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1 Motivation

The Poisson problem has a strong formulation;
a minimization formulation; and a weak formulation.

The minimization/weak formulations are more general than the strong
formulation in terms of regularity and admissible data.

The minimization/weak formulations are defined by: a space X; a bilinear
form a; a linear form £.

e The minimization/weak formulations identify

ESSENTTAL boundary conditions,
Dirichlet — reflected in X;

NATURAL boundary conditions,
Neumann — reflected in a, £.

The points of departure for the finite element method are:
the weak formulation (more generally);

or
the minimization statement (if a is SPD).

2 The Dirichlet Problem

2.1 Strong Formulation

Find w such that

in
onT’

2
—Vu =
u =

SR

The boundary condition u = 0 is denoted “homogeneous Dirichlet.” We consider
Neumann boundary conditions (g—z imposed) in Section 3, and inhomogeneous
Dirichlet boundary conditions in Section 4.

where
8? 0?2
2 -_— — —_—
V= Oox? + Oy

and Q is a domain in R? with boundary T.
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In general, we require that Q be “Lipschitzian.” We recall that a function of
(say) one variable, w, satisfies a Lipschitz condition if there exists a constant
K such that |w(z) — w(y)| < K|z — y| for all z,y of interest. A domain Q is
Lipschitzian if the boundary ' at any point admits a locally Lipschitzian repre-
sentation — it can’t be too wiggly or singular. Note also that, unless otherwise
indicated, we will be speaking of open domains Q (e.g., Q = (0,1), which does
not include 0 and 1); the closure of such a domain will be denoted Q (e.g.,
Q2 =[0,1]).

2.2 Minimization Principle

The finite element method is not based on the strong form, but rather a min-
imization statement or, more generally, a weak formulation. We must thus
develop and understand these formulations before proceeding with the finite ele-
ment method.

2.2.1 Statement
Find

u = arg glelgl( J(w)

where

X = {v sufficiently smooth | v|p = 0},

X here is a linear space, the precise definition of which will be given shortly; we
shall also make “sufficiently smooth” precise during the course of this lecture.

and
1
J(w)_§/QVu1]1:J-FdeA—/wadA.
Note 1 Notation

We explain here some of the notation that we will be using. First arg min
means “the argument that minimizes,” that is, the minimizer (as opposed to
the minimum). The symbol € means “in the set (or space) of”; C means “a
subset or subspace of”; V means “for all”; 3 means “there exists”; | (and s.t.)
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means “such that.” Also, |J and [ indicate “union” and “intersection,” and \
means “set minus” (i.e., A\ B is A with B removed).

Note 2 Functionals

A functional takes as input a member of a set or space (here X), and returns
a scalar. We summarize this in the case above as J: X — IR, which means
J takes as input a member of X, and yields as output a real number. More
generally, the notation W: X — Y means that W is a function (or application)
from X, the input (domain) space, to Y, the output (range) space; if Y is R,
W is a functional.

In words:
Over all functions w in X,
u that satisfies

-Vu = f in Q
u = 0 onT
makes J(w) as small as possible.

We give a geometric picture in the next lecture — J(w) is an infinite dimensional
paraboloid, the bottom of which occurs at w = u and takes on the value J(u).

Note 3 Physical interpretation

There are many cases in which this minimization principle (also known as
the Dirichlet principle) has a meaningful and intuitive significance — often an
“energy statement.” For example, if u is a velocity potential for incompress-
ible flow, then (say for f = 0 and inhomogeneous Dirichlet conditions — see
Section 4) J(w) is the kinetic energy, and minimizing J thus corresponds to
minimizing energy. However, there are also cases (e.g., if u is temperature) in
which a physical interpretation is rather strained, more of an a posteriori jus-
tification than any particularly useful perspective. For our purposes here we
need only the mathematical properties of the minization principle; the physical
interpretation is not central.

2.2.2 Proof
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Let w =u +v.
Then

Jt\u,_ﬂ— v ) = %/QV(u+v)-V(u+v)dA

—/Qf(u+v)dA.

Note u|r = v|r = 0, which ensures that w|r = 0, and hence is a member of X.
Recall that w|r means w restricted to I', that is, evaluated on I'.

Ju+v) = %/QVu-VudA—/qudA J(u)

+/ Vu-VvdA—/ fvdA 0J,(u)
Q Q

first variation

1
+§/ Vv -VvdA >0forv#0
Q

We can think of J(u+v) as a “Taylor” series about u. Since J is only quadratic,
it is not surprising that J(u+v) contains a constant term, a linear (inv) term (a
“gradient”), and o quadratic (inv) term (a “Hessian”) — and then terminates.

0Jy(u) = /QVu-VvdA—/vadA

/V-(vVu)dA—/ UV2udA—/ fvdA
Q Q Q

//50 Vu-ﬁd5+/ v{=V?u — f}dA
T Q T

=0, VveX

We know the gradient of a function vanishes at its minimizer; it is thus not sur-
prising that the first variation of a functional (the gradient times a test function)
vanishes at its minimizer. Here 1 is the unit normal on T.

