Finite Difference Discretization of
Hyperbolic Equations:

Linear Problems

Lectures 8, 9 and 10



1 First Order Wave Equation

The simplest first order partial differential equation in two variables (x,t) is the
linear wave equation. Recall that all first order PDE’s are of hyperbolic type.

INITIAL BOUNDARY VALUE PROBLEM (IBVP)

—+U—=0, z€(0,1)
U is the wave speed which, for simplicity, we assume to be constant.

Unlike the parabolic case, which involves second order spatial derivatives, the
hyperbolic case only has a first order spatial derivative. We can intuitively ex-
pect that the hyperbolic equation will require less boundary conditions than the
parabolic case. Appropriate initial and boundary conditions for the above prob-
lem are the following:

Initial condition: u(z,0) = u’(z)

u(0,t) = go(t) if U>0

Boundary conditions: { W) =gi(t) if U<0

We note that the boundary conditions are specified always on u, not its deriva-
tive, and that the side on which the boundary condition must be specified depends
on the sign of U. The reasons for this will become apparent when we look at the
form of the solution below.

1.1 Solution

Let u(zx,t), be the solution to the above equation. Assuming that u is differen-
tiable we can write:

ou ou Oou dx Ou
d'LL— adt-f' 8—md$— (E-}_E 8_.73') dt

dx ..
If pn =U = Characteristics

4

du=0, = [ux,t)=]()=fz-Ut)]
General solution

In other words, if we restrict the variations of x and t, to be on a characteristic
line, then uw must be a constant. We note that this constant can be different for
different characteristics, i.e. different &; hence u(x,t) = f(£). Alternatively, we
can verify that f(x — Ut), is a solution to our equation for arbitrary f. The
particular function f will be determined by initial and boundary conditions. For
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emample ’U/(.T,t) = (33 - Ut)27 ’U/(Z‘,t) = sin(a: - Ut): or ’U/(Z‘,t) = e Ut gre

solutions of the linear wave equation.

111 U>0

(2,1) = u(z — Ut), if z—Ut>0
wE = go(t—=z/U), if —-Ut<0

11.2 U<O0

O(p — if oz
u(a:,t):{u(w Ut), if z-Ut<1

a(t—z/U), if e-Ut>1

We note that the regularity of the solution is determined by the initial and bound-
ary data. For the moment we will assume that the solution u(x,t) is smooth.
The non-smooth case, including the discontinuous case will be considered in the

next lectures.

1.2 Stability
L?(]0,1])-norm

In the remainder of this course we will only be considering p-norms. In order to
simplify the notation ||v||, will denote the p-norm of a function (usually defined

over [0,1]) and ||v||, will denote the p-norm of a vector.
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1

full) = ( [ "R ot) )

! ou ou
d

 ul = ~UG2,1) ~u(0,1)

This gives us an expression for the time variation of the L? norm, (or 2-norm),
of the solution. We note that this variation only depends on the value of the
solution at the boundaries.

2 Model Problem

SLIDE 6
To further simplify the presentation and analysis of the different schemes we
will consider a problem with periodic boundary conditions.
ou ou
bt g 1
5 +U6x 0, z€(0,1)
Initial condition: u(x,0) = u®(z)
Periodic Boundary conditions: u(0,t) = u(1,t)
d
%IIUI@ =0 = |lull2(t) = [|u’[]> = constant
2.1 Example
2.1.1 Periodic Solution (U > 0)
SLIDE 7




3 Finite Difference Solution

3.1 Discretization

Discretize (0,1) into J equal intervals Az

1 .
Az = 7 xz; = jAzx
and (0,7) into N equal intervals At
T
At==, " =nAt
N 0 <j< J
4y & ul = u(z,th), for { 0 g;g N
t
o
N t=T
n+1
At n_TlL
1
0 T
01 Jj—133j+1J
Az
NOTATION:
- 0} approximation to v(z;,t") = v}
- 9™ € R vector of approximate values at time n;
ﬁn = {ﬁjn }']:1
- o™ € R vector of exact values at time n;
o™ = {u(z;, ")},
3.2 Approximation
For example ... (for U > 0)
W™ w(xy,tt) —v(zia,tt) v v
oz |; - Az Az
n n+1 n n+l _ n
Ov ~ ’U(:I"jat )—’l)(.’Ej,t ) _Uj Yj

At

J

at

Forward in Time Backward (Upwind) in Space

At
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3.3 First Order Upwind Scheme

