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1 Theory

1.1 Goals
1.1.1 A priori

A priori error estimates:
bound various “measures”
of u [exact] — uy [approximate];

in terms of C'(2, problem parameters),
h [mesh diameter], and w.

Note 1 A priori theory

Clearly, since a priori estimates will be expressed in terms of the unknown
exact solution, u, they are not useful in determining in practice whether uy, is
accurate enough. A priori estimates are, however, useful to compare different
discretizations (which converge faster in which norms? which is more efficient?),
to understand what conditions must be satisfied for rapid convergence (is u
smooth enough?), and to understand if a method has been properly implemented
(for a test problem, does u, — u at the correct rate?)

u: —Ugy = [, U(O) = u(l) =0
a(u,v) = £(v), VveX
1 1 "
a(w,v) = / Wy Uy di, L(v) = ‘ / fudz
0 0

X ={ve HY(Q)|v(0) =v(1) =0}

Recall that £(v) can in fact be more general — any linear functional in H=1(Q),
that is, any linear functional which satisfies |L(v)| < C ||v]|g1(q) for any v €
H} (). For example, £(v) = (84,,v) = v(zo) is admissible.
Up:
a(up,v) = £(v), Yve Xy,
1 43 1 ”
a(w,v) = / Wy, Uy de, L(v) = / fudz
0 0
X, = {U eX | 'UlTh € IPl(Th), VT, € 771}

In fact, the theory presented applies equally well to the Neumann problem and
(at least in R!) the inhomogeneous Dirichlet case.
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1.1.2 A posteriori

SLIDE 4

A posteriori error estimates:

bound various “measures”

of u [exact] — up [approximate];
in terms of C(Q, problem parameters),

h [mesh diameter], and up,.
Note 2 A posteriori theory

A posteriori error estimates are arguably more useful than a priori esti-
mates since we know up. Bear in mind, however, that (i) in most methods
for a posteriori error estimation the constants C' are not known, and (ii) for
those methods which do attempt to better quantify the constants C, additional
computational effort is required. Nevertheless, a posteriori error analysis is an
increasingly important aspect of finite element practice: even when the C are
not known precisely, local estimators can provide guidance as to how best to
refine a triangulation. We shall restrict attention in these lectures to the simpler
case of a priori estimates.
1.2 Projection
We need several concepts to make the subsequent analysis flow smoothly: pro-
jection (genmeral) and interpolation (specific to our particular space Xy ).
1.2.1 Definition
SLIDE 5

Given Hilbert spaces Y and Z C Y,

(Oy,v)y =(y ,v)y, YveZ
ez ey

defines the projection of y onto Z,Ily;

I vy - 7.



1.2.2 Property
The projection ITy minimizes ||y — 2|2, Vz€ Z.
Why?

lly = (Oy + )|} = ((y —y) — v, (y — Ty) —v)y
N——r
any ze€Z
= lly —Tylly — 2(y — My, v)y +lolly;, YveZ.
—_———
0: v€Z
Note z =Ty +v € Z and ly € Z implies v € Z, and hence since (Ily,v)y =
(y,v)y forallv € Z, (y—Ty,v)y = 0. The above result states that |ly—Iy||3 <

lly — z||> for all 2 # y. In words, Iy is the best approzimation in Z of y in
the || - ||y norm.

1.2.3 Geometry

Geometry of projection:

Y
Ay — Iy
NS
Iy Z
Orthogonality: (y — Iy, v)y =0, Yov € Z.

Not surprisingly, if we wish to find the z = Iy on the Z azis closest to y,
y — Iy should be perpendicular to the Z axis — in the (-,-)y inner product.
This analogue to our usual notion of projection in R™ should be self-evident. In
the above picture, Z* is the orthogonal complement of Z in Y : the space of all
members of Y orthogonal to all members of Z.

> Exercise 1

(a) Show that [[Iy|ly < [lylly and [ly — IIy|ly < |[|ly|lv, and interpret this
result geometrically.

(b) Show that II(Ily) = Ily.
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1.3 The Interpolant
1.3.1 Definition SLIDE 8
Recall
Xn = {’U eX | 'U|Th € ]Pl(Th), VT € 771}
v E Xy

Tpy1 =1

@0 =0 SLIDE 9
Given w € X, the interpolant Z,w satisfies:
Zhw € Xp; and Zhw(x;) = w(x;), i=0,...,n+1.
n
Thw(z) = Z w(x;) pi(z)
i=1
on T T T T T T T wn+1
1.3.2 Approximation Theory
SLIDE 10
If we X, and w|r, € C*(Th), VTh € Th, then
_ < "
o= Tl < e (o))
2 1"
Recall 0] () = Jo w2 de, I0l172) = i v? de,
and ||”||%11(Q) = M%{l(g) + ||’U||%2(Q)-
SLIDE 11

Sketch of proof:



(w— Iw)lT,’f (w— Ih'w),|T,’§

T* k
h P T, Zk

xr
w" dz
Zk

< h max |w
zeTF

=Tl @)| = | [ (0= Tsw)"lyy do

k

II|

K 2
1
12 "
E /Tf(w—l'hw) |T';fd:l:§ﬁh<hk:r{1’%.lfc’ zrréz%?w |>

k=1

The first line follows from Rolle’s Theorem (which requires w|t, € C1(T}), as is
the case here). The second line bounds the K = % integrals by h x the mazimum
of the integrand. Note, however, that we only require w' to be defined in the
elements, not at the nodes, so if we place our delta distribution loads at nodes,
this hypothesis is still satisfied for solutions u of our Poisson problem even in

this case.

