Finite Difference Discretization

of Elliptic Equations: 1D Problem

Lectures 2 and 3



1 Model Problem

1.1 Poisson Equation in 1D
Boundary Value Problem (BVP)

N1

[Cun@) = 1@ 1]

z € (0,1), u(0)=u(l)=0, feC° N2

N3

Describes many simple physical phenomena (e.g.):

e Deformation of an elastic bar
o Deformation of a string under tension
e Temperature distribution in a bar

The Poisson equation in one dimension is in fact an ordinary differential equa-
tion. When dealing with ordinary differential equations we will also use the
“prime” notation to indicate differentiation. Thus, uyz = u', uge = u"”, etc. The
Poisson equation will be used here to illustrate numerical techniques for elliptic
PDE’s in multi-dimensions. Other techniques specialized for ordinary differen-
tial equations could be used if we were only interested in the one dimensional
case.

Note 1 Poisson equation

The Poisson equation (in IR2) is elliptic, per our classification. It is also coercive,
or positive definite, and symmetric (these concepts will be defined more precisely
in the Finite Element lectures). These attributes are very important as regards
numerical treatment. These properties are reflected in the fact (see first lecture)
that the eigenvalues of —V?2v are real and positive.

Note 2 C™ spaces

We denote by C™, more precisely, C™ ([0, 1]), the set of functions f(z) : [0,1] —
R with continuous m derivatives. Thus, C° denotes the set of continuous func-
tions. Obviously, C*¥ c C™ for k > m.
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Note 3 Green’s function

For this problem, the solution u can be written explicitly as

1
u(o) = [ Gla,)f)dy
0
where G(z,y) is the Green’s function given by

_Jyl-2) if 0<y<wz
G(“’y)‘{w(l—y) if s<y<l

To show this, we start by recalling that for any function which is twice differ-
entiable, there are constants C; and Cs, such that

Cy +/ u'(y)dy
0
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C’2+/ u'(2)dz.
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If u satisfies the one dimensional Poisson equation, then

W(y) = Cy— / " f(2)d.

u(z) = Cy + Coz — /0 (/Oy f(z)dz) dy.

F(y) = / " f(2)dz,

Therefore,
Defining

we observe that

[ ([ @) a = [ Fwa

0
= WFW)E - / yF'(y)dy

= zF(z) - /0z yf(y)dy

/0 “(@— ) fw)dy,

by proper attention to dummy variables. Finally, we obtain the general solution
in the form



w(z) = Cr + Co — /0 “(@— ) fy)dy.

For our particular problem we can now impose the boundary conditions u(0) =
u(1) = 0 to determine the constants C; and C2. Thus, after some arithmetic,

u(z) = / "y 2)fy)dy + / "2 (1~ y) )y,

u(z) = / G(z9)f(v)dy.

We note that G(z,y) has the following properties:
e (G is continuous,
e G is symmetric e.g. G(z,y) = G(y, z),
e G(z,y) >0forall z,y € (0,1),
e (G is a piecewise linear function of z for fixed y and vice versa.

The particular form of expressing the solution, in terms of the Green function,
will be revisited when we address the topic of integral equations.

Note 4 FElastic bar

Consider an elastic bar of unit length which is fixed at both ends and subjected
to a tangential load per unit length p(z).

HIR 2
HE A
(@)
——u + du
p—éw x + dx
Ao~ :|—>Ac(a'+d0')
H
dz



Let o(z) and u(z) be the axial stress and tangential displacement at z, respec-
tively. From horizontal equilibrium we have

Aco — Ao +do) =p dx

Under the assumption of small displacements and a linearly elastic material we
have

(u+du) —u

=F
o dz ’

(Hooke’s law)

where F is the modulus of elasticity and A, is the area of the bar cross section.
Differentiating the constitutive equation and combining the two equations to
eliminate o’ we obtain the Poisson equation with f =p/(EA,).

Note 5 String under transversal load

Consider a string of unit length under tension 7', which is subjected to a trans-
verse distributed load of magnitude p(x) per unit length.

pdm—ﬁﬁllll T/\/0+d0

/
g —S—)T dx

Let u(z) denote the transverse displacement at point z. Assuming small dis-
placements, so that the tension 7" can be taken as constant over the whole string,
and considering vertical equilibrium we have

TO+dO)—T6=pdx.

The angle € can be related to the displacement u simply as

du

0=——.
dx

Note the minus sign which is due to the fact that a positive u corresponds
to a downwards displacement. Combining the two equations to eliminate the
variable € we obtain the Poisson equation with f = p/T.