Note 4 Gauss and Green’s Theorems

Much of our analysis here is based on humble integration by parts, which in
higher space dimensions is essentially one of Green’s Theorems. The necessary
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result is demonstrated most easily in indicial notation. In particular, we note

that
2
o0y (22 e 2 Y
Q 6.%']' 6iL'j Q 81']' 6iL'j 81’j61’j
Ou 0%u
el _ A
/F v 9z, n; dS /Q v@:cj(')a:j d

/vVu-deS—/ vV3udA ,
T Q

where we have used Gauss’ Theorem to convert the volume integral into a surface
term. Note we adopt the convention of summation over repeated indices, here
from 1 to 2 since we are in IR?.
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J(u+v) =J(u) + /Vv-VvdA,VvEX
Q
w —

> 0 unless v = 0

J(w) > J(u), Vwe X, w#u
= 1I

w is the minimizer of J(w)

What PDEs admit such o minimization statement? PDEs associated with oper-
ators that are SPD (symmetric positive definite). We define this more precisely,
and indicate how the FEM (finite element method) proceeds in the absence of
this property, in a future lecture. For now, we focus on the simplest case —
almost all of which turns out to be directly relevant to the more general case.

We could also derive the result above by applying the general machinery of the
calculus of variations. In this sense, we may view —Vu = [ as the Euler or
Euler-Lagrange equations associated with minimization of the functional J.

> Exercise 1 Consider the problem —ugz, = 1,0 < z < 1, u(0) = u(1) =
0, with solution v = $z(1 — z). Show by explicit calculation that §.J,(u) =

fol gV — v dz = 0 for all (smooth) v such that v(0) =v(1) =0. =
2.3 Weak Formulation

2.3.1 Statement

Find u € X such that
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[07,(u) =0, YveX

o
/Vu-VvdAz/fvdA, Yve X| ;
Q Q

see Slide 9 for proof.

This equation has a great deal of structure which we cannot obviously see in
this explicit statement. We thus digress to some more general mathematical
definitions so that we can present a more succinct restatement. Note that the
weak formulation of a PDE, in which we introduce a test function v to “absorb”
some of the derivatives, will always ezist (indeed is more general than the strong
statement) even when no minimization principle is available — that is, even
when the problem is not SPD. The weak formulation is thus the most general
point of departure for the finite element method.

Note 5 Du Bois-Reymond lemma

In fact, we have already derived the weak statement: we know from Slide 9
that if u satisfies —V2u = f in Q, u|r = 0, then 6J,(u) = 0, Vv € X; the latter
is simply (defined to be) the weak statement.

We might ask whether we can go “the other way,” that is, show that if
u € X satisfies 6.J,(u) = 0, Vv € X, then u satisfies —V2u = f in Q. Yes: By
integration by parts we know that

0
/Vu-VvdA://ﬁ‘ Vu-hdS—/ vViudA ,
Q r Q
and thus

/Vu-Vv—fvdA:/v{—Vzu—f}dAzo, VveX.
Q Q

Now assume that —V?u— f does not equal zero at some point; we can then take
v nonzero localized about this point, which contradicts 6J,(u) = 0, Vv € X.
We thus conclude that —V?u = f in Q; this is known (in certain circles) as the
Du Bois-Reymond lemma.

2.3.2 Definitions SLIDE 12



Linear space, Y:
A set Y is a linear (or vector) space

if
Vui,va €Y, v +v2 €Y
VaeR, Vwvey, aveY
SLIDE 13
Linear forms, L(v):
L:'Y - R (form or functional)
-
input output
L(owy +v2) = aL(vy) + L(vs)  (linear)
VaeR, Vv, eY. SLIDE 14
Bilinear forms, B(w,v):
B:YXxZ—-R (form);
B(w, ) linear form in w for fixed 7 ,
B(w,v) linear form in v for fixed w  (bilinear) .
Note that B: Y x Z — R indicates that B has two inputs (arguments), the first
from the space Y, the second from the space Z; the output is a real number. SLIDE 15
SPD bilinear forms, B(w,v):
B: Y xY — R is bilinear ;
B(w,v) = B(v,w) SPD;
B(w,w) >0, YVweY , w#0 SPD .
2.3.3 Restatement SLIDE 16
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a(w,v):/ Vw-VvdA, Yw,veX
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an SPD bilinear form
and

£(v) :/ fvdA, VveX
Q
a linear form .
> Exercise 2 Prove that a is indeed an SPD bilinear form over X. Hint:

you must use the boundary conditions. (Note a is SPD because the underlying
operator is SPD.) m

Minimization Principle:

o1
u = arg min o a(w,w) — L(w) .

| —
J(w)
Weak Statement: u € X,
a(u,v) = £(v), VveX.
—_———

& 8Jy(u)=0

> Exercise 3

(a) Show that if J: Y — R is defined by J(w) = La(w,w)—{(w) for any SPD
bilinear form a and linear form £ over Y, then the minimizer u satisfies
a(u,v) = £(v), Vv € Y. (In this way, given a weak statement, one can
“anti-variation” to find J.)

(b) Take Y = R™, and thus show, by appropriate choice of a and ¢, that
the minimizer u € Y of J(w) = w”Gw — wTF — for any SPD matrix
G € R™™ and F € R™ — satisfies Gu = F.

2.3.4 Proper Spaces: ue X

Since a involves only first derivatives ,

X = fve H'(Q) | vl = 0} = HY(Q):

HI(Q)E{U|/Q’I}2dA, /QvidA, /QUZdAﬁnite};

SLIDE 17

SLIDE 18



(w, ’U)Hl Q)
N———

inner product

1/2
2 2
lwllzs (/Q IVwl? + w dA) _

norm

/Vw-Vv+wvdA;
Q

Important theoretical and numerical implications.

Note 6 Important spaces, inner products, and norms

Hilbert and Banach Spaces

A Hilbert space is a linear space Y with which we associate an inner product
(,-)y — this is simply an SPD bilinear form — which then induces a norm,
|lwl]ly = (w,w)/?. In fact, what we have just described is an inner product
space: a Hilbert space is a complete inner product space; by completeness we
mean that any Cauchy sequence (y, € Y such that ||y, — ym|ly = 0 as n,m —
00) converges to a member of Y.

