 2h.

"visible" by grid
$$2h$$
 aliased $1,2,\ldots,rac{n-1}{2},rac{n+1}{2},\ldots,n-1,n$

Restriction

Aliasing

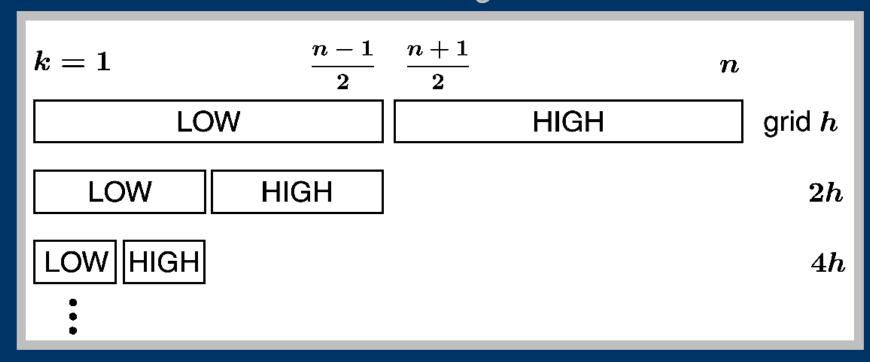


Mode k > (n-1)/2 on grid h becomes (n-k) mode on grid 2h.

Basic Principles

Summary

- -Only low modes in h can be represented well in 2h.
- -Low modes on h become higher modes in 2h.



Prolongation

Basic Principles

Given w_{2h} we obtain w_h by prolongation

$$oldsymbol{w_h} = oldsymbol{I_h^{2h}} oldsymbol{w_{2h}}$$

 I_h^{2h} : prolongation operator (matrix).

N1

Typically, we use interpolation.

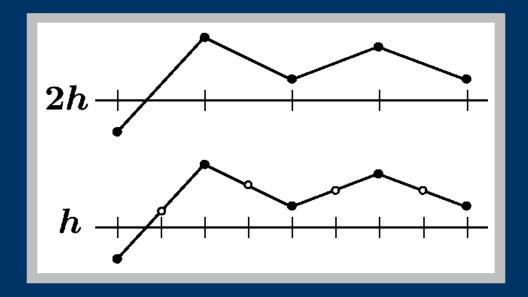
$$i=1,\ldots,rac{n-1}{2}$$

$$w_{h,2i}=w_{2h,i}$$

$$w_{h,2i+1} = \frac{1}{2} \left(w_{2h,i} + w_{2h,i+1} \right)$$

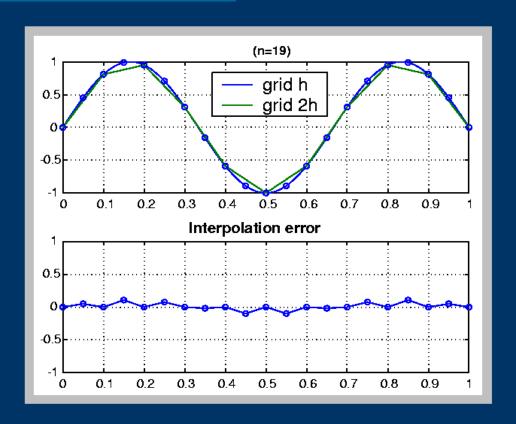
Prolongation

Basic Principles



Interpolation Error

Basic Principles



Interpolation introduces high frequency errors.

One cycle

$$oldsymbol{u}_h^{r+1} \leftarrow MG(oldsymbol{u}_h^r, oldsymbol{f}_h)$$

- $-Relax \, m{
 u_1}$ iterations of $m{A_h} \, m{u_h} = m{f_h}$ with initial guess $m{u_h^r}
 ightarrow m{u_h^{r+1/3}}$.
- -Compute $r_h = f A_h \, u_h^{r+1/3}$, and restrict $r_{2h} = I_{2h}^h \, r_h$.
- -Solve A_{2h} $e_{2h} = r_{2h}$ on 2h.
- Prolongate $e_h = I_h^{2h} e_{2h}$, and correct $u_h^{r+2/3} = u_h^{r+1/3} + e_h$.
- $-Relax \, m{
 u_2}$ iterations of $m{A_h} \, m{u_h} = m{f_h}$ with initial guess $m{u_h^{r+2/3}}
 ightarrow m{u_h^{r+1}}.$

Example

We solve

$$u(0)=u(1)=0$$

$$-u_{xx} = -25(\sin(5\pi x) + 9\sin(15\pi x))$$
 .