Note 6 Temperature distribution

Let u(z) and ¢(z) denote the temperature and heat flux in a homogeneous heat
conducting bar of unit length. The bar is subjected to a distributed volumetric
heat source p(x) and the temperature is maintained at zero at the end points; the
sides of the bar are assumed insulated so that the heat flow is one-dimensional.
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T (z)
Ac.pdzx

|
Acq — D — A.(q + dq)

H
dz

The stationary temperature distribution can be obtained by considering the
energy balance

Ac(g+dq) — Acq = Acp du,
and the empirical relation between the temperature and the heat flux
q=—kT'. (Fourier’s law)

In the above equations, k is the heat conductivity and A. is the bar cross
sectional area. Defining f = p/k and eliminating ¢ from the above equations
we obtain the Poission equation.

1.1.1 Solution Properties
e The solution u(z) always exists
e u(z) is always “smoother” than the data f(z)

(see first lecture). In particular, if f has m continuous derivatives, u will have
m + 2 continuous derivatives. Thus, if f € C°, then u € C2.

o If f(z) > 0 for all z, then u(z) > 0 for all

Follows from the positivity of Green’s function.

* |ulloo < (1/8)[|floo N7
e Given f(z) the solution u(z) is unique N8
Note 7 Continuous stability estimate

We recall that for a function v : @ — R
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llulloo = sup [u(z)],
e

where Q is the domain of definition. For example, the || - ||co—norm of the
functions z, 2(1 — ), eV® and sin(nz), in the interval Q = [0,1] is 1, 1/4, e and
1, respectively.

Since G is non-negative we have

1 1
u@)| < | Gl iy <|fll [ Glan)dy = 11fllwzal ~ ).
Therefore

1
[[ulloo = sup |u(z)] < Z[|f][co-
z€[0,1]

This estimate is a consequence of the fact that the solution u depends con-
tinuously on the data f. In other words, we can say that if f is small so is
u.

Note 8 Solution uniqueness

Uniqueness of the solution follows directly from the above estimate. If we have
two solutions u; and us which satisfies the Poisson problem for a given f, we
have that v} —u} = (u3 —u3)" = 0. This implies that u; —us satisfy the Poisson
problem for f = 0. Thus, we can use the above stability estimate to show that
[|lur — u2||coc = 0. Therefore, u; = uz (We note that the same conclusion can
be reached by integrating (u; — u2)"” = 0 twice and imposing the appropriate
boundary conditions.)

2 Numerical Solution

2.1 Finite Differences
2.1.1 Discretization

Subdivide interval (0,1) into n + 1 equal subintervals
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When v; corresponds to the values of a continuous function v(z), at point x;,
we will not make any distiction between v; and v(x;). We will use 4; to denote
the approzimation to u;. We will use the underscore to indicate vector. Thus,
v denotes the vector {vj}i<j<n-

2.1.2 Approximation

SLIDE 4
For example ...
" 1 ! !
v'(z;) =~ E(’U (Tjp1/2) — V' (2j-1/2))
~ L(WH —V YT
Azx Azx Ax
_ Vjt1 — 205 +vj1
Ax?
for Az small
A more formal derivation of difference approzimations to function derivatives
will be consider later.
2.1.3 Equations
SLIDE 5

—Uzy = [ suggests ...




i flar)
. -1 2 -1 Gis f(@2)
=Az| 0 0 |- &= , f= :
-1 2 -1 o1 f(@n-1)
0 0 -1 9 a fan)
(Symmetric)

AeRY" a, feR"

2.1.4 Solution

Is A mnon-singular ?

For any v = {vl,vz,...,vn}T

Ax? P
Hence | vT Awv >0, for any v £ 0 ‘ (4 is SPD)
Aa=f : 4 exists and is unique N10
Note 9 Matrix Properties

The matrix A has a number of properties that will be exploited in the analysis.
We give below the definition of some matrix classes and their main properties.

Symmetric Positive Definite (SPD)

We say that a matrix M is positive definite if ¥" My > 0 for any non-zero
vector v. For symmetric matrices this condition is equivalent to requiring that
all the eigenvalues of the matrix be positive. To show this we note that if A is
symmetric and has real coefficients, it can be written as M = QTAQ, where A
is the diagonal matrix of eigenvalues and ) is an orthonormal transformation,
ie. Q7' = Q7. Then, v" Mv = vTQTAQu = wTAw > 0 for any v Z 0 (or any
w = Qu # 0 since @ is non-singular), implies that all the entries in A must be
greater than zero. Obviously, any matrix which is SPD is also non-singular and
therefore invertible, M~! = QA~'QT.

Diagonal Dominant
We say that a matrix M = {m;;}1<; j<n is diagonally dominant if

SLIDE 6
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n
|m“| > Z |mij|, for all 7.
JF#i

If the inequality is satisfied with strict inequality, we say that the matrix is
strictly diagonally dominant. It can be shown that strictly diagonally dominant
matrices are always invertible.