A Hilbert space is a special case of a Banach space Z, which is a (complete)
normed linear space. The norm || - || z associated with a Banach space is not, in
general, induced from any bilinear form, but must still satisfy certain conditions
(the conditions we intuitively associate with any measure of “length”):

|wllz > 0 YweZ, w#0,

llawl|z ol [|wl|z, VaeR, Vwe Z,

lw+ollz < lwlz+lvllz YweZz, VoeZ,

the last being the triangle inequality (the shortest distance between two points

).

It can readily be shown that a norm induced by an inner product automat-
ically satisfies the above conditions. The triangle inequality is proven with the
help of the Cauchy-Schwarz inequality, which states that for an inner product
¢y,

(w,v)y < [lwlly [[olly -

We give the proof here:

2
o<fo- o (oo, )
lolly vy llolly lolly /v
_ ||w||2 _2(’[1),1])21/ + (’UJ,’U)%/
- Y 2 2
llolly llolly
(w,v)¥
= lwlly - ;
loll§



so (w,v)? < ||w||? ||v||? upon multiplying by |[v||?. We obtain strict equality
if w is proportional to v.

Spaces Hy(Q), H' (), H™(Q)

It is a simple matter to show that Ha (Q2) and H!(Q) are inner product spaces.
It is decidedly less simple to show that these spaces are complete, though they
do indeed have this property, and hence are indeed Hilbert spaces. (We note
that an alternative view of HJ (Q2) in fact defines this space as the completion of
a class of infinitely smooth functions with respect to the H' norm.) Completion
(and relatedly, closure, which ensures that the limit of a sequence of members
of a subset is itself a member of the subset) is a rather theoretical notion that
we will simply take for granted; but it is important, making sure that we do
not find ourselves in a situation in which the limit of a sequence of functions
has very different properties than each member of the sequence. We will briefly
discuss the latter again below.

We can easily generalize the spaces H'(2) to H™(2) for any non-negative
integer m. We do so in R!, say Q@ = (0,1), to avoid multi-indices for mixed
derivatives in higher dimensions. We thus have that

1 1 1/ amy\ 2
H™(Q) = v|/v2da:<oo, fugda:<oo,...,/ (—) dr < o0 ,
0 0 o \dz™

with associated inner product

dIw djv
(w,v) gm () = Z/ dni da;J )

and norm
1/2

dw
ey = 2 [ ( dz])

These spaces are important not only in understanding well-posedness of weak
statements, but also in expressing the convergence rate of the finite element
method. We shall have most need for H} (Q), H'(Q2), and H?(f); the latter re-
quires that, in addition to the function and the derivative, the second derivative
must also have finite energy.

We also introduce the H™ () semi-norm as

which includes only the m™ derivative. The H' semi-norm is simply |w|g1 0y =

1/2
( fol w2 dx) . In general, a semi-norm must satisfy all the properties of a norm
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except that it is permitted to vanish for w # 0. However, for the case of H}(Q),
the H' semi-norm is equivalent to the full H! norm, by which we mean that

Crr |wllm (@) < lwlm@) < lwllai@),  Ywe Hy(Q);

the condition that w € Hj(Q) must vanish on I' ensures that w is not free to
“float.” The left-hand inequality is known as the Poincaré-Friedrichs inequality,
and can also be related to the minimum eigenvalue of the Dirichlet Laplacian
problem through the Rayleigh quotient. We shall prove this result for a partic-
ular problem in a later lecture.

The Lebesgue spaces, LP ()

Another set of spaces that are very important in finite element analysis are
the Lebesgue spaces, LP(f2), p > 1, which are not Hilbert spaces except in the
particular (and perhaps most important) case p = 2: for p = 2, L*(Q) = H°(Q2),
with inner product

(w,v)Lz(Q):/ wvdA
Q

1/2
lvl|z2) = (/ v? dA) .
Q
LP(Q) = {’U| / [v|P dA < oo} ;
Q
1/p
lollzrie = ([ 1oP ) ™

it can be shown by the Holder inequality that LI(2) C LP(Q) for ¢ > p.

The sense of integration here is (appropriately enough) Lebesgue integration.
We do not enter into the theory of integration here except to note that Lebesgue
integration is very forgiving of (very) occasional omissions — the Lebesgue
integral will not change if we change the value of the integrand only on a set
of “zero measure” (e.g., a point, or a finite set of points, or a countably infinite
set of points).

We can see the practical import of the Lebesgue definition of integration by
considering L*°(Q), that is, LP(Q2) as p — oo. It is clear that as p — oo our
norm will pick up only the largest value of |v|, so we might be tempted to write

and norm
More generally,

with norm

||U||L°°(Q) = sup [v| ,
FASY

where we recall that sup means we look for the least upper bound, that is, the
smallest value C such that |v(z)| < C for all z € Q. However the above would
say that, for a function v which is zero everywhere but equal to, say, 10 at one
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point, ||v||z=) = 10; however, since the Lebesgue integral does not “see” the
10, the correct answer is zero. We thus need to write

l|v]| oo () = ess sup |v]
z€EQ

where ess sup (essential supremum) means the smallest supremum over 2 \ B
(Q excluding B) for all sets B of zero measure.

Although we are used to thinking of the laws of physics (and the equations
we use to describe them) as being satisfied at each and every point, in fact we
know that this is not the case — the (say) continuum of solid mechanics and
fluid mechanics is an idealization only meaningful at a certain (supra-molecular)
scale. The weak form and Lebesgue integration is, in some sense, a mathematical
description of this “local averaging.”