Since (Tpw)' |T: is a constant, we are effectively approzimating w' by a constant.
Not surprisingly, this will not work very well if w' has jumps (w" infinite) in
TF; also, the larger the w", the larger the error, since the more w' will vary
away from a constant. (In general, if w has strong singularities, |w — Tpw|m (o)
will only converge as some fractional power of h.)

> Exercise 2 Prove the L? estimate of Slide 10. Hint: write (w — Iphw)|zs
as a definite integral in terms of (w — Zpw)' |T:; then express (w — Zpw)' |T£c as

in the H'-seminorm proof. m

If we X, and w e H2(Q,Tp),

h
|w —Zpw|gi) < ;Hw“H?(Q,Th)
h2
lw=Thwlrz@) < — llwllrze,z)
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K K
where lwllie@r) =D ol g2 ey = Z/k w2, +w? +w?de .
k=1 k=1"Th

Note again that jumps in the derivative (e.g., due to a delta distribution or
change in conductivity) at nodes are fine — the function is still in H? over
each element. (In fact, the above result is true with just the H? seminorm.)
Norms which have been broken up over elements or subdomains are sometimes
known as “broken” norms.

The proof of the above is not difficult, but involves the Rayleigh quotient for
a fourth-order eigenvalue problem. As we have not introduced these concepts,
the demonstration would require a magjor digression at this stage. The reader is
referred to pages 45—47 of Strang & Fix. Note we prefer this second result to
that of Slide 10 since the norm on u is “weaker,” and consistent with the energy
notions that underly the finite element method.

1.4 Error: Energy Norm
1.4.1 Definition

Define the energy, or “a”, norm |||v||| as

llolll* = a(v,v) (generally)
1
= /ng dz = |v|ip(9) (here)
Note: ||| - ||| is problem-dependent.

Since a(-,-) is an SPD bilinear form, (a(v,v))'/? does indeed satisfy all the
requirements of a proper norm. (Recall that the H' seminorm is in fact a norm
over H}(Q).)

Of interest:  for
u(zx) (exact solution)
up(z) (finite element approximation)
= e(z) = (u— up)(z) (discretization error)

find bound for [||e||| in terms of h,u.
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1.4.2 Orthogonality

SLIDE 16
Since a(u,v) =L(v), Vv € X
then a(u,v) = L), YveXy (Xn C X),
but — a(un,v) = ()], YoveE X
SO a(w—unv) = 0,Vve Xy (bilinearity).
1.4.3 General Bound SLIDE 17
For any wy, = up + v, € Xy , v, € Xp,
a(u — wp,u —wp) = a((u—up) = vn, (u—up) = vp)
[[lu—wal[]?
= a(u — Up, U — Uh) - 20’(“ - uhavh) + G(Uh,’l}h)
N ~ 7\ ~ s N’
[e]]|? 0: orthogonality >0 if vy #0
= ell|| = inf |||lu—wyl|| -
llelll = inf_{llu = wal]
SLIDE 18
In words: even if you knew u,
you could not find a wy, in X,
more accurate than uy,
in the energy norm.
So we see that the finite element procedure does as well without knowledge of
the exact solution as you can do with knowledge of the exact solution — so long
as we speak of the energy (or “a”) norm. The finite element method has trans-
formed the problem of discretization of a PDE into a problem of approximation.
SLIDE 19
Geometry
= up, = II¢ u: the projection of (closest point to)
u on X in the a norm.
SLIDE 20



Miracle ?: a(Ilju,v) = a(u,v), Yv € X ;
~—
Uh

but we do not know w ...

NO: a(u,v) = £(v) = a(llju,v) = b(v), Yv € X}, .
—~ ~—
can evaluate Un

Only in the energy inner product can we
compute I v without knowing u.

Note 3 Generality of abstract result
We note that our bound

lelll = int._{llu = walll
that is, that up = II}u, is in fact true for any SPD bilinear form a, and any
boundary conditions, and any finite element space X},, and any space dimension.

For any particular SPD problem (that is, any linear problem for which the
bilinear form a in the weak formulation is SPD), the only thing that changes is
the definition of the norm; for our particular problem ||[e||| = |e|g1(q), though
in general that will not be the case.

Obviously, however, we are not yet quite done; we must understand how

—
nt[llu = wy

depends on h, the smoothness of u, and the parameters of the problem. For
that we need to introduce the particulars of our finite element approximation
space.

1.4.4 Particular Bound
h
We know |’U. —Ihu|H1(Q) S ; ||u||H2(Q,7—h) .

Thus
Illelll

inf — < -7
it Jlju = wall] < lju — Zuul|

= |u=TZhulm o) < 2 lullmo,7)

(assuming ||u||g2(q,7;,) finite).

We would, of course, prefer to directly use the projection uy, for wy, rather than
the interpolant. However, the latter is much easier to work with, and will, in
general, yield the correct h dependence. In fact, for our particular problem,
up, = Znu (see Exercise 3), but this is a bit of a “coincidence.”
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We say the above estimate is “optimal” in the sense that the power of h can
not be improved — there exist problems (in fact, almost all problems) for which
[llell] decreases no faster than h. (The term “sharp” is usually reserved for the
case in which, for some problem, the bound obtains with strict equality — that is
not the case here, though we could tighten things up a bit to ensure sharpness.)