We observe that our matrix A is not strictly diagonally dominant since for all the
rows, except the first and last, the equality holds. Matrices that are diagonally
dominant and such that: 1) for at least one row the inequality is satisfied in
a strict sense, and 2) there is no partition Iy U Ir of {1,2,...,n} such that
mi, i, = 0 for all 41 € I; and iz € I, are called irreducible. We can readily
verify that A is a diagonally dominant matrix in irreducible form.

M-—matrix
A matrix M is called an M-matrix if it satisfies

n
my >0, my; <0, forall i #j, Zmij >0 forall i.
j=1

It can be shown that if M is a symmetric matrix all the entries in M~! are
non-negative numbers.

A is not an M-matrix, since the above strict inequality is not satisfied for every
row. However, it can also be shown that if the last inequality above is replaced
by an equality, and M is an irreducible diagonally dominant matrix, then all
the coefficients of M ~! are non-negative. In Note 11 below, we will prove the
non-negativity of the coefficients of A~1.

Note 10 Thomas’ Algorithm

Gaussian elimination can be efficiently applied to a non-singular tridiagonal
system of the form

0 .
am 0 U1 b1
B2 Y2 T : Vg by
0o . : 0 = :
Un—1 bn—l
: . /Bn—l Ap—1 Yn-1 v b
0o --- 0 bBn (o 7% " "

using the following algorithm:



0=
Cc1 = b1
for k=2,3,...,n (upper triangular form)
my = Br/0r—1
Ok = Qg — M Ye—1
cr = by — MpCr—1
Up = Cp/0n (backsubstitution)
fork=n—-1,n-2,...,1
vk = (Ck — TeVk+1)/ 0k
The above algorithm would break down if any of the d;s becomes zero. It can
be shown [TV] that this is not the case for irreducible diagonally dominant
matrices such as A. Later in this course we will be devoting time to the solution
of linear systems of equations.

2.1.5 Example

SLIDE 8
—Ugy = (3 + 2%)e”, z € (0,1)
with
u(0)=u(l)=0
Take n=5, Ax=1/6 ... SLIDE 9
i T, :

2.1.6 Convergence ?

SLIDE 10

1. Does the discrete solution 4 retain the qualitative propeties of the contin-
uous solution u(z)?

2. Does the solution become more accurate when Az — 07

3. Can we make |u(z;) — 4| for 0 < j < n + 1 arbitrarily small?

10



3 Discretization Error Analysis

3.1 Properties of A!

Let -
A" = {aih<ijcn
e Non-negativity N11
a5 > 0, for 1<i,5<n
e Boundedness N12
u 1
OSZaing, for 1<i<n
i=1
Note 11 Positivity of the coefficients of A~!

We introduce first the following notation: for v € IR™ we say that v > 0if v; > 0
for 1 <i<mn.

We shall show that if Aw = v and v > 0 this implies that w > 0. This will prove
that all the coefficients of A~! are positive since we can choose v identically zero
except for vy = 1, thus showing that v, which is equal to the k-th column of
A~ is positive.

Let 49 be the index of the smallest component of w

w;, = min w;.
T <i<n

It is easy to see that ig should be either 1 or n, otherwise
2wiy, — Wip41 — Wip—1 <0

which obviously contradicts our original assumption. Finally, if i9 = 1, then
2wy —wq > 0, which implies that w; > (w2 — w;) > 0 and therefore w > 0. An
analogous argument can be used for the case when ig = n.

Note 12 Bound on the coefficients of A~!

We note that the function v(z) = ﬂlz;xl satisfies

v(@jt1) — 2v(z;) + v(zj-1)
B Ax?

This can be verified directly, or deduced from the expression derived in note 13
with v"(z) = 1 and v (z) = 0.

=1.

11
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The above means that the vectors v and w = (1, ..., 1)T satisfy v = A~'w from

which

- 1

F— ) < = — .
Eﬁw v@ﬂ_£ggdw 3
iz

3.2 Qualitative Properties of 4
321 f>0 — a4>0

a=A"f
If
fi=f(z;) >0, for 1<j<n
Then
u,—Zaijfj>0, for 1<i<n
J
3.2.2 Discrete Stability
a=A"f
lalloo = maxia] = max(] 3 i fi)

J

< mzaX(Z aij) max | f;]
J

1
< o e’}
< Sl

For a vector v € R™ the || - ||cc norm is defined as ||v||oo = maxi<i<n |Vi].

3.3 Truncation Error
For any v € C* we can show that

v(@jt1) — 2v(z;) + v(zj1)
Ax?

