[terative Methods:
Multigrid Techniques

Lecture 7



1 Background

— Developed over the last 25 years — Brandt (1973) published first paper
with practical results.

— Offers the possibility of solving a problem with work and storage propor-
tional to the number of unknowns.

— Well developed for linear elliptic problems — application to other equa-
tions is still an active area of research.

Good Introductory Reference: A Multigrid Tutorial, W.L. Briggs,
V.E. Henson, and S.F. McCormick, STAM Monograph, 2000.

2 Basic Principles

2.1 Some ideas

We will use, once again, the one dimensional problem to illustrate the basic
principles of multigrid methods. The ideas presented can be readily extended to
multiple dimensions. First, however, we will review some simple facts about
iterative methods seen in the last lecture and develop some ideas to accelerate
the iterative process.

1. Multigrid is an iterative method — a good initial guess will reduce the
number of iterations:

to solve Apup = f, Dby iteration, we could take

u) ~ usp, where Aoy usp = fop

Here Ap, wn and f, denote the matriz, vector of unknowns, and force
vector, respectively, that results from discretizing our model problem on
a grid of size h. u) ~ wop means that the initial guess for the iterative
process on grid h is “approzimated” from the solution of the problem on
a grid of size 2h. We use the word approzimate because up and usp are
vectors that have different lengths. We shall see later how this approxi-
mation is carried out. It is clear that the procedure outlined is recursive;
that is, the problem on the grid 2h can also be solved by iteration, with an
initial guess provided by solving Aspusn, = fyy,, etc .... We point out that
iteration on coarser meshes is cheaper because n is smaller, and therefore
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there is less work per iteration; and because fewer iterations are required,
i.e. n is smaller.

but ... the number of iterations needed to

solve Ay, up, = f, still O(n?) . h=oh

Since some smooth components of the error will still remain.
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2. If after a few iterations, the error is smooth, we could solve for the error
on a coarser mesh, e.g Asp €ap, = Tap.

A good idea because:

— Smooth functions can be represented on coarser grids;

— Coarse grid solutions are cheaper.

This idea is in fact the central idea of multigrid techniques. In order to turn
this idea into a practical algorithm, several ingredients will be required.

2.2 Smoother SLIDE 4

If the high frequency components of the error decay faster than the low frequency
components, we say that the iterative method is a smoother.

2.2.1 Jacobi
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We see that p(Ry) = |[A"(Ry)| = |A\'(Ry)| and, since n is the highest frequency
mode, it is clear that Jacobi is not a smoother.

2.2.2 TUnder-Relaxed Jacobi

w=1/2

R, =wRJ+(1—w)I = T 0=2/3

-0.5 (LINSTAE.LE)

mode k

M(Ruy) = wA¥(Ry) + (1 —w) =1—-w(1 - M(Ry)),

We observe that for w < 1, Jacobi can in fact be a good smoother. If we set
the condition |\"t1/2(R,;)| = |A"(R.y)|, we obtain w = 2/3. We also note
that for w > 1 the method becomes unstable (does not converge) since for some
k, [\¥(Ry3)| > 1. In some sense, the price to be paid for Jacobi to be a good
smoother is a slow down in convergence of the low frequency modes.

Tterations required to reduce an error mode by a factor of 100

n=19

—— o=1] |
®=2/3

Number of iterations
g

o 2 4 6 8 10 12 14 16 18 20
mode k

The graph shows the number of iterations required to reduce the the amplitude
of each error mode by a factor of 100. We see that the standard Jacobi (w = 1)
algorithm, requires many iterations to eliminate the highest frequency modes.
On the other hand, the under-relaxed Jacobi scheme, eliminates the high modes
very quickly, but on the other hand, the low frequency modes take longer, than
with standard Jacobi, to disappear. We shall see that this slow down in the
convergence of the low frequency modes is not really a problem and that, by using
coarser meshes, we will be able to speed up the convergence of these modes.