All the above requires essentially no modification for the Neumann problem.

> Exercise 3 Show that, for our particular problem, u; = Zpu. Hint: Show
that a(u—Zpu,v) = 0, Vv € Xp, by integration by parts over each element. (We
do not dwell on this “miracle” — nodal superconvergence — since it is rather
special to —uz; = f, R!, and exact quadrature.) m

Note 4 Convergence rate and smoothness

First, the above estimate tells us that up converges to u (at least in the a
norm). Second, it tells us that it converges as h. Third, it tells us that u must
be sufficiently smooth — finite in the broken H? norm, ||-|| g2(q,7,) — to achieve
this convergence rate.

It is important to recognize that although we exploit the weak form to look
for finite element approzimations uy that are only in H'(Q), we do require
additional smoothness on the part of the exact solution u if we are to obtain
rapid convergence. Furthermore, as we consider higher order finite elements,
we will require additional smoothness to achieve the best convergence rates: for
example, for quadratic finite elements, |||e]|| < C h? ||ul| g3(o) — a higher power
of h, but also a higher norm of u.

1.5 Error: H' Norm
1.5.1 Reminders
The H' norm:

”U”%Il(g) = |U|%11(Q)+||U”2L2(Q)

1 1
/ vidw—}—/ v dz ;
0 0

llel| 1 (o) measures e and e;.
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Coercivity of a(-,-):
Ja > 0 such that a(v,v)

1 1 1
(/ vidr > a(/ vidm—l—/ v2dm)> .
0 0 0

(Recall this Poincaré-Friedricks inequality follows from the fact that v € X
satisfy v(0) = v(1) = 0. For our problem, o = L “works,” as can be shown
(say) by considering the Rayleigh quotient.)

v

o ”U“%Il((l): Voe X

\%

Continuity of a(-,-):
3B (= 1) > 0 such that a(w,v) < B ||lwl|a(e) [[v]lai @) -

(Recall this is derived from the Cauchy-Schwarz inequality.)

1.5.2 General Result

SLIDE 24
The error e = u — uy, satisfies
lellm@ < 1+2) ot fu—willme
[0 weXp
N—_——’ - ~ _
degradation orpor in ! projection of u on Xp,

in general uy, is not the H ! projection of u on Xp,.

> Exercise 4 For what particular problem (give the strong form) is uy the
H! projection of u on X,? m

Note 5 Proof of H! norm general bound (Optional)
To begin, we note that for any wy, € Xy,
allun —willingy < a(un — wh,un —wp) (coercivity)
= a(up —wp + (u—up),up —wp) (orthogonality)

= a(u—wp,up — wy)

< Bllu—whrllar (o) llun — wrllai@)  (continuity)

10



so that

B
lun = willm @) < = llu = willao) -

But then

lu —unllr@) = llu—wn+wn — uplla(e
< lu —wrllarQ) + llun — willg (o) (triangle inequality)
< (1 + g) lu —whrllEr @)  Ywn € Xp;

and thus

5y .
= unllny < (142 it hu—wnlanga

as desired. Note in this proof we in fact did not use symmetry — the proof ap-
plies to any linear problem for which the bilinear form a of the weak formulation
is coercive (and continuous).

In fact, for our current case, which is also symmetric and thus has a mini-
mization statement, we can improve this result: in the energy norm we know
that

alu—up,u—up) = inf alu—wp,u—wp) ;
wprEXp

thus from coercivity and continuity
2 : 2
allu — ungr () < w}}felg(h B llu — g1 (q)

or

B .
- <\y/= f -
[l Uh||H1(Q) SVa wlélxh [l wh||H1(Q) )

which is sharper than our previous result since 8 can not be less than « (take
v = w in the continuity condition).

Note if we compare the above proofs to similar finite difference proofs, we
see that coercivity plays the role of stability, and orthogonality the role of con-
sistency. Together they imply convergence.

1.5.3 Particular Result

h
We know ||u _Ihu”Hl(Q) S \/i ; ||U||H2(Q,7‘h). Thus

The /2 is simply a sloppy bound for (1 + 2—2)1/2 which arises because the H'
norm has contributions from both the H' seminorm and L? norm of Slide 13.

11
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lellm @) = (Hﬁ) inf |lu — whl (o)

wh EXp

IN

1 ) la — Tuullan o)

+
vz (1 ; ) R e -

IN

The error in the H' norm converges at the same rate as the error in the energy
norm. (This must be the case since the two norms are equivalent.)

1.6 Error: L?> Norm
1.6.1 Reminder

The L? norm:
1/2

1
||v||L2(Q)=(/ v2dm> :
0

llel| L2(q) measures e.

In the L?-like norm, we found for finite differences that the error comverged as
h?; given the similarity of A, for finite elements to the corresponding system
matriz for finite differences, we expect h® behaviour here as well. Note the h
dependence (as opposed to h? dependence) of the H' norm is not surprising —
it measures the error in a stronger norm.

1.6.2 Particular Result

A General Result is possible, but not as transparent as in the other cases, so we
go directly to the particular result.

The L? error satisfies

IA

llel| 2 (e C hlell (o)

IA

Ch? ||U||H2(Q,Th) ,

for C' independent of h and u.