Initial guess: $u^0 = 0$

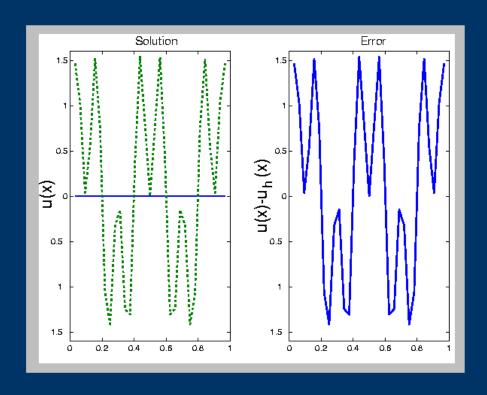
Solution: $u = \sin(5\pi x) + \sin(15\pi x)$

Two grid scheme: $h = \frac{1}{32}$, $2h = \frac{1}{16}$

Solve using under-relaxed Jacobi with $\omega = \frac{2}{3}$

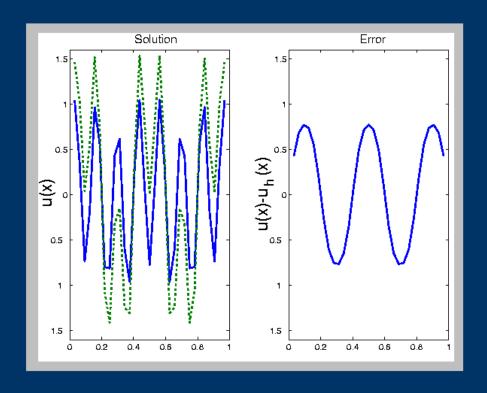
Example

Initial condition



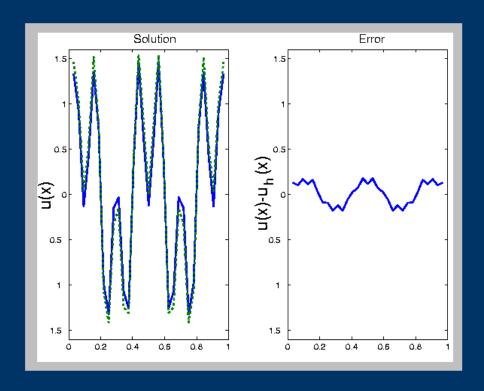
Example

After $\nu_1 = 2$ iterations on the fine mesh



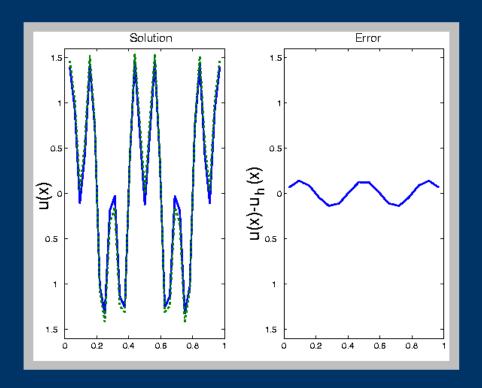
Example

After coarse grid correction (4 iterations)



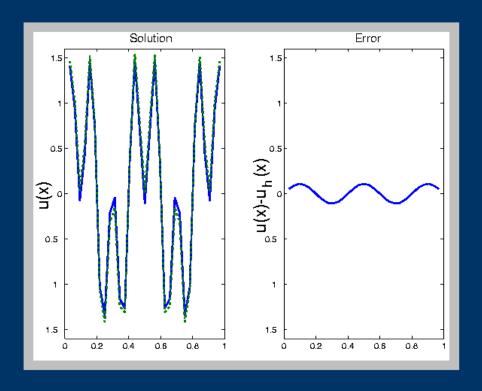
Example

After $\nu_2 = 2$ post smoothing iterations (end of cycle 1)