2.2.3 Gauss-Seidel
Recall,
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Is Gauss-Seidel a good smoother?

Since the eigenvectors of Rgs and A do not coincide, there is little we can say
about the smoothing properties of Gauss-Seidel by looking at the eigenvalues of
the iteration matriz.

Tterations required to reduce an A error mode by a factor of 100

n=19
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...GS is a good smoother.

By looking at the number of iterations required to reduce the amplitude of each
mode, of the A matriz, by a factor of 100, we can determine the smoothing
properties of the Gauss-Seidel scheme. It turns out that based on the above
graph, the high frequency modes do in fact decay at a much faster rate than the
low frequency ones.

2.3 Restriction

We shall require procedures for transferring information between grids. The
process of transferring a vector from a fine to a coarse mesh is called restriction.

Given wp we obtain wsp by restriction
h
wap = Iy wp
I} restriction operator (matrix).
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Simplest procedure is injection

. -1
Waop,; = Wh,2; fori=1,...,7%5

We shall assume, for simplicity, that n + 1 is an even number. Restriction by
injection reduces to taking the components of wop to be the components of wy,

at every other point. We will see later that other forms of restriction can also
be used.

Intuitively,

4
:/ T
GOOD BAD

h
2h

If the solution is “smooth”, the restricted function is a good approximation to
the original grid function on the fine mesh. On the other hand, we see that

for an “oscillatory” function, a lot of information is lost during the restriction
operation.

The concept of “smooth” or “oscillatory” function can be made more precise.

If we write v*: eigenvectors of A
n

wp = Z Cr U
k=1

k

Only the modes k = 1, ..., ~

are “visible” by grid 2h.

“visible” by grid 2h aliased

I N ~N

n—1 n+1
2’ 2 7

1,2,...,

L,n—1n
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2.3.1 Aliasing

SLIDE 13
2nd Eigenvector (n=19) s 18th Eigenvector (n=19)
2nd Eigenvector (n=9) | 2nd Eigenvector (n=9)
Mode k > (n — 1)/2 on grid h becomes (n — k) mode on grid 2h.
The effect of restricting a solution which has significant high frequencies can
have very negative effects, since high modes on h may appear as low modes on
2h and hence exhibit slow convergence.
2.3.2 Summary
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— Only low modes in h can be represented well in 2h.
— Low modes on h become higher modes in 2h.
Hence having o faster convergence rate.
_ n—1 n+1
k=1 T2 2 n
| LOW || HIGH grid h
[ ow | HGH | 2h
HIGH 4h
2.4 Prolongation
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The process of transferring a vector between a fine and a coarse mesh is known
as prolongation.

Given wasp, we obtain wy by prolongation
2
wy, = I woy,

I?h: prolongation operator (matrix).



Typically, we use interpolation. i=1,..., %
Wh,,24 W2h,i
Wh,2i+1 = % (wan,; + Wan,it1) 5 16
LIDE
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Note 1 Galerkin Formulation

If the restriction and prolongation matrices satisfy
I = e(I3)"

for a constant ¢, the method is said to have the variational property. Thisisa
property that facilitates some of the theoretical convergence proofs for multigrid
methods. However, other simpler choices, like the ones considered above, can
also work well in practice.

Consider, for illustration purposes, that the fine grid A has n = 7 points, and
the coarse grid 2h has n = 3 points. The prolongation operator can be written

as

1
Iih Waop = 5

The corresponding restriction operator is usually referred to as a full weighting
operator and has the form

1
Iy wy, = 1

Just for completeness we give here the Galerkin prolongation and full weighting
restriction operators in two dimensions. If wsp = Ié‘h wp, the components of
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woy, are given by