12
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Note 6 Proof of L? result (Optional)

The proof is by what is known as the “Aubin-Nitsche” trick, an application
of duality. We will see it again for linear functional error estimates.
To begin, we introduce an auxiliary problem: find ® € X = H}(Q) such that

1
a(v,@)z/ evdr
0

where e is the error u — u,. We now set v = e, so that

1
lelfe = [ cedr = ae.9)

= a(e,®—7I,9) (orthogonality)
< Bllellm(e) |2 — Zn®|m (o) (continuity)

h
< Bllellar @) —l1®lla=)

where the last line follows from our interpolation result of Slide 10. Now we note
from Slide 6 of the last lecture that, since e € L*() (in fact, e € H}(Q?)), ®
satisfies ||®|| g2(q) < Cllel|z2(q) (note the strong form for @ is simply —®,, = e).
Using this fact and dividing by [le||r2(q) gives

llell 2@y < C hllella (o)

from which the rest directly follows. (Note C in different expressions need not
be the same: C is a generic constant independent of h and w.)

Note the L? result appears relatively unimportant (apart from confirming
our intuition). However, that is not the case: the fact that ||e[|z2(q) converges
faster than ||e||g1(q) has important ramifications in many different contexts
(e.g., a posteriori error estimation). Our proof here needs only continuity —
not symmetry, not coercivity — and is thus quite general, though the regularity
hypothesis on ® requires more attention in IR2.

1.7 Linear Functionals
1.7.1 Motivation
A linear-functional “output” s is defined by
s =09(u) + 9 ;
where
©: HY(Q) =R

is a bounded linear functional
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1°W)| < Clwllare , YveH; Q).
Strictly speaking, due to the c©, our outputs are affine, not linear.

Very relevant:  engineering quantities of interest.
For example:

s: average over D C (2, with

29 (v) :/ vdx ;
D

s: flux at boundary, wu;(0), with
1 1
) = —/ (1— 1)y vg, © :/ fl—z)dz .
0 0

Note 7 Boundedness of output functionals (° (Optional)

We shall see that it is very important in theory and practice that our output
functionals be bounded. In the first case above, it is clear that £© € H~1(Q)
(that is, is bounded); in fact, £© € L?(2), which we can exploit (see subsequent
slides).

In the second case, had we simply written the obvious choice £©(v) = v,(0),
this would not be a bounded functional for v in H3(Q). For example, if v ~ 23/
as ¢ — 0, v is in H}(Q), yet v,(0) is infinite. If we were to use this functional,
v2(0), to compute u,(0) in practice, poor convergence would result. In contrast,
it is clear that our choice of Slide 29 is bounded:

1 1
Cw=-[ -0 0de= [ vdo <ol

by the Cauchy-Schwarz inequality. But does £© (u) + ¢© = u,(0), as desired?
To show this, we recall that u satisfies —u,, = f, u(0) = u(1) = 0 (assuming
fisin L?(Q) for simplicity). Then

Il

0°(u) + °

_/1(1_$)$Uw_(1_w)fdm
0

~(1-2) uz|3—/<1—x)<—um—f) dz = u,(0)

as desired. It may seem that our £©(v) of Slide 29 and v, (0) are thus equivalent
— that is not the case. They both evaluate to u;(0) for v = u, but for gen-
eral v € H}(Q) (e.g., our finite element approximation up) the bounded choice
behaves much better.

(Note for this particular very simple case, £ (v) = fol vy dr = 0, and thus

we can obtain the exact result u,(0) = fol f(1 — z) dz on any mesh (indeed,
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without any numerical calculation). Of course this will not be generally true for
more difficult problems.)

Of interest: s =£°(u) + c©,
sn =L (up) +
—_————

finite element prediction of output

error in output is thus

|s = snl = 1€°(u) = €7 (un)| = [€°(u — un)|
€9(e)] -

Recall that e = u—uy,; note the second step above follows from linearity of £° (v).

1.7.2 General Result

If (0 € H-1(R), then
€9 (e)| < C lel| a1 (o) (boundedness).

If (© € L%*(Q), then
169 (e)| < C |lellr2(a) (boundedness).

In fact: for any £© € H1(1),
169 (e)| < C lellm (o) 1v — Yrllm @
where a(v,y) = —LOv), VveX
a(v,p) = —£°9(v), VoveXy,

and % is an adjoint, or dual, variable.

Note 8 Role of adjoint (Optional)

The variable ¢ above is denoted an adjoint, or dual, variable, though we will
not dwell on the meaning of the term here. We note only that the strong form
for 1) is —thy, = “—£°,” which can be viewed as our original equation but now
with the output functional as data; in the case of a nonsymmetric operator, ¥
would be acted upon by the dual, or transpose, operator, in which the signs of
the odd derivatives would be flipped relative to the original equation.
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Quite apart from what we call ¢, the proof of the above result is simple.
Since e € X, we have that

°(e) = ale, ) -

But from orthogonality, a(e, ) = a(e, ¥ — 1y,), since a(e, ) = 0 as ¥, € X,
(see Slide 16). Thus, by continuity,

169 (e)| < C llellar (@) 1Y — ¥nllar (o) »

as advertised. (This applies even to nonsymmetric operators, and even nonco-
ercive operators, since we have been careful to put ¢ as the second argument of

a(:,-).)