SLIDE 12
ug +Uuy =0 suggests ...
antt —qan an —4n
J J J Jj—1
U =0 =
At + Az
1 <3< J
41 N N o S)s
Y= wec@-w) g S9% N
af = 4f 0<n<N
‘ Courant number C = UAt/Ax ‘
The Courant number is a non-dimensional number that that plays a central
role in the numerical solution of hyperbolic equations. If we imagine particles
traveling at speed U, we can think of C, as the distance, measured in grid points,
that a particle will move in an increment of time At.
3.3.1 Interpretation
SLIDE 13
dt 1
- = u?-H =up
/ de U
figd t Az } Use Linear
At Interpolation
% l /:P - ; between the points
J—25-1 71 j+1 J—=1j
up ~ Cay_, +(1-C)ay
Note 1 Exact nodal solution for C =1
For C = 1, the scheme reduces to u?“ = uj_4. In this case, the grid is
such that the same characteristic line goes through (z;,t"™') and (z;_1,t").
The interpolation is then exact, and the numerical scheme reproduces the exact
solution with no error.
3.3.2 Explicit Solution
SLIDE 14

Given @° (= u®) we can compute 4" for 0 <n < N



t U >0 . known values

x unknown values

T X X X X X X X
.. Ll no matrix inversion
0 e 4" exists and is unique
. Jsmn+1
j - 19 n j’ n
aptt =ay - Cc(ay - ay_y)
3.3.3 Matrix Form SLIDE 15
We can write
an = Sﬂn—l — Sn 120
@ = of
(1-0) 0 0 o
c  (1-C) 0 0
0 . 0
. C (1-0) 0
0 . 0 C (1-0)
S
3.3.4 Example
SLIDE 16
Ut + ux — 0 EXACT
. o
Azx = —
100
At
C=—=05
Am 02|

T=1= N=200



4 Convergence

4.1 Definition

The finite difference algorithm converges if

SLIDE 17

lim |[&" —u™| =0, 1<n<N
Az, At -+ 0
NAt=T
JAz =1

for any initial condition u°(z).

In general we shall assume that 4° = uO; i.e. the pointwise error in 4° is zero.

For the non-periodic case the above definition must be adapted accordingly to
include boundary conditions.

1/2

J
ol = { Az} i) =VAz |l
=

Note 2 Norm choice

We choose our norm with the Az premultiplication to make sure that, as
Az — 0,v; = v(z;,t") for some given function v(z,t") tends to a constant
(in fact, the integral of the square of v(x,t™) over (0,1)). This is, in essence, an
approximation to the continuous p = 2 norm of a function. In our particular
case ||[4" —u™|| = 0 for 1 < n < N, implies that |7 —u}| - 0for 1 <n <N
and 1 <5< J.

If we were to not include the Az prefactor, our norm would actually be the sum
of an increasing number of pointwise errors, and hence not a very good measure
of the accuracy.

5 Consistency

5.1 Definition

The difference scheme £a" = 0,
is consistent with the differential equation Lu =0
If:
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For all smooth functions v

(Lu™)j — (Lv)} =0, for { 1<n<N
when Az, At — 0.
5.2 First Order Upwind Scheme
Difference operator
o 1 A
n_ _— f,n+1 n
Lu™ = Al {v Sv"}
Differential operator
_ Ov ov
. ot — 7 vt — ol
ny, J J J Jj—1
(Lo™); = At + UA Az A
t T
= (v +Uv,)j + T(Utt)? + UT(UWJB)” +...
(L’v)? = (u+ Uvz)?

(Lu™); = (Lv)T = O(Az, At)

= First order accurate in space and time.

6 Truncation Error

Insert exact solution u into difference scheme

(Lw)? —(Lw)? =71, for { 1<n<N

un—i—l — SAun + At ™

‘Consistency = |27 = O(Az,At), 1<n< N‘

Many textbooks define the truncation error as the result of inserting the exact
solution into the discrete scheme. Consistency is then obtained by requiring that
the truncation error tends to zero when Az, At tend to zero. This alternative
procedure is equivalent to that presented here provided that the difference scheme
is normalized in such way that that the difference terms directly approzimate the
derivatives in the differential equation. Multiplying through by Ax or At may
result in a difference scheme for which this alternative procedure does not apply.
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Although perhaps a little bit more complicated, we prefer the form presented
here because it avoids this problem. Note that consistency requires that the
terms in the difference scheme approzimate those of the differential equation.
Clearly, Lo =yt — Sy", is mot consistent according to our definition but
Lo = (0" — Sum)/At, is.

7 Stability

7.1 Definition

The difference scheme 4"+ = S4" is stable if:

there exists Cr such that

o™ = 8™ 2°|| < Ozl
for all v%; and n, At such that 0 < nAt < T

Above condition can be written as
IS vll < (1 + O(A) |||

We are considering here numerical schemes which involve only two time levels:
n and n+ 1. This definition needs to be generalized for multilevel schemes.

Recall that (1 + a) < €2 for any real a > —1. We have |[u"]| = ||S v || <
1+ 0@l ... < 1+ O™, but (1 + O(A))™ < (eA)" =
et < e = Cr.

We note that the term O(At) allows for some controlled growth of the numer-
ical solution. This is particularly relevant if we have, in the original equation,
some forcing terms or boundary conditions which make the solution grow. We
also point out that whenever the relationship between ||[v" || and ||[v"|| does not
depend explicitly on At, the stability condition becomes |Jv™ || < |lv™|.