Wh 252§ = W2hi,j )
Wh 2i4+1,25 = §(w2h ij F Wan it1,5) "ol
1 r 1 <i,5 < 5
Wh 2i,2j+1 = §(w2h i,j T Wap z’,j+1)
Wh2i41,2j41 = Z(w2h ij T Wahit1,j + Wanijt1 + Wanit1j+1)
and for wy, = I,%h wsy, the components of wyy, are
1
Wap i = 16 [Wh 2i—1,2j—1 + Wh 2i—1,2j4+1 + Wh 2i41,2j—1 + Wh 2i41,2j+1
+ 2(wy, 24,2j—1 + Wh 24,25+1 + Wh 2i—1,25 + Wh 2i+1,2j) + 4wy, 21’,2,‘] >
n—1
1<4,57<
<1,) S D)
2.5 Interpolation Error
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When direct injection is used, the restriction of a low mode introduces no error.
That is, a low mode k, on grid h, becomes mode k on grid 2h. On the other hand,
the prolongation operator introduces errors which contain high frequencies.

(n=19)

— gridh
— grid 2h

0 0.1 02 03 04 05 06 07 08 09 1
Interpolation error

[ e e Y W i 4 anae

0 01 02 03 04 05 06 07 08 09 1

Interpolation introduces high frequency errors.

We observe from the figure that, the mode k = 3 on grid 2h, produces after pro-

longation, the mode k = 3 on grid h plus a small, but important, high frequency
error.



3 Two Grid (Correction) Scheme
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One cycle wi T MGul, f))
— Relaz vy iterations of Ay u), = f, with initial guess uj, — u2+1/3.
r+1/3 . h
— Compute rp = f — Ap u, , and restrict rop, = I3, Th.
— Solve Asp, esp, = 1o, on 2h.
~ Prolongate ey, = I2" ea,, and correct u2+2/3 = u2+1/3 +ep.
— Relaz v iterations of Ap up = f;, with initial guess u,:+2/3 —upth
Above we describe one cycle of a two grid correction scheme. The inputs are an
initial guess u},, and a forcing vector f,. The output is the new approzimation
to the solution u2+1. Here, any of the relaxation, restriction, and prolongation
schemes described, can be used.
We recall the equivalence between solving for Awup, = f, or Aep, = ry. It
turns out that writing the coarse grid correction in terms of the error leads to o
simpler and more straightforward formulation.
vy and ve are usuolly referred to as the number of pre-and post-smoothing iter-
ations, respectively.
3.1 Example
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We solve u(0) =u(1) =0
—Ugy = —25(sin(5mz) + 9sin(157z)) .
Initial guess: u® =0
Solution: u = sin(57z) + sin(157x)
1 1
Two grid scheme: h = —, 2h = —
wo st o 32’ 16
Solve using under-relaxed Jacobi with w = %
SLIDE 20
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The error is made up of two components: sin(5mwx) which is a low mode on the
fine mesh, and a low (but not so low) mode on the coarse mesh. On the other
hand, sin(157z) is a low mode on the fine mesh and a high mode on the coarse
mesh. The next figures, show the evolution of the error and the solution through
the multigrid process.
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After v; = 2 iterations on the fine mesh
After three smoothing iterations the high error mode has been eliminated. The
low error mode has suffered little change.
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After coarse grid correction (4 iterations)

Solution Error

2 U )

After the coarse grid correction, the low mode has been substantially reduced,
but now, some new high modes have been introduced through the interpolation
process.

10



After vo = 2 post smoothing iterations (end of cycle 1)

Solution

Error

0 0z 0s 05 o8 1

The high modes have now been reduced.

After v; = 2 iterations

Solution

0z o4 08 o8 1

Error

0z o4 os o8

Solution

02 o4 05 o8 1

Error

0 02 04 05 08 1

After vo = 2 iterations (end of cycle 2)

Solution

02 0s 05 o8 1

Error

92 o4 05 08

11

0z o+ os 08 1
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We see that the second cycle is analogous to the first cycle, and that, after only
two cycles, the solution is almost converged.

Mutligrid convergence vs. single grid

- Weighted Jacol
__ 2level multigrid:

14 10 1 T 5
# lterations

This figure illustrates the much faster convergence obtained using the multigrid
procedure. The convergence level is shown versus the number of iterations on
the fine mesh. One can think of the number of iterations in the fine mesh, as
being approzimately proportional to the amount of computational work involved.