Sobolev spaces
We describe Sobolev spaces for the simple case of @ = (0,1) € R!. Then
Wm™P(Q) for m > 0 integer and p > 1 is given by

WP () = { |—€L”(Q) j=0,...,m},

with norm
1/p
d'w
ol sy = Z [ o
Essentially, the W™ P(Q) norm measures the first m derivatives of w in the L?
norm.
We note that W™2(Q) = H™(RQ), our earlier Hilbert spaces. For p # 2,
the Sobolev spaces are not Hilbert spaces. For m = 0, the W%?(f)) spaces are
simply the Lebesgue spaces LP((2).

C™(Q) spaces
We have already encountered these spaces in the finite-difference context.
For the case (say) of 2 = (0,1) C R,

m dv d™v
cm(Q) = {v | v, — 22 dom continuous in Q}

defined for any integer m. Note C°(2) is the space of continuous functions;
C~1(Q) is the space of functions whose antiderivative is continuous over Q; and
C(Q) is the set of functions in which all derivatives exist and are continuous
over ().

There is an important relationship between C°(Q) and Sobolev spaces, known
as the Sobolev embedding theorem. This theorem tells us, for example, that for
any regular domain @ C RY, if v € H™(Q), m > £, then v € C°(2), and

[v]|zee() < C|v|lEm (@)
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where C does not depend on v. For example, if d = 1, u € H'(Q) implies u is
continuous, since m = 1 > % = %; however for d = 2, one can find functions
u € H*(Q) which are not continuous — unbounded — as m =1 ¥ ¢ = 1. This
has important practical ramifications.

Apology

This section contains much material, the relevance of all of which is probably
not clear. The student should read it once now, and then on several occasions
during this sequence of finite element lectures. The student is only “responsible”
for understanding those bits that enter into results of this and later lectures.
The rest is included only to make sure that when these various entities are
encountered in the finite element literature — which they surely will be — they
will look less intimidating.

> Exercise 4 True or false?
(a) The set S = {v € C°0,1))|v(3) =1} is a linear space.
(b) For X = H}((0,1)), L(v) = fol 2v dz is a linear functional.
(c) For Z =R, (z,y)z = |z| |y| is a valid inner product (SPD bilinear form).

(d) The only w in H'(Q) for which |w|g1(q) (the H' semi-norm) is zero is
w=0.

(e) The function z3/* is in L?((0,1)); in H((0,1)); in H2((0,1)).

(f) For w = e—lOz’ |U)|H2((071)) = |U)|H1((071)).

2.3.5 Proper Spaces: (€ X'

The “data” £: H () — R must satisfy
[L()| < C ||v|lgr (), Yv € Hi() (bounded).

L € dual space X' = (H}(Q)) = H1(Q):

all linear functionals bounded for v € Hg ().

Dual norm: el (zrr () = sup )

vEHL(Q) ”'U”Hl(Q) '

Again, this result looks abstract, but it has important practical implications —
what “loads” (heat sources, ...) are we allowed to consider? It will also tell
us what outputs we can accurately measure (numerically). We will see that the
space H=1(Q) is quite large, admitting rather “irregular” functions; u € H'(Q)

13
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is, however, relatively smooth. This is not surprising since —V2?u = f — u 4s
“two integrals” smoother than f.

Note 7 Dual spaces (Optional)

In general, given a Hilbert space Y, we can define the dual space Y' as
the space of all bounded linear functionals, L(v), where L(v) is bounded if
L(v) < C|jv|ly, Vv € Y. The norm of L(v) is given by

L(v
IZ|ly» = sup L) -
vey vy

Clearly this space of functionals is a linear space, since the sum of two bounded
linear functionals is also a bounded linear functional, as is a scalar multiple
of any bounded functional. Note a bounded linear functional is continuous:
[(v) — L(w)]| = |f(v —w)| < C ||[v — w|ly = (v) = b(w) as v —» w.

As an example of a bounded functional, take Q = (0,1), Y = L?(Q), and
L(v) = fol v dz. We now note that

1 1 1/2 1 1/2
L{v) = / lvdr < (/ 12 dw) (/ v? dw) < lvllz2cq) »
0 0 0

where we have used the Cauchy-Schwarz inequality in the L? inner product,
(w,v)r2(0) = (w,v)goQ) = fol wv dr, with w = 1. Thus L(v) is in the dual
space of L?({2).

The dual space of L?(Q) turns out to be L2(f2), in the sense that any func-
tional Ly(v) of the form [, nvdz for n € L*(Q) is bounded in L*(Q) (and
conversely, any bounded functional in L?(Q) can be expressed in this form). In-
deed, by the Cauchy-Schwarz inequality, L, (v) < |9l L2 l|v]lL20), Yo € L (),
with equality for v = #: the norm of L, (v) is thus [|9||52(q) — the smallest con-
stant C for which L,(v) < C [|v||12q), Vv € L?(©2). We can also compute the
norm of L, in (L*(Q))" directly from the definition

1
nv dx

IZa(@)llz2()y = sup T
) verz(@) vlle@)
from the Cauchy-Schwarz inequality (again ...) the sup is attained for v = 7,
and thus ||L,,(v)||(Lz(Q)), = ||n||%2(Q)/||n||L2(Q) = ||n||L2(Q). In this particular
case, the sup expression above is just a fancy way of writing the usual L? norm,
( fol n’dz)'/?. Note that since the weak formulation for the Poisson problem
only requires (on the right-hand side of our equation) a linear functional, the
distinction between the function 1 and its associated linear functional L, is
blurred — indeed, there really is no distinction, L, and 7 are interchangeable.
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We now consider a more difficult case: 2 = (0,1),Y = H0 (Q) with L( )=

v(3). In fact, this is the delta distribution, since v(3) = fo (x — 3)vdz)
whereé(:c——) =0forz#3,0(z—3) =00 at z =3, and §(z — §) 1sofun1t

mass, “ fo (z—1)dr =1 (In fact, 6(z — }) is not an integrable function, as
we discuss below.) Now, since v(0) = 0 for v € HE(Q),