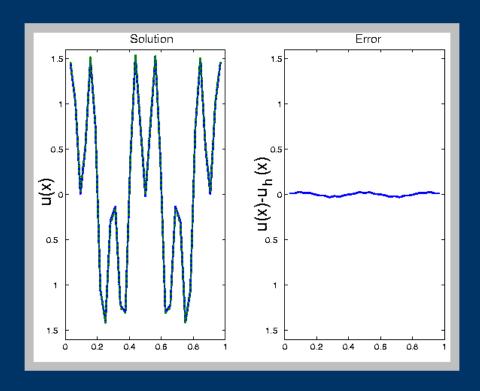
Example

After $\nu_1 = 2$ iterations



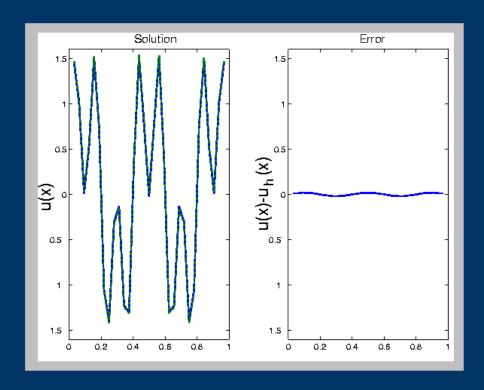
Example

After coarse grid correction



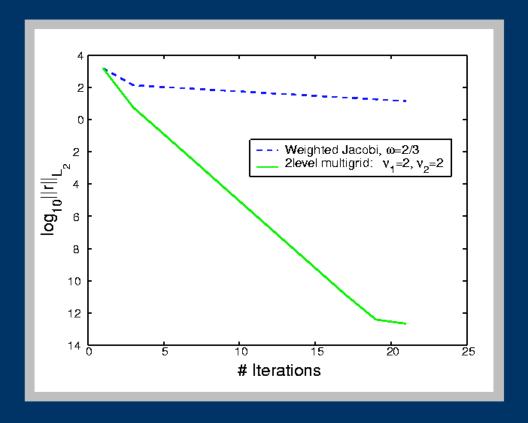
Example

After $\nu_2 = 2$ iterations (end of cycle 2)



Example

Mutligrid convergence vs. single grid



V-Cycle

Multiple Grids

One cycle

$$oldsymbol{u}_h^{r+1} \leftarrow VG_h(oldsymbol{u}_h^r, oldsymbol{f}_h)$$

- -Relax v_1 times on $A_h u_h = f_h$ with initial guess $u_h^r \to u_h^{r+1/3}$.
- If $h \equiv$ coarsest grid, go to (SKIP)

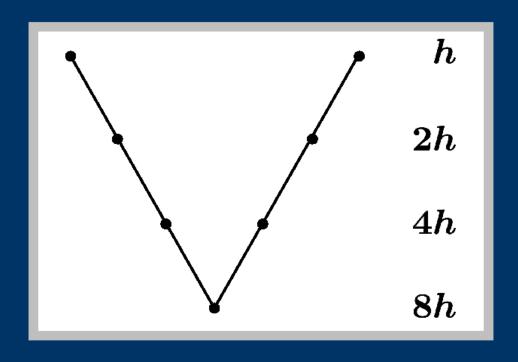
$$m{r_{2h}} \leftarrow m{I_{2h}^h}(m{f_h} - m{A_h}\,m{u^{r+1/3}})$$

$$e_{2h} \leftarrow VG_{2h}(0,r_{2h})$$
 .

- -Correct $u_h^{r+2/3} = u_h^{r+1/3} + I_h^{2h} e_{2h}$.
- -(SKIP) Relax ν_2 times on $A_h u_h = f_h$ with initial guess $u_h^{r+2/3} \to u_h^{r+1}$.

V-Cycle

Schematically



V-Cycle

2D Example...

Solve

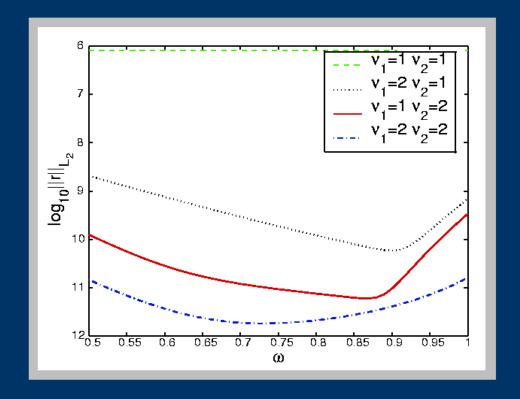
$$-(u_{xx}+u_{yy})=1, \qquad \in \Omega \equiv$$
 unit square

u = 0 on the boundary

V-Cycle

...2D Example...