Take u = v (—u" =)

12

A 2
="(z;) + 1—:;11(4)(1']- + 6Ax)

SLIDE 12
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_u(mjy1) — 2u(z;) + u(zj-1)
Ax?

Ax?
= f(z;) — TUM)(@"J' +0;Ax)

-~

7j

Here, 7; is referred to as the truncation error, and will be defined more precisely
later.

Note 13 Difference approximation

For functions in C* we can use Taylor series expansions and write

Ag? Ag? Az

vt = v+ Az (z;) + va"(mj) + Txv'"(%‘) + 2—Zv(4) (zj + 05 Ax)
Ag? Ag? Az

vi1 = v —Axv'(z;) + T””u"(:cj) - Txv'"(a)j) + 2—“;”1@(4) (a; + 05 Ax).

Here we have used the Mean Value Theorem to truncate the expansion. The
values of 0;’ and Hj_ are unknown, however they should satisfy 0 < 0;“ <1 and

—1<6; <0. Combining these two expressions we obtain

Vjp1 — 2’Uj + v
Ax?

Noting that v(*) (x) is a continuous function, we obtain the desired result.

A 2
=v'"(z;) + z—i(v(‘*’(xj + 05 Az) + v (z; + 05 A)).

3.4 Error Equation

SLIDE 15
Let ‘ ej = u(x;) — Gy ‘ be the discretization error.
u(zjy1) — 2u(z;) + u(zj—1)
B v e A C AR
U1 — 205 + 4j
Subtracting
ejr1 —2e;+ej1 .
SO T o, 1<j<n
and €0 = ent1 =0 SLIDE 16
Ae=1
e1 u®(z; + 6, Ax)
€9 u(4) (.Z'z + 02Ax)
_ . _ Ax2 .
e= , I= 5
en u® (zn + OnAx)

13



3.5 Convergence

Using the discrete stability estimate on A e = 7

1
llelloo < ZlIzllo

or

2

T
D — sl < (4)
joax fules) = @il < S5 max, [u™ (@)

A-priori Error Estimate

We note that the mazimum of u® (z) over the interval 0 < z < 1, will certainly
be larger or equal to u(¥ (xj +6;Ax) for all 5.

3.6 Numerical Example
~Ugy = (3 +2%)e”, z€(0,1), u(0)=u(l)=0

05 0s 07 08 08 01 0z 03 04 05
X X

Az =1/6 Ax=1/24
EXAMPLE :  —u,, = (3z +2%)e®, z € (0,1)
n+1] [lu—ille
3 0.0227 Asymptotically,
6 0.0059
12 0.0015 [lu — @)oo = CAZ®
24 3.756e — 04
48 9.404e — 05 C =0.216623
96 2.350e — 05 a = 2.000
192 5.876e — 06

14
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3.7 Summary

SLIDE 20
e For a simple model problem we can produce numerical approximations of
arbitrary accuracy.
e An a-priori error estimate gives the asymptotic dependence of the solution
error on the discretization size Azx.
4 Generalizations
4.1 Definition
¢ tions SLIDE 21
Consider a linear elliptic differential equation
Here we will assume that appropriate boundary conditions are given on u so
that the solution is uniquely defined. We will also assume that these boundary
conditions are exactly satisfied by the discrete approximation. In our previous
2
example L is identified with —j?.
and a difference scheme
La=f
L can be thought of as a matriz operating on the vector 4 or a difference operator
acting on the grid function 4. In our previous example L is identified with the
matriz A. We also note that for some schemes f may be different from f, i.e.
the vector whose components are the values of the function f evaluated at the
grid points.
4.2 Consistency
SLIDE 22

The difference scheme is consistent with the differential equation if:

For all smooth functions v

(ﬁy—f)j—(ﬁv—f)j -0, for j=1,...,n

when Az — 0.

15



(ﬁﬂ—f)j —(Lv = f); = O(AzP) for all j

= pis order of accuracy

We say that a function g(Az) is O(AzP), when Az — 0, if there exists constants
C and Axzg such that for all Ax < Axg, |g(Ax)| < CAzP.

4.3 Truncation Error

SLIDE 23
(Lu—f)j—(Lu—f)j =15, for j=1,...,n
——
=0
or, A R
Lu—f=1
The truncation error results from inserting the exact solution into the
difference scheme.
Consistency = ||z||cc = O(AzP) ‘
The above statement is obviously true since, from consistency, each component
is O(AxP).
4.4 Error Equation
SLIDE 24

Original scheme

Consistency
Lu=f+1

The error e = u — 4 satisfies

16



4.5 Stability
Matrix norm

|| M|

|M]|ec = sup
vern  [[2f]oo

N14
The difference scheme is stable if

[[£7Y|oo < C (independent of Az)

[[M|lc = sup [|[Mvlleo
[v][eo=1

n
= Sup (m.ax|zmijvj|)

[lplle=1 % ¢

n
=max( sup | myv;l) v =sign(mi;)
b ullee=t
n
= maxz |mij| (max row sum)
K2
i=1

j=1

We see that the sum of the absolute values of the rows of A= is in fact [|A™!||co,
and what we have in fact shown is that the scheme in our previous erample is
stable since ||A™"||co < 1/8, independently of h.