1.7.3 Particular Result

From our earlier bounds for ||e[| g1(q) and [|e[|2(q) for linear finite elements:
for €0 €H-'(Q): [(9(e)] < Chllullua,m)
for (9 €L*(Q): [t9(e)| < Ch? ||ullm2,7,) -

Better yet: for (© € H-Y(Q)

1°(e)| < C[ 2] lullae.my 0l -

In this last step we simply apply our H' error estimate to the dual problem. Note
this dual problem never appears in practice (at least in the a priori context) —
it is only used in the theory to demonstrate the h? convergence rate. (It can also
be used to prove superconvergence.) In practice, the h* convergence rate is very
attractive — the quantities of interest converge quickly.

Note in the above we require that u be in the broken H? norm, and also that ¢
be in the broken H? norm, to obtain the h® convergence rate. This will be the
case if the distributional part of €C is restricted to nodes.

Finally, we remark that it is a common criticism of finite element error anal-
ysis that the nmorms considered are mathematically convenient but practically
wrrelevant. This last slide proves that this is patently not the case.
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2 Implementation

2.1 Overview SLIDE 34
Four steps:

A Proto-Problem,

Elemental Quantities;

Assembly;

Boundary Conditions;
and Quadrature.

2.2 A Proto-Problem
2.2.1 Space and Basis
Let X, = {veHYQ)|v|r, € Pi(Ty), VTh € Tr}

SLIDE 35

= span{go,---,Pny1} -

We now include po and @1 in our basis since v need not be zero at x = 0 and
x=1. Any v € X} can be represented as

dim(X3) =n + 2 (two more than dim(X})).

2.2.2 Deﬁn~1t10n SLIDE 36
“Find” 4y € X}, such that
a(tp,v) = £(v), VveX,.

We never actually solve this problem:
it serves only as a convenient pre-processing step.
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Note that the above problem corresponds to all-Neumann (homogeneous) bound-
ary conditions. We know from the earlier lecture that this may not even have a
solution (if £(1) #0), and if it has one solution, it has an infinity of solutions.
But again, this is no cause for concern, since we will never actually try to find

i

2.2.3 Discrete Equations

SLIDE 37
N N n+1
Ah @h = Eh ﬁh(w) = Z Up § QOZ(:L')
i=0
~ ! d(p,' d(p]‘ ..
Ah,ij = a((pi,QOj): 0 dz Edma 0SZ,]S’I’L+1
1
Fn; = 5(%’)(:/ f‘PidﬁU), 0<i<n+1
0
These equations are identical to those from before, except for the additional rows
and columns i =0,n+1 and j = 0,n + 1 (which we will ultimately eliminate).
They can be (re)derived by either the Rayleigh-Ritz or Galerkin routes: the latter
is the simplest — replace Gp with ¢;, and v with ¢; (or vice versa since a is
symmetric).
SLIDE 38

Matrix form:

1 -1
-1 2 -1 0
-1 2 -1

Notice the first and last “Neumann” rows. A, is symmetric but only positive
semi-definite.
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2.3 Elemental Quantities

2.3.1 Local Definitions
Element T}: =T w’f wg

z¥: local node 1 of element T};

zk:

h¥: length of element T,f.

local node 2 of element T};

Node 1 and node 2 are “local” names for the two (global) nodes (e.g., 10 and
x11) at the two endpoints. We shall later introduce a mapping between these two
different sets of labels. For the present, we restrict attention to each individual
element.

2.3.2 Reference Element
Definition: T = (-1,1)

-1 ¢ +1
—
C1 Ca

(1: reference element node 1;
(2: reference element node 2.

Relation off to each Tf: Affine Mappings

fc*—“l ( Cz\ Fi(C) =w’f+%(1+C) h*
f\’i }k_l
k
TF & —1 = r—* —1
h w’f xr m’; fk (:l:) hk

Affine mappings (essentially “linear mappings plus a constant”) have many im-
portant properties, one of which is that polynomials of order p map to polyno-
mials of order p. This will be used (implicitly) in what follows.
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2.3.3 Reference Element Space, Basis

N N SLIDE 42
Define space X =1P1(T'): all linear polynomials
over T; dim(X) = 2.
Introduce basis for X, H1(¢), Ha(¢):
Tl (1-0¢)
Hi(¢) =
i e Ha 1(0) 2 Lagrangian
1+¢) interpolants
G=-1 =1 H2(C) = T
R 2
It should be clear that for any v € X, v(¢) = Z v(§) Hi ().
i=1
2.3.4 Elemental Matrices 1 SLIDE 43
~ dp; do;
Anij = alpi, pj) = d:vz d—x] dzx
Element T3 (say) contributes
T, T, T,
g 1 T2 T
/ dps or 3 dps or 3 de ’ 1 ’ 3
T3 dz T3 dz T3 902|Tg’ f"“:‘.::__,‘.; sl
P —
ml h :Ez
R SLIDE 44
Change variables Tp — T
‘P2|T,§‘P3|Tg 7‘(17‘(2
hk Cl =-1 CZ =1
dprors dprars /l (d'ﬂlor23>(d%1m23>(dch_k>
R P e N A AN IZANE
Note 9 More formal mapping

We can do the change of variables in a more explicit way. First, we note that

P2 or 3|Ts (37) =H1i or 2(-?;1('”)) )
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which can be easily verified. We also note that

dz
dC | 1

_dFs BB d¢

dFs _1W? d¢ _dryt 2
Todc T 27 dr|ps

dz h3

Thus

d(p2 or 3 d<P2 or 3 _ / i -1 i 1
/’1’3 d{E d.Z' dIL' - Tf d.Z' Hl or 2 (f3 (.TL')) d.’L’ Hl or 2 (T3 (IL')) dJI

and substituting ¢ = F5 *(z) gives

d _ d _
[, 2t o2 @) Mo o (@) do

¢ d a W
/ dCHIOer dCH10r2 dC—

3 1
_ B3 dHlor2dH10r2d<‘
2 |, & ac

In higher dimensions with more complicated (“isoparametric”’) mappings for
curved domains, this more detailed procedure becomes a necessity.