1/2 1/2 1/2 12 1 10 1/2
) = / v dr = / 1v'de < (/ 12 da:) </ (v')? dx)
0 0 0 0

< - [lv]]
(Y 1 5

o(

N

and thus L € (H}(9))' (though our constant % is not the norm); it is clearly

not in (L*())’, however, since we can make the L?(2) norm of v as small as we
like while keeping v(%) fixed, and we can thus not bound L(v) by C||v||r2(q),
Vv € L?(Q), for any finite C. (Note the delta distribution is also not in (H(Q2))’
for O C R? — this is a consequence of the Sobolev embedding theorem.)

We observe from the above example that (H}(Q))' (which is not equal to
HL(Q)) is larger than (L2(Q))'. This is not surprising, since

L(v)
Ll g1cqyy = sup
(Ho (@) vemi(e) vl @)

has more derivatives in the denominator than the corresponding L? expression,
and hence more L(v) will be bounded. This notion is consistent with the fact
the (Hg(9))' is denoted H~1(Q2), where H~!(Q) may be interpreted as the space
of functions for which only the antiderivatives need be in L2(2) (this is the case
for the delta function, since the antiderivative is the Heaviside function). The
dual spaces of H™(2) — denoted H ™(Q) — are thus increasingly large as
m increases (the H™(Q) of course become increasingly smaller). So we have
Hy () € L*(), but (H5(Q))' O (L*(Q))' = L*(Q).

Finally, the Hilbert spaces Y and Y’ are related by the celebrated Riesz
representation theorem. For each L € Y, there exists a unique uy, in Y such
that

(ur,v)y = L(v), VveY.

It follows that

(ur,v)y
ILllyr = sup === = [lu|ly ,
vev  lolly

by the Cauchy-Schwarz inequality applied in the Y inner product. Note for
Y =Y’ = L?(), ur, is simply 5 of L, introduced above, and we recover directly
IL|l2(e) = lnllz2()- This also proves our claim that any L? functional can be

expressed as L, = fol n v dz for some (unique) n € L2(Q).
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Note 8 Distributions and distributional derivatives (Optional)

Dual spaces also play an important role in another context, which we illus-
trate in R! for Q = (0,1). The space C§°(12) is the space of C*°(£2) functions v
such that v and all of its derivatives vanish at z = 0 and z = 1. The space of dis-
tributions is the dual space to C§°(2) — all continuous linear functionals L(v)
for v € C§°(N2). (Here continuity is defined as L(v,) — L(v) for all sequences v,
that converge uniformly in all derivatives to v.) Since C§°(f2) is a very “small”
space (with many derivatives), we expect from our earlier arguments that our
dual space will be very large — and indeed it is.

As one example, if 7 is any function in L?*(Q2), then L,( f nv dz is
a distribution. We know that L, is also a member of (LZ(Q)) .y (). But
we may also consider other linear functionals that do not correspond to any L2
function: for example, the delta distribution Ls, may be defined as

Ls., (v) = v(zo) -

It is not strictly correct to write Ls, fo (x — x0) v dzx, since 0(z — o)
is not an integrable function; and we know from Note 7 that Ls, is not in
(L?(Q))' = L*(9). However, we can write

Lﬁmo (U) = <L610 ’ U)

where (-, -), defined by the above expression, is an “integral-like” duality pairing
— a proper replacement for the L? inner product — here between (C§°)’ (for
L) and C§° (for v). The essential point is not what notation we use, L(v) or
(L,v), but rather that we appreciate that both represent a distribution, which
is a particular (large) class of linear functionals. Given a v, we need only know
how to evaluate L(v) — quite simple in the case of the delta distribution. In
our two examples here, our distributions L, and Ls,  are in L?(Q) and H~(Q),
respectively; but, in general, many distributions not only will not be in L?(1),
but also will not be in H~1(Q)) — see Exercise 7 for an example.
We can now define the m*® distributional derivative of L, D™L, as

D™L(v) = (D™L,v) = (—1)™ <L, @> :

dx™

where the right-hand side clearly exists since v € C§°(€2) — we have put the
derivatives on the smooth member. We shall say that a function 1 has m
distributional derivatives in L%(Q) if

(D™Ly,v) / Dmnvd:c

for some L2 function D™n; recall that (L,,v) = [ 1o d.
As a concrete example, take n = 1 — 2|z — 3|, which looks like
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! : —> T
0 1/2 1

Now, L,(v) = fol nv dz, so (taking m = 1)

1 i e 1
dv 2 dv dv
DIL = -1 — =11 - _
{ mv) /0 ndxdm 513%)(/0 ndxdx+/%snda:d$) ’

from the properties of Lebesgue integration (we can omit any point ...). But,
by integration by parts,

1 1
27°  dv 1 1 /5_5
n—dr = n(s—-¢)v(s—¢)— 2vdz
g G- -2 [

1
dv 1 1
/%_En%dm —n(g—e)v(§—e)—/% —2vdr
since v(0) = v(1) = 0. Thus, as € — 0, we find
1 ——~——
(D'L,,v) = / Dlnwvdx
0
where 1/7\1/17 is a Heaviside-like function

21—

Dlpn O
-2 1

o 1

exactly as we would have expected. Note the value of D'y at z = % is irrelevant
since it will not affect the integral.