Note 14 Matrix norms

The infinity norm used for vectors and matrices is not the only possible choice,
but it is, in most cases, the most convenient when dealing with finite difference
schemes.

We can generalize the infinity norm already defined by introducing the so-called
p norms. For a vector v € IR™ the p norm is defined as

n
el = (X [ for p=1,2,... < oo.
=1

and for p = oo,

lelloo = maxo;].

Associated, or subordinate, to these vector norms we can define for a matrix
M € R™ ™ the corresponding p norm as

17
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Muv
M)y = sup 10720
TRl

From the definition, it is clear that for any p norm

1Mollp < |[M][p]lollp,
for any matrix M and vector v. We have shown above that the infinity norm is
the maximum row sum of absolute values. Similarly, it can be shown that

n
[[M]|1 = maxz |myj|, (max column sum)
J )
=1

and

||M||2 = VHmaz

where fi;qz is the maximum eigenvalue of MT M.
Additional properties satisfied by these p matrix norms are:

o ||M]|, > 0 for all M, with equality if and only if M = 0.
o ||cM]||p = |c|||M]|p for all c € R and all M.

o [|[M + N||, < ||M]|p + ||N||p for all M and N.

o ||M-N||, <||M||p||N||p for all M and N.

4.6 Convergence

Error equation

~

e=L""z
Taking norms
lelloo = [1£7" Zlloo
< £ Moo llzllos
<

1£7)oo C AzP = Cy Ag?
N————

C1

We note that proving convergence in a different norm would require being able
to show that, in that particular norm, ||z|| = 0, and more critically, that ||L71]|
is bounded from above and independently of Ax. Later on, once we are equiped
with the tools required to compute the p = 2 norm of a matriz, we will illustrate
how to prove convergence in the p =2 norm.

18
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4.7 Summary

Consistency + Stability = Convergence

Convergence Stability Consistency

|lelloo < 1€~ oo ' Izl loo

We emphasize that consistency establishes the relationship between the numeri-
cal scheme and the differential equation. Stability on the other hand is a property
of the numerical scheme alone, and guarantees that small perturbations to the
right hand side produce small perturbations to the computed solution. The idea
that stability plus consistency implies convergence, with perhaps slightly differ-
ent definitions, is central to numerical analysis and will re-appear several times
throughout this course.

It is also possible to show that for optimal convergence (i.e. T and e converging
at the same rate), a consistent numerical scheme must be stable.

5 The Eigenvalue Problem

5.1 Model Problem
5.1.1 Statement

Find nontrivial (u, A) such that

—Ugyy = AU, z € (0,1)

u(0) = u(1) = 0;
denote solutions (u*,\F), k=1,2,..., with
0< A <A< ...
N15
Note 15 Implications of SPD Operator

As we have indicated, and will later prove in the finite element unit of the course,
—ugzz is an SPD operator. It can then be shown that it must have positive real
eigenvalues, and that the eigenfunctions (which may be chosen real) satisfy the
following orthogonality relation

1
/ ubul de = Céyy,
0

19
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where the costant C' can be made equal to 1 by proper normalization. For now,

we shall simply demonstrate these properties by exact solution of our particular
problem.

5.2 Application
5.2.1 Axially Loaded Beam

SLIDE 30
e “Small” Deflection
u(x)
T‘/V\<_p Elugzy = Minternal
YA
< |:|>M e External Force
Mezternat = —Pu
Equilibrium = u,, + 2ru =0 A= P/EI
|t = du,  u(0) = u(1) =0

In the above expression E is the Young elasticity modulus and I is the moment

of inertia of the beam section. The internal moment is proportional the the

curvature which, consistent with the small deflection assumption is approximated

by u". Equilibrium states that the internal and external moments must be equal.

5.3 Exact Solution
SLIDE 31

—Uge — Au =0
4
u = AsinVAz + BcosVAz
u(0) = 0=B=0
w(l) = 0=2>2A=0 or A\=k7%k=1,2,...

SLIDE 32

Thus (choose A = 1)
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u
)\k — k27T2

Larger k = more oscillatory u* = larger A.

k_ .
= sin knx } k=12 ..