Finally, we note that if we divide through by Az, stability could also be ex-
pressed in terms of the 2-norm. i.e. |[v"|2 < |Jv™|2.

7.2 First Order Upwind Scheme

We will now show that the first order upwind scheme is stable.
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J J

S = Y + g
j=1 j=1

J
S lalPlan? + 20al|Bllarlad | + |812|a}- |
i=1 SLIDE 25
J
S lalPlag? + lalBI(a7)? + [a7—, 1) + 181147 |
j=1

IA

IA

J J
= Y _(af* +20allg| + 188} = (ol +18)* Y_ a7

j=1 j=1
w13 < (laf + 181)%[|lw" 13

Stability if
o] + 8] <1, =

i-cl+lcl<1,  0<C<1

Upwind scheme is stable provided

U>0, At < —

8 Lax Equivalence Theorem

SLIDE 26
A consistent finite difference scheme for a partial differential
equation for which the initial value problem is well-posed is con-
vergent if and only if it is stable.
8.1 Proof SLIDE 27
”@n _Hn” — ||$@n—1 _Sun—l +At£n_1”
< I1S@ T —u Y| + At O(Az, At)
< lavt —w Y| + At O(Az, At)
< 1@° - ul||+ nAt O(Az, At)
—_—
-0 <T
< O(Az,At) (first order in Az, At)

In the above proof we make repeated use of the consistency and stability condi-
tions. In addition, we make use of the triangle inequality: ||v+w|| < ||v|| + [|wl|
for all v and w, which is a property of the norm.

10



8.2 First Order Upwind Scheme
e Consistency: ||7]] = O(Az, At)
e Stability: ||&"!|| < [|&"] for C =UAt/Az <1

I8
I
(S
|
>

e = Convergence

le|| < (Colz + CyAL), 1< n < N

1<j<J,
1<n<N

C, and C} are constants independent of Ax, At

or [e}| < (CrAz + CiAt), {

8.2.1 Example

Solutions for: ; EXACT ) EXACT

C _ O 5 08 08| t=1
0] i 0]

Az =1/100 (left)
Az =1/200 (right)

Convergence is slow !!

9 CFL Condition

9.1 Domains of Dependence

Mathematical Domain of Dependence of u(z;,t")
Set of points in (z,t) where the initial or boundary data may have some effect
on u(z;,tV).

Numerical Domain of Dependence of @Y
Set of points xzy,t™ where the initial or boundary data may have some effect on

AN‘
N3

U
Note 3 CFL Condition

This condition was presented in a paper written in 1928 by Richard Courant,
Kurt Friederichs and Hans Lewy. The paper was written long before the in-
vention of digital computers, and its purpose in investigating finite difference
approximations was to apply them to prove existence of solutions to partial dif-
ferential equations. The paper identified a fundamental necessary condition for
convergence of any numerical scheme.

11
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9.1.1 First Order Upwind Scheme

SLIDE 31
¢ dt 1 t
de U 6 o o o o o o
" . . D
(z,t) e o SO
xTr T €T
Analytical Numerical (U > 0)
9.2 CFL Theorem
SLIDE 32

CFL Condition
For each (z;,t") the mathematical domain of dependence is contained
in the numerical domain of dependence.

CFL Theorem
The CFL condition is a necessary condition for the convergence of a nu-| SLIDE 33
merical approximation of a partial differential equation, linear or nonlinear.

dt 1
de U™»
/&, 1At
c<l1 c>1
Stable Unstable

10 Fourier Analysis

SLIDE 34
e Provides a systematic method for determining stability — von Neumann
Stability Analysis
e Provides insight into discretization errors
10.1 Continuous Problem
10.1.1 Fourier Modes and Properties
SLIDE 35

Fourier mode: & (z) = ™%k € Z (integer)

e Periodic (period = 1)

12



Orthogonality 1
| #@)@oso(o) d = e
0

Eigenfunction of {fz—mm
(‘;9:5—7” D () = (i2rk)™ By (z)

Form a basis for periodic functions in L*([0, 1])

v(z) = Z Vi ®r(z) = Z Vei2mhe

k=—o00 k=—o0

Parseval’s theorem

oo
ol =D Vil

k=—o0

Parseval’s theorem follows directly from the orthogonality property.

10.1.2 Wave Equation

u(w,t)= Z Uk(t)q)k(:ﬂ): Z Uk(t)ei27rk:1:

k=—o0 k=—o0

— d .
’lhﬁ"‘UUz:O = Z (%"’iZWkUUk)CZQﬂ-km:O

k=—o0

uO(x) — Z weﬂwkz = Uy (t) — U% e—iZﬂ'kUt

k=—00

The solution is then
o0 .
u(m,t) — Z IU% ez21rk(m7Ut),
k=—o00

which is clearly of the form f(x — Ut).