Define 4 € R (e, k - 3)

2 /1 dHo(1 or 2) dHp(1 or 2) dc =

heJ d¢ d¢

2 (H
ﬁ/ dg—dg— o= ﬂ—(%)
1 — gk , :
3 [ -1 1 ] =A Elemental Stiffness Matriz

A represents the contribution to A~h from element k: of course it still remains
to place this element matriz in the right place.

> Exercise 5 Derive the final form given for Agﬂa 1<aq,f<2.m

> Exercise 6 The proto-mass matriz M, € R(Dx(n+1) ig defined by

1
Mhijz/ pipjdr  0<i,j<n+1.
0
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n+1 n+1

(a) Show that Z Z Mhij =1.

i=0 j=0

(b) By analogy to our procedure for the stiffness matrix above, find the ele-
mental mass matrix M* € R2*2.

|
Note 10 The dyadic form
The “dyadic” form
dH, dHi dH,
2 [t d_ d_r 2 [t dc ¢ d¢
= —H = dc = = d
e I N ) ‘
d¢

(1)

makes it clear that the elemental matrices are only rank one, and thus singular
(symmetric, but only positive semi-definite); the nullspaceis (1 1)7. This is not
surprising, since in some sense AF corresponds to the pure Neumann problem on
a domain which is a single element; we know that the solution to this problem
can “float,” as reflected in the (1 1)7 nullspace of A*.

In general, this dyadic form can play an important role in a variety of contexts
(e.g., optimization) — it gives the matrix and certain quadratic constraints
special properties.

2.3.5 Elemental “Loads”
1
Fri=Lp)) = /f%dw
(say) 0

Element T} (say) contributes

1 2 3
Th Th Th

Lo L1 T2 T3

dx
/Tf f4,02 or 3 9"2|T,5j s

903 | T3

We present here the procedure for £ € L?*() for which we can write £(v) =

fol fv dz in the usual sense. For delta distributions we need to make (in the
end, irrelevant) decisions as to which element (or elements) to which we should
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associate the mass. Although not complicated, we restrict our exposition to the
more transparent case.

~ SLIDE 47
Change variables Tp — T

"'_,»' . "'_,»" "~._.\‘
G=-1 =1

hk 1
f P23 dx —/ fHio2dC
T3 2 Ja

SLIDE 48
Define ¥ € R? (e.g., k = 3):
hk

1
FF = 5 /1 FHaq or 2 dC Elemental Load Vector

_ Rkt _( M
[ ()

Evaluation (usually) by numerical quadrature.

2.4 Assembly
2.4.1 The Idea

The assembly procedure is often denoted the “direct stiffness procedure,” again
signaling the roots of finite element practice in the structural community. It
s also sometimes referred to as “stamping,” as one stamps in the various el-
emental contributions. The assembly notion and associated algorithms in fact
also apply to discrete (lumped) systems such as electrical circuits, collections of
trusses, . ...

SLIDE 49
Recall triangulation and basis functions:

$o P1 P2 P3 P4

9949

Lo T1 T2 T3 T4
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RO
R1
R2
R3
R4

1
. . e d(pz' dcp-
T3 contribution to Ay i ; = a(p;, p;) = d]
> contribution to Ay ; ; = a(pi, ¥;) 4z dr dx
2 3
/ dya or 3 d@Qordezz hisl —{%
s dx dz 3 \—75 73
A3
Column 1 of 4> Column 2 of A4°
Row 1 of AS Adds to A22 Adds to A23
Row 2 of A3 Adds to A3z Adds to Ass
co C1 C2 (C3 (4
RO
R1 ) )
R2 e W T
h3 3 3 _
R3 — 7 h_{; 4" = ( _1
R4 P
gh with T2 ac‘gounted for ...
o ~ dy; dp;
T; contribution to Ap;; = a(ps, ;) = /0 Ir d—wj d
3 4
dp3 or4 dp 3or4 3 ,%4 _L4
/T;; dz dz dx_} S L ]
e
Column 1 of A* Column 2 of A*
Row 1 of A*  Adds to Ass Adds to Asy
Row 2 of A* Adds to Aus Adds to Ay
Cco C1 C2 C3 C4
S &
R R 4 RZ
L
—_ —_ h4
R R

A, with T3, T} accounted for ...
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Note we can think of each row i of A~h as the contribution to §J,(up) due to
v = @;: we see that R3 (corresponding to p3) of A~h takes half the variation due
to 3 from T}, and half from T;} — the two elements over which 3 is non-zero.
In the above example RS is now complete — and for h> = h* = h we see that the
desired %(—1 2 —1) has now fully emerged. No other rows are yet complete.