Note the results are quite similar to the periodic case investigated in the first
lecture. However mow, due to the Dirichlet conditions, the eigenvalues have
multiplicity one, and the zero eigenvalue has been eliminated.

For the azially loaded beam, the most relevant eigenvalue is the lowest, since
this determines the buckling load. In this case P/EI = w2, or P = Elxn>.

Note 16 Link to u; = ugy

We recall from the first lecture that the —A* correspond to the exponential
temporal decay rates of the spatial modes u*(z) in the separation-of-variables
solution of the heat equation. Physically, higher modes have more spatial oscil-
lations, which thus more readily “diffuse out” the heat, and which thus lose their
“energy” more quickly. Note that as k — oo, the decay rate goes to infinity,
that is, the timescales go to zero.

1t Egentunion 2nd Eigetuncion
| 1

0s /\ 05
o o

1 e
o o0z o4 06 o08 1 o 02 o4 05 08

3rd Eigenfunction 4th Eigenfunction

5.4 Discrete Equations

5.4.1 Difference Formulas

—Ugy = MU, u(0)=u(1)=0
Y
0 1
z @ z; Tr Tt Az = %_H
-1 . . . . .
A—;ﬁ(uj_l_2uj +Uj+1):)\u]', i=1,...,n

Uy = Upy1 =0

21
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5.4.2 Matrix Form

2 -1 0 0 N
u
-1 2 -1 Qi
1 N .
Az | O 0o |- L= :
-1 2 -1 ot
o --- 0 -1 2 "
nxn SP
P “k 3k -
Aa=X a4 = 4a",A% k=1,2,...,n N1T
N18
Note 17 Implications of SPD Matrix

The fact that SPD operators have real positive eigenvalues and orthogonal eigen-
functions directly implies that SPD matrices have real positive eigenvalues and
orthogonal eigenvectors, since we can view a matrix as an operator from R” to
IRR™. This fact is proven in any text on linear algebra. In our current context it
tells us that the approximate eigenvalues (the eigenvalues of A) have the same
essential features as the exact eigenvalues (the eigenvalues of —ug;).

Note 18 Number of eigenvalues of A

Since A is an n x n matrix, it must perforce have n eigenvalues (though in
general some may have multiplicity greater than unity — note that even in that
case an SPD matrix is still diagonalizable). It is immediately clear that we can
not possibly hope to approximate all the (i.e., infinite number of) eigenvalues
of —ug,. We will understand this better shortly; in fact, it is a blessing, as we
shall see.

5.5 Error Analysis
5.5.1 Analytical Solution: Qk,j\k
Claim that

>
1]
I

ﬂf = uk(z;) = sin(krz;)

= sin(krjAz) = sin(nkijl), i=1,...,n

Note 4§ =a¥,, =0 since sin(0) = sin(kr) = 0.

22

SLIDE 35

SLIDE 36



We shall prove the below by direct substitution, and at the same time find the
AE. Discrete Fourier analysis will often work with matrices that have particu-
larly simple forms (e.g., Toeplitz). There are of course ways to determine the
accuracy of eigenvalues in the more general case; this is discussed briefly in the
context of finite element methods.

15t Eigenvector 2nd Eigenvector
1

4 Bl
o 02 o4 08 08 1 o 02 o4 06 08 1

3rd Eigenvector 4th Eigenvector

4 Bl
o 02 o4 08 08 1 o 02 o4 06 08 1

What are S\k !
1 ~k ko ok
__2{uj 1_2uj+uj 1}

1
= —E{Sin(kﬂ'(l’j — Az)) — 2sin(kna;) + sin(kn(z; + Az))}
= —Aimz{sin(km:j — knAz) + sin(knz; + krAx) —2sin(knz;)}

~~

2 cos(kwAz) sin(kmz;)

Recall that sin(a — 8) + sin(a + 8) = 2sina cos §.

Thus: 1 .. sk
_A_g:z{u;?_l — 2u§ + “?—i—l}
1
= _A—a)2{2 COS(kﬂ'Am) Sln(kﬂ'mj) -2 Sln(kﬂ-x‘])}
2
= A—xz{l — cos(knAx)} sin(knz;) .
N ~ S N——
N ~
A u;
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5.5.2 Conclusions

Low modes
For fixed k, Az — 0:

A= Aix?{l — cos(krAz)}

2 1
= A—x2{1 -(1- ikQWQAa:Q + O(Az*))}
= k7’ +0(Az?)

second-order convergence, \* — )\F,

Recall that for © — 0, cos(z) ~ 1 — ‘”2—2 +57.. .