We see that the amplitude of the Fourier modes is constant in time, and s
determined by the initial condition, i.e. |Ug(t)| = [U2 e~ @27hU| = |1Y|.

13
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10.2 Discrete Problem
10.2.1 Fourier Modes and Properties

Fourier mode: &, = {®;(z;) ]'-I:_ola

k (integer) € (—J/2+1, J/2)

Here, and to the end of this section, we assume that J is an even number. For
J odd, k will range from (—(J —1)/2, (J —1)/2), and we would simply change
the summation limits accordingly.

To simplify the notation we replace the index k by 6.
By (x;) = e2™IAT= 0 = By, |9 = 2nkAx

ke (=J/2+4+1, J/2) = 6 € (—7+2rAzx, 7)

It is understood that although 6 is a real number, the increments are taken in
increments of 2nAx; i.e. 0 = —7 + 2nAx, —7 + dnAx, —7 + 67AZ, ..., 7.

15t Mode 2nd Mode

Real part of first 4 Fourier
modes

Az =1/20

e Periodic (period = J)

e Orthogonality
1 =
_ q)T¢ , = = eiZijAxe—iQWk'jAz = Surs
J—f0—" 7 kk

T
- O

_ 1 ijo_—ijor _ [ 1 if 0=0
-7 Oee T10 if 6#£¢

.
Il
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Note 4 Orthogonality of Discrete Fourier Modes

J—1 J—1
. . . ' . i :
gzg § = ez27rkJA:ce—z27rk jAz _ § :6127r(k—k )jAz
=0

.
Il
<

For k = k' we have ] ® , = J; for k # k' the term inside the summation is

geometric series in r = e®27(k=F)Az which can be summed to obtain
1—r7
3P, =
=k =—k 1 —r I
which is 0, since 7/ = e2n(h=F) = 1,
e Eigenfunctions of difference operators e.g.,

- O220]j = Vj41 — V1

820 By = i25in(0) B,

Proof: 82, ®|; = XTI _ili=1)0 = (10 _=10)eii0 = 25in(h)e¥? =
i2sin(f) @y,

200, — oy, _ , ,
- Gpvl; = vj41 — 205 + v

52 8, = —4sin(6/2) &,

Proof: 62 ®,]; = eii+1)0 _ 9¢iif 4 (i(i-1)0 — (€ — 2 4 e70)eli? =
2(cos(f) — 1)e¥? = —45in*(/2) By|;-

- Azulj =vj —vja

Ay 2y=(1-e")

Proof: A7 ®,; = €% — eili=10 = (1 — =)l = (1 — e~%) §y|;.

15
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Note 5 Difference Operators

It is convenient to introduce difference operators in order to simplify the nota-
tion. The operator d,,, denotes the central difference operator in the x direction
of span mAz. Thus,

0220|; = Vjt1 — vj_1,
and

5z2|j+1/2 = Vj4+1 — Vj.
We can think of difference operators as matrices that operate on vectors v to
produce a new vector. Recall that we are assuming that our domain is periodic
and therefore we can, using periodicity, extend the length of our vectors in
order to accommodate the difference stencils near the boundary. For example,
d2g0]0 = v1 —vs_1.
Higher order differences can be expressed using the exponent notation. For
example a second order difference can be expressed as

632|j = 5z(5wﬂ)|j = (5z2)|j+1/2 - (5zﬂ)|j—1/2 =Vj41 — 2Uj +vj-1.
We can also introduce forward AT, and backward A, difference operators as
AFvlj = vjm1 —vj,

and
Az vl = vj = vj-1.

e Basis for periodic (discrete) functions v = {v;}7/_,

K K
V= Z \7 29 — v = Z \7 ez’j&
0=—7 0=—7

+2rAx +2rAzx

e Parseval’s theorem

™

2 _ 2 2
lol® = Az 3= i
v 9 —
1/J =7
+21Ax

The discrete version of Parseval’s theorem follows directly from the orthogonality
property of the discrete eigenmodes.

16
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10.3 von Neumann Stability Criterion

1 . . SLIDE 43
Write @™+ =Y, Upt' @y, a" =3, U; @,
Stability [[a™ || < (1+O(At))[|2"]|
Using Parseval’s theorem
= Y IGH P <a+o@n) )y [0
0 0
We note that (1 + O(At))? = (1 + O(At)).
Since the amplitude of each Fourier mode depends on the inital and boundary
data, the above inequality has to be satisfied for each 0 i.e. we can always chose
the initial data so that only one Uy is non zero, and repeat the same process for
each 6.
Stability for all data =
T3+ < 1L+ 0A) [0, Ve
In summary, a one step finite difference scheme (involving only two time levels)
is stable for given At and Az, if and only if |Ug+1| < (14 O(At)) |Ug| for all
0.
10.3.1 First Order Upwind Scheme
SLIDE 44
=S 0 by = 5 0 o
[ [
att —af + o4y —a} ) =0, Vj =
SO Uy +C1—e U’ =0, Vj =
0
SLIDE 45
UGt = (1-0)+Ce ™) Uy =g(C,0)U;
9(C,9)
amplification factor
Stability if |U3+!| <|Up|, V8 which implies
llg(C.0)|<1, W
SLIDE 46
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l9(C,0)[°

|(1—C)+ Ce ™

(1 —C 4 Ccos(6))? + C%sin?(6)