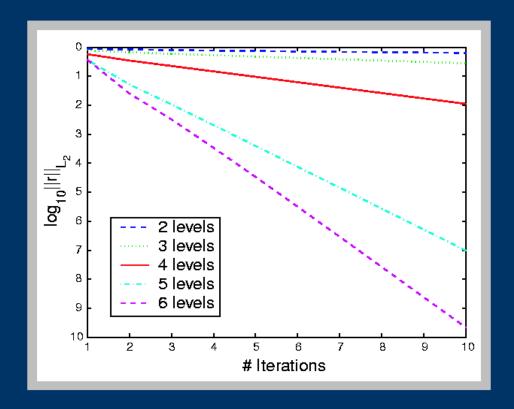
Parameter dependence



V-Cycle

...2D Example...

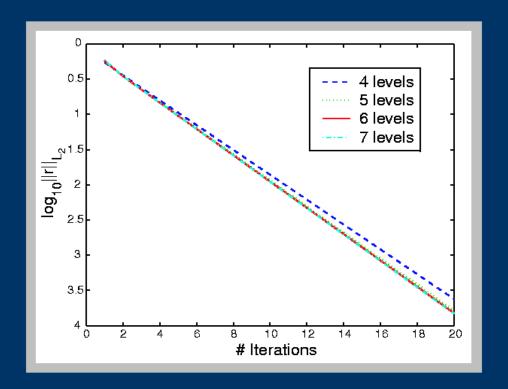
Convergence as a function of grid levels (same fine mesh)



V-Cycle

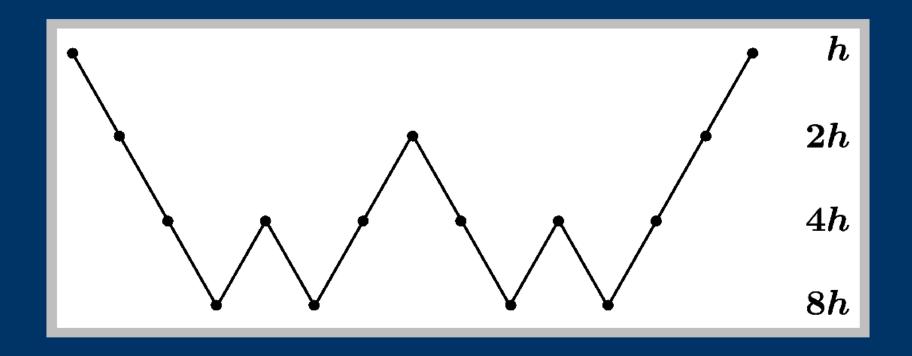
...2D Example

Convergence as a function of grid levels (same coarse mesh)



W-Cycles

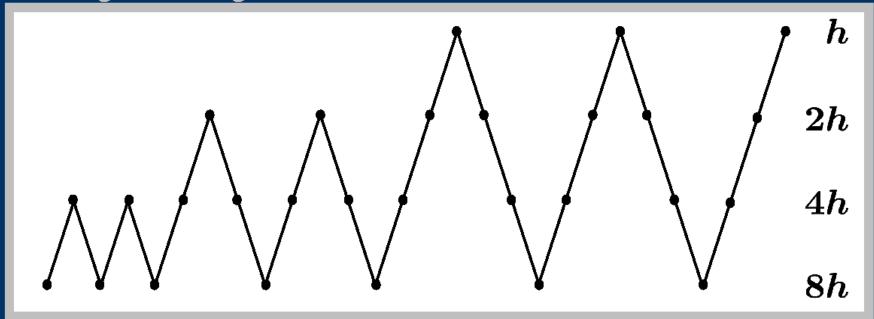
Multiple Grids



Full Multigrid Scheme

Schematically

Putting it all together ...



More Advanced Topics

- Anisotropic grids/equations.
- Algebraic multigrid.
- Convergence theory.
- How to deal with other operators.