We thus conclude that our function n has a first distributional derivative in
L?*(Q). It is in this sense that the [v2 dA and [v2 dA in Slide 18 must be
interpreted: v is a member of H'(Q) if v has a first distributional derivative
in L?(Q) (and, more generally, a member of H™(Q) if it has m distributional
derivatives in L?(2)). In effect, this allows us to include many functions —
including n = 1—2|z— | — for which the derivative is not defined in the classical
sense at all points in 2. These new functions we can include are precisely the
ones of interest in the numerical context.

17



We can not go too far. If we take the second distributional derivative of our
function 7, we find by integration by parts that

1 2
d*v
2 —
<D LT,,U) = /(; nﬁdﬂ}

1/2 1
—/ 2d—vdw+/ 2@dax
0 dIE 1/2 dl’

= —20(}) - 20(})

= —1(d)

2

= _4<L520=%7’U) ’

again as expected. But Ls 1 is certainly not square integrable, that is, in
z0=35

L?(Q) (see Note 7), so n is not in H?(Q) — it does not have m = 2 distribu-

tional derivatives in L?(Q). Similarly, the Heaviside-like function, l/)\l/n, is not
in H*(Q).

2.3.6 Proper Spaces: Well-Posedness

Given £ € H-1(Q), find u € H} ()
such that
a(u,v) = £(v), Yo e Hy () .

Well-posedness:

u exists and is unique ;

lull ey < C el -1y — stability.

> Exercise 5 Demonstrate that, assuming u exists, it is unique. (Hint:
consider two solutions, u1, and us, and show that they must be equal.) m

Note 9 Lax-Milgram theorem: coercivity and continuity (Optional)

It follows from the Lax-Milgram theorem (related here to the Riesz represen-
tation theorem) that a problem of the form posed above has a unique solution if
a is coercive and continuous. By coercivity we mean that there exists a positive
a such that

a ||1)||%11(Q) < a(v,v), Yve Hy) ;

18
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in our problem this property follows from the Poincaré-Friedriches inequality
(see Note 6; indeed, since a(v,v) = |v|§{1(9), a = Cg). By continuity we mean
that

a(w,v) < Bllwlla o) lvllm @ Ywe HY(Q), Yoe H (Q);

this follows in our case (with 8 = 1) by the Cauchy-Schwarz inequality.
It is then a simple matter to prove stability: since u € Hg (2), taking v = u
gives
allullf gy < alu,u) = L(u)
SO
£(u) £(v)

ollullzrr) < p—— < sup  —— = [ellg-1(q) |
D =Nl ~ vemie) Ml o) (@

and thus C = a~ 1.

Note 10 Delta distribution data (Optional)

We consider
—Ugy = f in O =(0,1)
u(0) = u(l)=0.

The weak form is: find u € H}(Q) such that

1 1
/ uxvxdwz/ fudx, Yo e Hy(Q),
0 0

which can be written as
1
| ueve=tr) voeHi@),
0

where (f,v) = f(v) (= fol fodz if f € L?(Q)) is now the duality pairing between
(f €) HY(Q) and (v €) H'(Q). Note fol ug Uy dx can be viewed as minus the
second distributional derivative of wu, integrated by parts once, and thus we see
that the weak form is the original equation interpreted in the “distributional”
sense.

Now consider a sequence of heat sources f,, that became increasingly con-
centrated at z = 1 with fol fn dz (the total heat input) = 4. Thus, in the limit
that n — oo and f, — 46(z — 1),

« —Uyy = 4(5(33 _ %)»

in the distributional sense. The solution to this problem is our function n =
1—2|z—%|. Thus u = 7 does not have second derivatives in the usual sense, and
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is not even in H%(Q) from our arguments of Note 8. The strong form has lost its
meaning — for example, how would we apply finite differences to this equation?
Certainly setting f to infinity at one grid point will produce nonsense.! We
would need to break the problem up into two subdomains (Left and Right)

—uk, =0 0<z<i
-l =0 %<£L‘<1
u(0) = WR1) =0
ut(3) = ul(3)

—uf () +up(3) = 4,

and apply the special conditions at the interface. In short, the f, in L2(Q) (and
corresponding solutions u, € H?(2)) and their limit f € H 1(Q) (and corre-
sponding limit v € HJ(2)) require different treatment in the strong context.
(This also tells us that H2({2) is not complete in the H' norm; H(Q) is not
complete in the L2 norm; L2(Q) is not complete in the H~! norm, ....)

However, as we know, u is in H}(Q2), and the delta distribution is in H=1(1),
and thus our weak formulation,

1
/ Vg Ug dz = 40(3), Yo e Hy(Q),
0

requires no modification to handle this — and many other — important limiting
cases. In terms of J, it means that often the minimizer will not be in H?(Q),
but only in H'(f); had we required H?() (second derivatives), there would
be many “Strangian pinpricks” in our paraboloid. By filling those holes we
correctly treat a much larger class of problems — and with considerably greater
numerical ease, as we shall see. (Note H?(Q2) is dense in H'(Q2), that is, H*()
is the closure or completion of H2(f2) in the H! norm; any function (e.g., u = 1)
in H1(Q) is the limit in the H! norm of a sequence of functions (e.g., the u,) in
H?%(Q). Thus only pinpricks — not large holes — need be filled as we expand
our space from H?(2) to H'().)