= (1-2Csin?(9/2))? +4C?sin(6/2) cos?(0/2)
= 1-4C(1-C)sin%(0/2)

Stability if:

UAt
<1 <C=-—K1
9(C.Ol<1 = 0<0= <

10.3.2 FTCS Scheme

SLIDE 47

We examine now the stability of the “simplest” scheme for the wave equation.
We perform the time discretization using an Euler forward discretization (to
preserve the explicit character of the scheme), and the spatial discretization
using a central difference approrimation (Forward Time Centered Space).

andl o~ N oa

uj U/;-L + U u,?—i—l u‘?fl — O

At 2Azx
. o C o
= 4" =" - o Gpd”
It can be verified that this scheme is consistent and the truncation error is ||z|| ~
O(Az?, At).
Fourier Decomposition: uj = Z Upei?
)
= > (Upt — Uy +iCsin(0)U5) €7 =0
)
SLIDE 48
Ut = (1-iCsin6) U =g(C,0) U
—
9(C.0)

amplification factor

l9(C,0)]* =1+ C?sin?(f) > 1, for C #0
= Unconditionally Unstable = Not Convergent

From the above expression, it is clear that one could choose AA—;Q = constant and
in this case we will have that |@3+1| < (14 O(AY)) |®g| This would however

18



not be a useful scheme as it would require us to make Ax small much faster
than At for At — 0. In the limit At — 0, we would have C — 0. If we ask the
question of which is the largest C' (constant) for which the scheme is stable, then
we do in fact obtain the above answer. That is, the scheme is unconditionally
unstable. The reason to allow for some controlled growth within our definition
of stability is for situations where the exact solution does in fact grow. This
would occur in situations such as u; + Uug, = e, > 0, or ug + Uuy = su,
s > 0. In these cases, if we discretize the differential equation using a stable
scheme we need to allow for the growth O(At) in the definition of stability.

The methods that have been presented here for the linear one dimensional prob-
lem with periodic boundary conditions can be used as design principles for nu-
merical schemes to tackle more complex and realistic situations.

For non periodic boundary conditions the solution can no longer be represented
in terms of Fourier components. However, von Neumann stability analysis
is often still applied. The justification is that the most schemes the limiting
wavenumbers for stability are typically in the range w/2 to 7, and the boundary
conditions have typically o small effect on these high frequency components.

The Fourier analysis presented here extends readily to regular grids in higher
dimensions.

11 Lax-Wendroff Scheme

The first order upwind scheme we have considered until now is only a first order
scheme in space and time. A more accurate scheme explicit scheme which is
second order accurate in space and time can be constructed as follows:

11.1 Time Discretization

Write a Taylor series expansion in time about ¢

u|™ A2 9%ul|"
n+1 — n At — - -
u(z, ") = u(z, t") + At T 5 o
But ...
ou ou
5 = —U% (from uy + Uug = 0)

0%u 0 Ou 0 (Ou 5 Ou?
ra a(‘U%)—‘U%(a)—U Er]

19
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11.2 Spatial Approximation

oul™  U2AL 0%ul|"
ntl) = ™) —UAt — —_—
u(z, ") = u(z,t™) — UAE % 5 922 +
Approximate spatial derivatives
6_U 1 55 ’U| _ Vi1 — U1
ox i 2A &= 2Ax
o%v 1 5 Ul C_ Uj41 — 21}]' +vj—1
dx? | Ag2 ® Y Ax?
11.3 Equations
Given 4° (= u®) we can compute 4" for 0 <n < N
t U>o0
T X X X X X X X
Ll eknown values
iy runknownvalues no matrix inversion
T
0 jon+1 ! 4" exists and is unique
M Gm

ut!

j = UpP

Use Quadratic
Interpolation

between the points
j - 1: ja .7+ 1
o %(1 - C)'a_;'l+1

11.5 Analysis

11.5.1 Consistency

+1
(Lo™);, = Vil TV peitio | UPAE Vi 2054
A At 2Az 2 Az2

20

SLIDE 50

SLIDE 51

SLIDE 52

SLIDE 53



At
= (Ut-l-UUw)?‘l‘ 7 (’Utt|? —U2 ’U;Lw ?) +...

~

=0 (;(:r v=u)

(Lv)] = (v +Uv,)}

(Lo™); — (Lv)T = O(Az?, At?)

= Second order accurate in space and time.