High modes:
For k = n, Ax = n+r1
“ 2 nm
no_ =~ 1-
A AIL‘Z{ COs(n+1)}

= 4(n+1)?% as Az —0

# n?n? = \".
High modes (k =~ n) are not accurate.

Low modes vs. high modes
Example : n =19, Az =1/20

1st Eigenvector 19th Eigenvector

1
os /ﬁaﬂﬂv \ 05
0¢ ¢

0 0.2 0.4 0.6 0.8 1 [ 0.2 04 0.6 0.8 1

Low modes vs. high modes

kg€n kxn
N19 a* resolved @* not resolved
Ak accurate A* not accurate
3E 0~ O(Az?) Ak is O(1)

‘ BUT: as Az — 0, n — o0, so any fixed mode k converges. ‘
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Note 19

We observe that for k close to n, although the eigenvector agrees with the exact
solution at the grid points, in between the grid points it misses much of the
variation in u*¥ — and thus we can not expect an accurate eigenvalue. This also
“explains” why the discrete approximation can only represent a finite number of
modes; the higher modes are simply not seen by the mesh (i.e., they are aliased
to the lower modes). The figure below shows some of these higher modes and
in particular we observe that the mode 41 has a grid representation which is
identical to that of mode 1.

Aliasing

201 Eigenvector

T -
W -

o 02 o4 06 08 1 "o

215t Eigenvector

0z 04 06 08 1

401 Eigenvector 415t Eigenvector

o oz 04 08 08 1 o o2 o4 o8 08 1

As mentioned in note 17 the matrix A has a full set of orthogonal eigenvectors.
It can be verified by direct caculation that the n eigenvectors sin(kzz;), for
k=1,...,n, satisfy the follwoing orthogonality relation,

2Azx Z sin(kmjAz) sin(lnrjAz) = k-

Jj=1

Therefore, any grid function, and in particular the “higher eigenvectors” shown
in the above picture, can be uniquely represented as a linear combination of the
first n eigenvectors.

Finally, note that although A" is not accurate, it does scale correctly with n,
that is, like n2.

6000)
5000
.
.
4000 n
3000
2000) 4

N
1000| +
o
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“““““ EXACT

The above pictures illustrate the fact that the eigenvalue for any given mode k,
can always be approximated with arbitrary accuracy by making Ax sufficiently
small.

5.6 Condition Number of A

For a SPD matrix M, the condition number ks is given by

maximum eigenvalue of M

KM = — : .
minimum eigenvalue of M

Thus, for our A matrix,

4n?
KA = —5 as Az —0
™

grows (in IR!) as number of grid points squared. N20

Importance: understanding solution procedures.

In general, the higher the condition number, the worse. In direct methods, it
can sometimes cause numerical stability problems; in iterative methods, it typ-
ically implies a slower convergence rate (or the necessity of developing a more
sophisticated iterative procedure).

We see here why the finiteness of the number of approrimate eigenvalues is
a numerical blessing. The “condition number” of —uz, is of course infinite,
since the lowest eigenvalue is m2 and the highest eigenvalue is unbounded. By
introducting a numerical approrimation, we not only reduce the problem to a
finite number of degrees-of-freedom, we also reduce the “stiffness” to a finite
value.
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Note 20 Link to discretization of u; = u,,

If we discretize u,; by finite differences, we are left with a problem still continu-
ous in time, but discrete in space (a “semi-discretization). In so doing, we have
eliminated the arbitrarily short timescales, thus making (explicit) treatment in
time possible; this is discussed in great detail in the unit on parabolic equations.
We mention this here only to again highlight the positive effect of “truncating”
the spectrum through discretization.

5.7 Link to —u,, = f

5.7.1 Discretization

We show here how the analysis above allows us to obtain an error estimate in a
modified || - ||2-norm, for the finite difference treatment of the above equilibrium
problem, and more generally, helps us understand consistency and stability. We
recall that the || - ||2-norm of a vector v € R™ is the Euclidean norm defined as

llolla = (35—, v)'/2.

Recall: —uz, = f =

1 SO .
—A—xz(uj_l—2uj+uj+1):fj, ji=1...,n
Ug = ﬁn—i—l =0
or

Ai=f.

Note that the A above is the same A for which we have found the eigenvalues;
that is, the eigenvalues of A are Aj,j =1,...,n.

|

Error equation: e = u —

Ae =T,

We have seen that, if the solution u is sufficiently reqular, the truncation error
of our scheme will satisfy,

A(E2 (4) _ 2 .
|75 < mren(%ni) ST () = c, Az, for j=1,...