> Exercise 6 Show by explicit calculation that u =7 = 1 — 2|z — 1| does
indeed satisfy the weak form given in the last paragraph of the preceding Note.
1

Hint: break the integral into two pieces, fOE_E dx and fél te dx, and integrate
by parts. m

INote a finite volume approach — based on a control-volume integral conservation state-
ment — could deal with f, — 46(z — %) gracefully. Finite volumes share some aspects in
common with strong form finite differences, and some aspects in common with weak form
finite elements.

20



> Exercise 7 Consider the fourth-order problem
Ugzzre = f in = (03 1) >

w(0) = uz(0) = u(l) =us (1) = 0 ;
this “biharmonic” equation is relevant to, amongst other applications, the bend-

ing of beams.

(a) Find an SPD bilinear form a over X and a linear form £ such that

u = arg glelgl( J(w) = § a(w,w) — {(w)
o

a(u,v) = £(v), Vve X,

where w € X are sufficiently smooth and satisfy w(0) = w,(0) = w(l) =
wy(1) = 0. (Hint: work backwards, multiplying the strong form by v, and
integrating by parts and applying the boundary conditions until symmetry
“appears”; then verify your result — prove a is SPD, u is a minimizer,
...— a posteriori.)

(b) How should X be defined — which Hilbert space H™(2) do you think is
appropriate?

(¢) Do you think that £(v) = v,(3) is an admissible linear functional, in the
sense that £ € X', that is, |[£(v)| < C||v||x, Vv € X?

[ ]
3 The Neumann Problem
3.1 Strong Formulation
Find w such that
—Viu = f in Q
u = 0 on I'P
0
6—2 = g on TN
where T=T" UT" , I'° non-empty. N11
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Note 11 Solvability for pure Neumann problem

Note if ' is empty, the Neumann problem may not have a solution. In
particular, the equation tells us that

—/ v%m:/-w-ms = /fdA,
Q T Q

while the boundary condition tells us that

%dS=/Vu-ﬁdS = /gdS;
r on T r

clearly, [, f dA + [ g dS must vanish — the heat generated must balance the
heat in through the boundaries.

If the solvability condition relating f and g is satisfied, our problem will have
a solution — unfortunately, it will have an infinity of solutions that all differ by
a constant (in some sense, this is the right nullspace condition associated with
the left nullspace solvability condition). In particular, it is clear that if u is a
solution, then so is u + any constant. To pin the solution down we must specify

(say)
/Q wdA =0

(or some other value, perhaps depending on an initial condition to the corre-
sponding temporal problem). Note in practice (numerically) we can also ask
that u at a particular point be specified, though strictly speaking this may be
mathematically suspect for the continuous problem.

The problem in which I'” is non-empty (a so-called “mixed” problem) raises
no such solvability issues; the flux over I'? adjusts itself to ensure global balance.

3.2 Minimization Principle
3.2.1 Statement
Find

SLIDE 22

u = arg min J(w)

where
X={ve HI(Q) | v|rp =0}

J(w):%/QVw-deA—/wadA—/FNgwdS.

Note we do not require that v € X satisfy g—ﬂlw = 0 (or g), the reasons for
which will become clear shortly.
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3.2.2 Proof

Letw=u+wv.
Then
weX 1
o u‘):—/ V(u+v) - V(u+v) dA
g 2 Jq
€exX  ex
—/f(u—i—v)dA— glu+v)dS .
Q v
Ju+v) =

1
—/Vu-VudA—/fudA—/ gudS
2 Jo Q N

+/Vu-VvdA—/fvdA—/ gvdS
Q Q N

+1/VU-V1)dA
2 Jo

(5Jv(u)=/ Vu-VudA—/ fvdA—/ gvdS
Q Q Ny

=/V-(vVu)dA—/vV2udA—/fvdA—/ gvdS
Q Q Q v

= /50 Vu-ﬁdS+/ v{-V?u — f}dA
Q S———

D
0
+ finv v{Vu-i—g}dS = 0, VoveX
————
0

J(u+u):J(u)+% / Vv-VvdA, VveX
Q

>

> 0 unless v = 0

Note if TP is empty, then v = constant also renders our last term zero, and
thus u s not a unique minimizer — u + any constant will do just as well. We

already observed this in Note 11.
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J(w) > J(u), Ywe X;
= (3

w is the minimizer of J(w).

> Exercise 8 Consider
—Uge = 1

u(0) =0, ug(1)=1.

Find the analytical solution to this problem, and show by explicit computation
that §J,(u) =0,Vv € X. Recall X = {v e H'(Q)|v(0) =0}. m

3.3 Weak Formulation
3.3.1 Statement

SLIDE 27

Find u € X such that

‘6Jv(u) =0, Vv EX‘
o
/Vu-VvdAz/fvdA—i—/ gvdS, YveX;
Q Q N
see Slide 25 for proof. SLIDE 28
Let:
a(w,v):/ Vw-VuvdA, Yw,ve X
Q
bilinear, SPD form ;
and
E(v)z/fvdA+/ gvdS
Q I
linear, bounded form (in H1(Q)) .

In order to ensure that £ € H=1(Q) we must require that g is sufficiently smooth

on TN. In order to avoid fractional-derivative norms we say that g € L2(T'N);

in fact, slightly less regularity is required. Note also that a is SPD only if TP is

non-empty.
SLIDE 29
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Minimization Principle:

1
u = arg 1111116151( 3 a(w,w) — L(w) .