SLIDE 54
By similar arguments:
_ 1
T}? contribution to Fj; = £(p;) = / f i dx
0
B[t
2 — / fH1dC
2 /.
/ fw2or3ds = B3 1
g 3| = / FHs dC
2 /.
F
Row 1 of F? Adds to Fj,»
Row 2 of F* Adds to F 3
SLIDE 55
RO
R1
R2 | Y o [ F
R3 F3 F3
R4
~—_——
F,, with T3 accounted for
SLIDE 56

1
T; contribution to Fj,; = £(p;) = / f i dx
0

h4 1
3 7/ FH dC
-1

/4f‘1030r4 dx: h4 1
T 4| = Had
2/ fHa2dC

-1

F4

Row 1 of F* Adds to Fj, 3
Row 2 of F* Adds to Fj 4
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SLIDE 57

RO

R1

R2 F? o ( Ft )
R3 | F} + F! - F4
R4 Fi

~ >
e

F,, with T3, T} accounted for

2.4.2 The Algorithm

SLIDE 58
Introduce local-to-global mapping:
0(k,a): {1,...,K} x {1,2} — {0,...,n+1}
—— —— | S —
element local node global node
number number
such that
zF (local node a in element k) =
Tg(k,a) (global node O(k,a)).
SLIDE 59
Example: K =4
Py B T T, 0(k, cx)
1130514:1E52€E31134 ak1234
i ; 1/0{1(2|3
x? 21[2[3]4
Note that assigning different numbers to different global nodes — the ordering
problem — just corresponds to a different 6(k, a).
_ SLIDE 60
Procedure for A,:
Zero Avh,
{for k=1,....K
{for a=1,2
i=0(k,a);
{for g =1,2
j=0(k,p) ;
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Avhij=Avhz'j+AZﬂ it }}

Note that the row o of A¥ is placed in row 0(k,a) of Ah, which is the row
of A~h which corresponds to the variation due to @g(r.q); for example, for the
case of the preceding slide, row 1 of A* will go into Tow 6(2,1) = 1 of Ah —
corresponding, as it must, to a contribution to the variation ;.

~ SLIDE 61
Procedure for F:
zero F I
{for k=1,...,K
{for a=1,2
i=0(k,a) ;
Fyi=Fypi+FF s} }
The direct stiffness procedure (or an analogue relevant in the iterative solution
context) is at the heart of any finite element code. It automatically correctly
incorporates all the interactions/overlaps between elements based on the single
piece of connectivity information (k, «); the latter is generated in the mesh gen-
eration process. The relative advantage of element-based (vs. p-based) assembly
will become even clearer in IR?.
2.5 Boundary Conditions
2.5.1 Point of Departure
SLIDE 62
r -1 Upo Fho
-1 2 -1 0 iin1 Py
1 -1 2 -1 : :
h - :
0 -1 2 -1 iihn Fun
-1 1 Up nt1 Frntt
i &, 7,
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2.5.2 Homogeneous Dirichlet

SLIDE 63
up, € X, such that a(ug,v) = €(v), Vv e Xp:
Xy, = {veX|v|n, € P (Ty), VI € T} ;
X = {veH'Y(Q)]|v0)=v(1)=0}.
v E fh
\ - —
Po 1 X Pnt
'\/\ T T T T T T T /\/V
g Ln+41
SLIDE 64
FEzxplicit Elimination
Xn = @0, Ynt+1 not admissible variations, so
REMOVE R0 and Rn + 1 from A,;
Upo = Upnt1 = 0, 80
REMOVE C0 and Cn + 1 from A4,.
‘Recover A, u, =F, ‘
Here Rz and Cy refer to Row z and Column y of A~h. To see why we remove
CO and Cn + 1, recall the columnwise interpretation of matriz multiplication:
po and Gppy1 “weight” CO and Cn + 1, and since 4po = Gppny1 = 0, these
columns may be eliminated.
SLIDE 65

Big-Number Approach penalty
Place 1/¢ (¢ < 1) on entries Ap oo and Ay, ] e

Place 0 on entries ﬁ’h o and ﬁ’h n+tl-

This replaces RO and Rn + 1 with
Upo =0, Upnt1 =0
in an “easy,” symmetric way.

This is the easiest to implement, in paticular in higher dimensions, in that it
requires no modification to the data structure for A,. In practice € should be
very small compared to the entries of RO and Rn + 1, but still not in the “noise”
(relative to precision). It might appear that small € would cause conditioning
problems, but this is typically not the case — the “bad modes” are not aggravated.
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Note all the procedures described here are really intended for direct solution
procedures. Boundary conditions are imposed differently in the iterative context.

2.5.3 Inhomogeneous Dirichlet

up € X such that a(up,v) = £€(v), Vve Xp:
X}, requires v(0) =v(1) =0

XP requires w(0) =uP, w(1) =0.
W E XP e )
v E fhl -
P01 X Pnta
Ko+
o Tpt1
Ezplicit Elimination . ..
Xn = @0, Ynt+1 not admissible variations, so
REMOVE R0 and Rn + 1 from A,;
XP = dpo=uP, Gpny1 =0, 50
MOVE —u? C0—0Cn +1to F,.
... Explicit Elimination
—? ; -1 0 o
1 -1 2 -1
h
0 12 -1 ||
-1 2 Uh n
N T _

Big-Number Approach

Place 1/¢ (¢ < 1) on entries Anoo and Ay nt1 -

Place (1/¢) u? on entry Fj .

Place 0 on entry ﬁ‘h nt1-

This replaces RO and Rn + 1 with
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ﬁhl —uP x (—%)

th
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~ D ~
Upo E U™, Upny1 =0.