11.5.2 Truncation Error

SLIDE 54
Insert exact solution u into difference scheme
@y - €y =77, for { {557
=0
W™ = Sun + At
Consistency = ||7"]| = O(Az?,At?), 1<n<N
11.5.3 Stability
SLIDE 55
C C?
Gt =0 — g 0"+ —— 624"

- 2 - 2 =

+1
= Uy

Uy —iCsin(9) Uy — C(1 — cos(9)) Up
= (1-2C?sin?(9/2) —iCsin(h)) Up

~ /

4(C.6)

The evaluate |g(C,0)| we square real an imaginary parts: |g(C,0)> = (1 —
2C? sin%(0/2))?+C? sin() = 14+4C* sin*(9/2)—4C? sin?(9/2)+4C? sin?(0/2) cos*(6/2) =

1+ 4C*sin*(6/2) — 4C?sin*(6/2)

|9(C,0)> =1 —4C?*(1 — C?)sin*(8/2)

| Stability if: [9(C,6)| <1 = |C| = |U|At/Az <1 |

21



11.5.4 Convergence

SLIDE 56
e Consistency: ||7]| = O(Az?, At?)
e Stability: ||a"t!|| < [|&"] for C =UAt/Az <1
e = Convergence e=u—1u
le"|| < (CoAz® + CiAE?), 1<n <N
1<j5<J
n 2 2 = =Y
or e} < (CrAz? + CiAt?), { 1<n<N
C, and C} are constants independent of Ax, At
11.6 Domains of Dependence
SLIDE 57
¢ dt 1 t
dz U
@0
xTr
Analytical Numerical
11.7 CFL Condition
SLIDE 58
dt 1
de U™
c<l1 c>1
Stable Unstable
11.8 Example
SLIDE 59
Solutions for: zm ' T:ACT
C=05
SLIDE 60

Az =1/50 (left)
Az =1/100 (right)
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EXACT EXACT
1

Az =1/100
08 08 (Lw)
C=05 B -
Upwind (left)

VS.

Lax-Wendroff (right) N N

6 08 1 o 0z o4 06
X X

12 Beam-Warming Scheme

12.1 Derivation

SLIDE 61
a1
/d:c U ult =up
At A : Use Quadratic
l Interpolation
n- —r . between the points
J—23-1 71 3+1 . : .
J=27-17
up ~ —5$(1 - 0)a7_,+C2-0C)a7_; + 11-0)2- o)ay
12.2 Consistency and Stability
) SLIDE 62
a7ttt =4 — §(3a7 — 447, +47_,) + S (47 — 247, + a7_,)
e Consistency, ||7|| ~ O(Az?, At?)
e Stability
19(C,0)]? = 1-4C(1-0)*2 - C)sin*(6/2)
9C,0) < 1 =[0<C<2
13 Method of Lines
SLIDE 63

Generally applicable to time evolution PDE’s

e Spatial discretization

= Semi-discrete scheme (system of coupled ODE’s)
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e Time discretization (using ODE techniques)

= Discrete scheme

By studying the semi-discrete scheme we can better understand spatial and

temporal discretization errors
NOTATION:

- ©;(t) approximation to v(z;,t) = v;(t)
- ©(t) vector of semi-discrete approximations;

o(t) = {v;()}j=1
13.1 Spatial Discretization

ou ou
—+U+—=0
ot + ox
Central differences...(for example)
du; v _ _ .
d—tJ‘FE(Uj-i-l_uj—l):O, 1<j<J
or, in vector form,
du U —
at T oy =0
Note 6 Semi-discrete System of Equations

We can think of d,, as a matrix and therefore the semi-discrete system of equa-

tions can be written as pu

U Ce
pr + A%u=0.
It can be easily verified that the matrix A® is skew-symmetric and consequently
all its eigenvalues are purely imaginary numbers. We can find a complete set
of eigenvalues and eigenvectors for A® and, using the eigenvectors as a basis,
we can reduce the system to an equivalent system of de-coupled ODE’s. Each
ODE will have the form dv/dt = Av, for A purely imaginary.
The above situation is to be compared with the semi-discrete system that is
obtained if one discretizes the heat equation

ou K82u
ot 0z’
using second order central difference approximations. In this case the resulting
semi-discrete system will be of the form
du

4 | bz —o.
a TAE=0
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In this case however, the matrix A” is symmetric and positive definite. If we
diagonalize the system using the matrix eigenvectors, the resulting ODE’s will
have the form dv/dt = Av, for A real and negative.