J(w)
Weak Statement: u € X,
a(u,v) = £(v), YveX.
—_———
& 6Jy (u)=0
3.3.2 Essential vs. Natural SLIDE 30
Essential boundary conditions: Imposed by X.
Natural boundary conditions: Imposed by J (or a,¥£).
Here:
Essential < Dirichlet (v|rp =0) ,
Natural <& Neumann (v|p~ unrestricted) . N12
Important theoretical and numerical ramifications.
|E9||E10||E11]
Note 12 Natural boundary conditions

Note that since Vu is only in L%(f2), we can not really impose Vu -n = g
in a strong way — the trace (boundary limit) of a function in L?(Q2) makes
little sense, since jumps are permitted and individual points are “ignored.” It
thus must be the case that these boundary conditions are imposed in some other
fashion. In fact, this other fashion — though a and £ — is much more convenient,
since we do not need to compute any normals. (It is also very instructive to
go “the other way” — show how certain test functions v concentrated on the
boundary weakly “impose” the natural conditions.) This is another example
(see our delta distribution of Note 10, and Exercise 9 below) in which the weak
formulation greatly facilitates subsequent numerical treatment.

Note that essential is not always Dirichlet, and natural is not always Neu-
mann. There are mixed formulations (related to complementary energy) in
which we approximate directly Vu in H'(Q) and u in L?(Q2); as might be ex-
pected from the above arguments, in this case we can impose Vu strongly —
Neumann is essential — but we can not impose u (only in L?(Q)) strongly —
Dirichlet is natural. We shall not consider these dual formulations further in
this (rather short) series of lectures on the finite element method.
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> Exercise 9 Consider a problem with a discontinuous jump in conductivi-
ties

—ktul, = ft 0<z<i,
kPl = fR i<z<l1,

ut(3) =u*(3) ,
—klul (1) = —sRuB(3) (continuity of flux) ;
here k¥ and sk® are strictly positive.
(a) For X = {v e H'((0,1)) | v(0) = 0, v(1) = 0}, show that
= in L _
u = argmin a(w,w) — l(w) ,
and
a(u,v) = £(v), Vve X,
where

1/2 1
a(w,v) = / K" wy vy d:c+/ kR w, vy do
0 1/2

1/2 1
Lw) = / frfoudr + fRode .
0 1/2
(b) In this problem, which boundary/interface conditions are essential, and
which are natural?

(c) Is the solution to this problem in H?(Q)? in H(Q)?

> Exercise 10 Consider the Robin problem (the third standard boundary

condition for the Poisson problem, and more generally second order elliptic
PDEs)

—Vu = f in Q
u = 0 on I'P
ou

~3, = heu  onTR (T =TPUTE)

where h. > 0 (recall that 2% refers to the outward normal on T').
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(a) Find the functional J (and hence a and £) such that

u= arglruneigl( J(w) = 1 a(w,w) — L(w) ,

and
a(u,v) = £(v), Vve X,

where X = {v € H'(Q) | v|rp = 0}. Hint: multiply the equation by v,
integrate by parts, and substitute —h.u for g—z on the boundary; identify a
and /¢; verify your results a posteriori — prove a is SPD, u is a minimizer,

(b) In this problem, which boundary conditions are essential, and which are
natural?

> Exercise 11 Consider the fourth-order problem
Uggrr = f in )= (Oa 1) )
w(0) = Uy (0) = u(l) = ugz (1) =0 .

(a) Show that the minimization statement of Exercise 7 still applies, but that
now members v of X need only satisfy v(0) = v(1) = 0 (not v,(0) =
vz (1) = 0 as before, or v45(0) = vz,(1) = 0).

(b) Which boundary conditions are essential, and which are natural?

4 Inhomogeneous Dirichlet Conditions

4.1 Strong Formulation

Find w such that

—V2u = f in Q

v = uP onTP? =T;

simple extension to mixed Neumann or Robin.

The boundary data u® must satisfy certain regularity conditions on TP . In fact
uP must be a bit more than L?(T'P), but need not be quite as much as H'(T'P);
discontinuites should be avoided.
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4.2 Minimization Statement

Find = in J
in u=arg min (w)
where XD = {ve HY(Q) | v|lrp =uP},

X

{ve HYQ) | vlrp =0},

Note that XP is not a linear space. But the difference of any two members in
XP is a member of X, which is of course a space.

J(w):%/QVw-deA—/wadA.

~~

a(w,w) l(:u)

4.3 Weak Formulation
Find v € XP such that E12

8Jy(u) =0, Yve X =H}N)

0
/Vu-VvdAz/fvdA, Yve X .
Q Q

—_— ——
a(u,v) £(v)

> Exercise 12 Prove the minimization statement and weak statement for
the inhomogeneous Dirichlet case. Hint: proceed as for the homogeneous case,
but note that any w € X can be expressed as w = u (€ XP) +v (€ X); v is
still in X, that is, vanishes on T'P. m

5 Summary

e The Poisson problem has a strong formulation;
a minimization formulation; and a weak formulation.

e The minimization/weak formulations are more general than the strong
formulation in terms of regularity and admissible data.
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e The minimization/weak formulations are defined by: a space X; a bilinear
form a; a linear form /.

e The minimization and weak formulations identify

ESSENTTAL boundary conditions,
Dirichlet — reflected in X;

NATURAL boundary conditions,
Neumann — reflected in a, 4.

e The points of departure for the finite element method are:

the weak formulation (more generally);
or
the minimization statement (if a is SPD).

References: In addition to the references given in the course syllabus, in par-
ticular Strang € Fix and Quarteroni & Valli, the book Linear Operator Theory
in Engineering and Science, by A.W. Naylor and G.R. Sell, Springer-Verlag,
1982, is a very useful introduction to a number of basic concepts (e.g., linear
spaces) covered in this lecture.
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