> Exercise 7 Consider the mixed Neumann-Dirichlet problem, —uz, = f
in (0,1), u(0) = u”, u,(1) = 0. How should 4,,F, be modified to incorpo-
rate these conditions using (i) Explicit Elimination, and (i7) the Big-Number
Approach? m

2.6 Quadrature
2.6.1 Question

How do we evaluate

for general f? N11

Note f*(¢) = f (:c’f + 30 hk) = f(z = Fr(C)), which returns the correct
value of f(x) corresponding to ¢ € (—1,1) in the reference element.

Note 11 Variable conductivity

The issue of quadrature also arises in the case of variable conductivity (and,
in R2, in curved domains). For example, if we wish to solve the problem

—(6(@)uz)e = f in (0,1)
uw(©0) = wu(1) = 0,
the weak form is readily found to be

1 1
/ n(:ﬂ)uzvmdx:/ fodz, Yve Hy() ;
0 0

the finite element approximation is thus

1 1
/ m(m)uhwvwdxz/ fudsz, Yve Xy .
0 0

~~

a(up,v)

This leads to the discrete equations A4, u;, = F,, where

! dp; dp;
Apij = alpi,vj) —/0 k() - %dﬂf )
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and associated elemental matrices
2 1 1+¢ dHo dH
Ak = 2 k k o B )
s hk/_l’“(”’l+ 2 h) ac a *

Clearly, for general x(z), we can not hope to integrate these expressions exactly,
and thus numerical quadrature is required.

SLIDE 71
Approaches
e “Analytical” Integration
e Symbolic Integration
e Gauss Quadrature <+
e Integration by Interpolation N12
Note 12 Integration by interpolation

In this approach, we first interpolate f*(¢) as
2
Q=3 fEHs(Q)
B=1

where fFf = f¥(¢ = —1) and f¥ = f¥(¢ — +1); note we indicate the limit
rather than the value to recognize that f may be discontinuous.
We then have

2 hk 1
Ff =~ Z?/l”ﬂaﬂgdgfg
B=1 -

2
> M1k,
=1

where M"* is the elemental mass matrix (see Exercise 6).
It can be easily shown that if f is, indeed, continuous, then F; = M, f,
where f is the vector of nodal values of f, that is

f (o)
f=1
f(@n41)
From our earlier discussion of the mass matrix M (see Exercise 6) we thus obtain
% fo+ %f 1

- Fho+2fi+5f
Ehz .
%fn‘i‘%fn—i—l
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We thus see that the finite element method “distributes” the loads to a few
neighboring grid points — not surprising, since the finite element identity, the
mass matrix, is not diagonal. (On some occasions one prefers a diagonal identity
— the result is a “lumped” mass matrix.)

We note that the above integrations, like all inexact numerical quadratures,
constitutes a variational crime — a deviation from the strict variational recipe.
Indeed, F,;, above (and in this entire section) is really not the F, of earlier,
but rather an approrimation to the earlier Eh. In the case above, the errors
we commit are small in the sense that our earlier error estimates — at least as
regards the exponent of h — remain unchanged.

2.6.2 Gauss Quadrature

Approximate

R N AGEAGES

N,

2 Z pa F*(2g) Ha(zo):

=1

2
|

pq:  Gauss-Legendre quadrature weights
zq: Gauss-Legendre quadrature points.

The Gauss-Legendre pg, 2, are tabulated in any finite element textbook on nu-
merical quadrature, or handbook on numerical methods.

The pg, 24, ¢ =1,..., Ny are chosen so as
to integrate exactly all g € IPan,—1 ((—1,1)). |NI13
To conserve “ideal” convergence rates,

require N, > 1 ( > p for IP, elements).

By “ideal” convergence rates we refer to those for the H' and L? errors in the
absence of any variational crimes (such as quadrature).

Note 13 Gauss quadrature procedures

There are many different approaches to numerical quadrature. Two of the
most common are Gauss quadrature and Newton-Cotes formulas: in the former,
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both the p, and z, are free to vary, providing 2V, degrees of freedom; in the
latter (standard rectangle, trapeziodal, . ..rules) the z, are prescribed, and only
the p, are free to vary — one thus obtains lower accuracy for fixed N;. (There
are also schemes “in between” these two extremes — in which some points 2,
are set, but the rest can be optimized.) There are different Gauss quadrature
formulas depending on the “weight” in the integral; here the weight is unity, and
the formulas are thus known as Gauss-Legendre. (The name derives from the
Sturm-Liouville problem which generates the Legendre polynomials; relatedly,
the 2z, are the zeroes of the N, ;h Legendre polynomial.)

We can easily derive the N, = 1 Gauss-Legendre point 2; and weight p;. In
particular, we wish to choose z; and p;, such that, for g € IP;((—1,1)),

1
/ gdz = p1 g(z1) -
1

But we can write any g € IP;((—1,1)) as g° + g'z; furthermore,

1
/ ® +glzdz=2¢".

—1

So clearly we should choose z; such that g'z; = 0 — that is, 2; = 0 — and then
pP1 = 2.
To evaluate F¥ (approximately) with this one point formula, we then have

FE x BE £E0) Ha(0)
k
= Sr(Gat+ab) .

Clearly, this is very simple to implement; Gauss quadrature is a very popular
approach to evaluation of elemental quantities. Note that it is not always the
case that we should use the lowest possible IV;; sometimes it is of interest
to integrate exactly a particular term (e.g., the mass matrix, which involves
quadratics), in which case N, must be larger than (say for linear elements) 1.
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