13.1.1 Fourier Analysis

SLIDE 66
Write semi-discrete approximation as
wi(t)= Y Uyt)e*
0=—m
+2r Az
Inserting into semi-discrete equation
dUg . U . —_ ‘ija .
_ = 1< <
;( & TiAs sin(0) Uy) e 0, <j<J
SLIDE 67
For each 6, we have a scalar ODE
dU U —
79 + zA_a: sin(f) Up =0
= @0 (t) — Ege*i% sin(0)t
[Ug(t)| = |US| Neutrally stable
SLIDE 68
Exact solution
) = 3 Qs 00
k
Semi-discrete solution
u,(t) = Z ﬁgez’jae—i% sin(8)t
0
_ Z @geﬂff(kzj— 52 sin(2rkAz) t)
k
wsp = 3% sin(2rkAx) SLIDE 69

A
w
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WEX = kU VS. wsp = Sin(QWkA.Z')

v
2 Az

The propagation speed w/k is constant for the exact solution, but depends on
k for the semi-discrete approximation. The fact that the speed of propagation
depends on the wavenumber k is known as dispersion.

Whereas the continuous problem has an infinite number of Fourier modes, i.e.k €
(—00,0); the discrete problem only has a finite number of modes. For |k| < 1,
the semi-discrete frequency is very close to the exact frequency. kAx small cor-
responds to the well resolved modes. We see that the speed of propagation of
these modes wgp/k will be very close to the exact speed of propagation U. In
fact for kAx small we can approzimate sin(2rkAzx) by 2rkAx in which case
wsp = kU. On the other hand, for kAx close to 1/2 the speed of propagation
becomes very inaccurate. In particular, for the saw-tooth mode, 0 = 7, (i.e.
€™ = (=1)7) the semi-discrete speed of propagation becomes zero. This can
also be seen by noting that eUTDT — ¢ilG=Um — 0 for all j, and therefore the
predicted temporal variation will be zero. Finally, we note that for any given,
(fized) k, we can always choose Ax to be small enough so that the corresponding
mode is well resolved and its propagation speed well represented.

13.2 Time Discretization

We know that the use of a Forward Euler time discretization leads to a scheme
(FTCS) which is unstable. We consider instead the following predictor/corrector
algorithm

13.2.1 Predictor/Corrector Algorithm

Consider for illustration purposes the following

Model ODE
d_u = \u
dt
a? = 4"+ AtA 4" Predictor
Al = Q"+ AEAGP Corrector

Combining the two steps we have

A"t = 4" 4 A A" + APN A" = (14 2 + 2%) 4"

This scheme is only first order accurate in time. This can be seen by evaluating
the truncation error. Also note that for the exact solution u(t) = u® e*, unt!

and u™ are related as u™t = e* u™. The term (1 + z + 2?2), in the approzimate
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solution, is an approrimation to e*. This scheme could be made second order
accurate by multiplying the term At\ 4™ by 1/2, in the predictor step. In this
case, instead of (1 + z + 2?), we would have (1 + z + 22/2) which is obviously
a more accurate approximation to e*. Unfortunately, the more accurate scheme
would be unstable if used to discretize the above semi-discrete form of the wave
equation.

Semi-discrete equation
] + v 02,7 =0
dt 28z T
@ = 4"+ § 5" Predictor
Wt = 4"+ § Go,d” Corrector
Combining the two steps we have
CQ

W = 0" o Gl + - 03,0"

It is not difficult to verify that this scheme is consistent and has a truncation
error which is O(Az?, At).

13.3 Fourier Stability Analysis

C Cc?
Q= 0"+ el + - 3,07

Fourier transform

4

A A A A

Uptt = U —iCsin(9) Uy — C?sin®(9) Uy
= (1+z+2)U;, V8

‘za = —iC'sin(0) ‘

Amplification factor
9(C,0) =14z + 25

29 = 1o with ap € R

9(C,O° = (1 —0a§)* +aj =1 - aj(1 - af)

|Stability = a3 <1 V9 = C<1|
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| PDEu(st) |

4
Semi-discrete A Discrete
a; (1) — ar
J B J A
Semi-discrete Fourier B Discrete Fourier
Up(2) - [0/

The effect of discretizing in time is to reduce an ODE into a discrete algebraic
equation and the effect of taking the Fourier transform is to diagonalize, or
decouple, the system of J equations into J scalar uncoupled equations. We see
that there are essentially two paths to derive the discrete Fourier equation that
is needed to determine stability. Below we show that these two paths lead to the
same result but path B, shown above, has some advantages.

13.3.1 Path B

Semi-discrete

Fourier semi-discrete

Predictor

Corrector

Discrete

&

u U . —
_t+2Az 62zﬂ—0

0P = Un — iC sin(9) U
Ut = U" — iC'sin(9)UP

Upt' = (+20+2) O

e Gives the same discrete Fourier equation

e Simpler

e “Decouples” spatial and temporal discretizations

For each 6, the discrete Fourier equation is the result of dis-
cretizing the scalar semi-discrete ODE for the 6§ Fourier mode

13.4 Methods for ODE'’s

Model Equation:

Discretization

du
dt

= \u

28

u, A complex-valued
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ﬁn+1 —an

= i EF
~ 1 ~

un+At_ 8o aen EB
sn+l _ sn

= PAar+art) CN

Here EF refers to Euler Forward (an explicit scheme), EB refers to Euler Back-
ward (an implicit scheme), and CN refers to Crank-Nicolson or trapezoidal rule
(an implicit scheme). It can be easily verified (using the definition of consis-
tency and trucation error), that all these schemes are consistent, EF and EB
are first order accurate and CN is second order accurate. We will now study the
stability properties of these schemes.