4 Multiple Grids

4.1 V-Cycle

The two grid scheme presented above leaves unresolved the question of how to
solve for esp, in the coarse mesh. The answer comes from realizing that the
problems Ap up, = f, and Asp ean, = rop, look exactly the same and hence the
same procedure can be used to solve them.

One cycle U;TlJrl + VGi(up, fi)

. 1 e 1
— Relax vy times on Ay up = f), with initial guess u} — uZJr 73

— If h = coarsest grid, go to (SKIP)

Else ron, < IN(fn — Ap u™t1/3)
es, — VGan(0,72p) .

2/3 1/3
— Correct u,:+ 13— u:f / + I?h egp.

— (skrp) Relax vy times on Ay up, = f, with initial guess u;+2/3 — u};“.
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The step eap, + VG2r(0,721), means that we recursively invoke the procedure
V@G, but now to solve Aapean, = rop with an initial guess €® = 0. Within Vay, we
will invoke Vyy, to solve Aspesp, = Tap = If,’; (ran, — Aap €ap), ete.. This process
will continue until we reach the coarsest mesh, at which point we will only do
vy + vo smoothing iterations and prolongate down the resulting solution. This
V-cyle is illustrated below for four grids.

4.1.1 Schematically

2h
4h

8h

4.1.2 2D Example

Solve
—(Ugz + Uyy) =1, € Q = unit square

u=0 on the boundary

Parameter dependence

log, ol

5055 06 085 07 075 08 08 00 035
@

In order to determine the optimum combination of parameters some experimen-
tation is often needed. The figure shows the residual reduction after 10 complete
V-cycles, using 6 grids. The finest grid has 64 x 64 intervals. We see that the
optimum value of w depends on the number of pre- and post-smoothing itera-
tions. We also observe that for vi = vy = 1, the algorithm does not converge.
Can you explain why?
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Convergence as a function of grid levels (same fine mesh)

log,lirl,
P S S

-- 2levels
3 levels
— 4levels
5 levels
-- 6levels

1 2 3

In this plot we show the convergence for 10 V-cycles of the multigrid algorithm,
keeping a constant fine mesh of 64 x 64. We see that the more grids we consider
the faster the convergence, as expected. We are using w = 0.8 and v; = 2,

1/2:1.

Convergence as a function of grid levels (same coarse mesh)

7

# Iterations

1og, i,

-- 4levels
5 levels
— 6levels
7 levels

2 4

This figure illustrates the fact that the convergence rate is determined by the
coarsest mesh. FEssentially this observed behaviour proves that the number of
iterations is independent of the number of grid points, provided sufficient coarse
meshes are considered, and hence the overall algorithm has a cost which is O(n).
For this example, we are using w = 0.8 and v1 =2, vy = 1.

4.2 W-Cycles

5 0 1z 14 16 18
# Iterations
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2h

4h

8h
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Other types of cycles are also possible. The objective of W -cycles is to concen-
trate much of the work on the coarse meshes.

5 Full Multigrid Scheme

5.1 Schematically
Putting it all together ...

So far we have only used one of the main ideas involved in multigrid. The
idea of starting with a good initial guess has not been implemented yet. This is
accomplished with the full multigrid scheme.

6 More Advanced Topics
—  Anisotropic grids/equations.
— Algebraic multigrid.
— Convergence theory.

— How to deal with other operators.

The above are some topics which are the subject of active research and which
are beyond the scope of this lecture. In particular, algebraic multigrid methods
are gaining increased popularity because of their potential as a general equation
solver. Here, we have assumed that our matrix was the result of discretizing a
PDE on a given grid of size h. In this setting, it is straightforward to define
the coarse grid problems. If our equation system, Au = f, does not come
from the discretization of a PDE, or the discretization process is not available,
the procedures given in this lecture can not be used directly. Dealing with such
general systems, without requiring information about the discretization process,
is the subject of algebraic multigrid methods.
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See [BHM] for further details.
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