— 0 as Az — 0 (consistency).
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5.7.2 Norm Definition
We will use the “modified” || - || norm m

n
ol = Az) o"v for veR"

i=1
|zl = v Azlv]]2
Thus, from consistency
Iz]| € e, Az?.
Note 21 Norm choice

We choose our norm with the Az premultiplication to make sure that, as Az —
0,v; = v(z;) for some given function v(z) tends to a constant (in fact, the
integral of the square of v(z) over (0,1)). This is, in essence, an approximation
to the continuous p = 2 norm of a function. Recall that for a fucntion v(x)
defined for z € (0, 1), the continuous p = 2 norm is

lollz = { / o (x) da} /2.

If we were to not include the Az prefactor, our norm would actually be the sum
of an increasing number of pointwise errors, and hence not a very good measure
of the accuracy (e.g., would certainly not converge at the same rate as the error
in the p = 0o norm).

5.7.3 ||-|| Convergence
Ingredients:
1. Rayleigh Quotient: N22
“ T A «
M<ZE < forall weR”
LY
2. Cauchy-Schwarz Inequality: N23

D=

vTw < (’UT’U) (QTQ)% forall v e R"

Note 22 Rayleigh Quotient

The Rayleigh quotient result given above is proven in most elementary lineary
algebra books. The proof is simple: since for an SPD system the eigenvectors
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form a complete basis, we can write any v as Qw, where @ is the orthonor-
mal matrix of eigenvectors of A (i.e., the eigenvectors are assumed here to be
normalized so that Q7@ = I). We then have that

vTAv  wQTAQw Y7 wiNi

oIy wlQTQuw Y, w?

since AQ = QA, where A is the diagonal matrix containing the eigenvalues.
Then we note that

nooy1, 2 n 234 n 3In, 2
Xlzzizl’\wi <Zi:1ww\’<2i:1/\"wi

< < =",
i Wi i Wi D Wi
which completes the proof.
Note 23 Cauchy-Schwarz Inequality
Proof:
0< (@w+ow) (v+ow) =vTv+ 20w+ ’w’w  VaeR
- (©"w)'/?
Settlng a = —W
2(pTp)1/2
T _ 2z Y
0<2(v"v) W) (v w)

T \1/2
and multiplying by % completes the proof,

0< @T)Y? (wTw)'/? — WTw).

Convergence proof:

XAz Azl/2  Agl/2

Allel® < el li~l

1 ,
= llell < =lIrll < <=Aa”
AL AL

[N24][N25 ][ N26 ]

29

SLIDE 51

SLIDE 52



Note 24 Presence of \!

We note that, strictly speaking, there is a Az effect in our stability estimate,
since A! rather than A\l appears in our stability constant. However, it is clear
that Al approaches a constant as Az — 0, and since stability is an asymptotic
concept, the proof of convergence remains effectively unchanged — the scheme
is optimal. (In some cases — though not here — the stability constant may
even degrade slowly (decrease to zero slowly) as Az — 0; if the degradation
is sufficiently slow (compared the order of the scheme), little damage is done.
In short, our very strict definition of stability can (must) be relaxed in some
situations. Bear in mind that the goal is not stability according to any strict
definition per se, but rather rapid convergence (which of course requires some
sense of stability).)

Finally, we note that a slight modification of our approximation to the identity
matrix on the right-hand side of our discrete eigenvalue problem — as will be
obtained when considering finite elements — guarantees a A\! which approaches
Al from above. In this case (where we must solve a generalized eigenvalue
problem), we can bound 1/A' by 1/A!, and stability is obtained in the standard
form. For our finite-difference scheme, our Taylor series estimate (see also slides
44 and 45) indicates that eigenvalues in fact approach from below, which means
that 1/A! approached 1/A! from above.

Note 25 Consistency and Stability

It seems a bit strange that the high eigenmodes can be in error by order unity,
but that the method nevertheless converges. More precisely, from the orthogo-
nality of the eigenvectors, we can show that

N TR VRN
4j =20z Z{E(Z fiag)}as.
k=1 i=1

In effect, the last term is the discrete Fourier transform of f, and our expression
is thus analogous to that obtained in the first in the periodic case. It would
therefore appear that there will be a large error committed in the higher modes.
It is essential to recall that as n — oo this higher mode is pushed further and
further out; if f is smooth, the Fourier coefficients will decay, and convergence
will indeed be obtained.

Alternative Derivation
Since N27
B 1
1Al = =
A

The proof of the above follows from the Rayleigh quotient result.
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From error equation
llellz < 1A 2Izll2-

Multiplying by v Az
1
llell < ﬁllzll-

Note 27 Relation to || - || Estimate

We have already presented a general stability estimate in terms of the norm of
A~L. In fact, the p = 2 norm of an SPD matrix is the maximum eigenvalue;
since the maximum eigenvalue of a matrix M is the inverse of the minimum
eigenvalue of M1, we directly obtain the stability (and convergence) result
which we have derived here “from scratch.”
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