13.4.1 Absolute Stability Diagrams

Given Ccll—? = Au and u, A complex-valued

gt —gn
At

Rabs. € Cis defined such that

2= AtA € REF o & [0"7| <0

= Aa" (EF) or A" (EB)or...;

‘:>|12”|—>0 as n—)oo‘

Note 7 Zero stability

Convergence of a numerical scheme for solving ODE’s can be proven with a much
weaker stability definition than that of absolute stability. Absolute stability has
to do with stability for finite A¢. In order to prove convergence we only require
that the solution at a given time 7' does not grow unboundedly when we take
At - 0 (N — o0). This much weaker concept of stability is usually referred
to as zero stability and, together with consistency, is sufficient to prove the
convergence of a time discretization scheme. It can be shown that the three
schemes presented above are zero stable, consistent, and therefore, convergent
for any well posed initial value problem.

We note that absolute stability implies zero stability (the reverse is obviously
not true). For solving PDE’s we are concerned with the stability of the final
scheme involving spatial and temporal discretizations. Because in this case we
reduce simultaneously At and Az, (in essence reducing At and increasing \) we
can not always guarantee that we will be close to the origin (z ~ 0), and hence
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we must require absolute stability of the time discretization algorithm in order
to guarantee convergence of the overall algorithm.

Note 8 Non-decaying solutions

Absolute stability is defined with respect to the homogeneous equation. For
an equation in which the solution grows due to a non-homogeneous term e.g.
du/dt = lu + et with A\(€ R) < 0 and u(€ R) > 0, we will obtain, after
discretization |a"*t!| < (1 + O(At))|a"|, even if At) is inside the region of
absolute stability.

Finally we note that if the exact solution grows in time, i.e. A(€ R) > 0, we
can still compute the solution for fixed T provided the scheme is convergent, by
reducing At (increasing N). In this case we will per force be outside the region
of absolute stability when At — 0.

amtt —am = Ataan EF
= ™t = (1 +2) a”
a"t —ar = Athant! EB
= artt = 1 g
1—2
amtt —am = L A;A@G" 4+ antt) CN
14 2/2
~n+1 __ ~T
= U =1/ 22 U
A Z Z
2= 0| g |0 12 | >
EF EB CN
Note 10 Derivation of absolute stability diagrams

Euler Forward. We will have absolute stability provided |1 + z| < 1. If we
write this condition as |z — (—1)| < 1, we recognize this as the equation for a
disk in the complex plane centered at (—1,0) of radius 1; |1+ 2| < 1 if only if 2
lies in the disk which is thus R..

Euler Backward. For absolute stability |1/(1—2)| < 1, or |1 — 2| > 1; R¥S is
thus the entire complex plane except the closed disk centered at (1,0) of radius
1.
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Crank-Nicolson. Here we have |[(1+2/2)/(1—2/2)| < 1, or |2+2| < |2—2| for
absolute stability. Setting 2z = zr + iz, 2r and z; the real and imaginary parts
of z, respectively, |2+ z|> = (2+2gr)? + 27 and |2 — 2|? = (2 — 2g)? + 2. Thus,
so long as |2 + zg| < |2 — zr| we have absolute stability; but this is equivalent
to zr < 0, and thus R is the entire left half plane.

We note that for the exact solution u(t) = u®e*, the region of absolute stability
corresponds to |e*| < 1, which is equivalent to zr < 0. Therefore the region of
absolute stability for the exact solution and the Crank-Nicolson scheme coincide.
We also note that for any convergent scheme, the boundary of the region of ab-
solute stability must be tangent at the origin to the y axis. This is so because the
regions of absolute stability of the exact solution and any convergent numerical
scheme must coincide for |z| — 0.

13.4.2 Application to the Wave Equation
For each 6

aly U . . U, | —
7 + zA_.Z' sm(G) Ua = 0, or 7 = )\HUG

Thus,
.U .
Ap = —i sin(@)
e )y (and zp = At)Ag) is purely imaginary

e \g > oofor Az — 0

d Uy —
— = A
dt oUs

= EF is unconditionally unstable
= EB is unconditionally stable

= CN is unconditionally stable

Stable schemes can be obtained by:

1) Selecting explicit time stepping algorithms which have some stability on the
imaginary axis
Ezxplicit schemes will typically be, at best, conditionally stable. This means that
their region of absolute stability will contain part of the imaginary axis but not
the entire axis.
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2) Modifying the original equation by adding “artificial viscosity” = R(Ag) < 0
We shall see that by modifying the semi-discrete equation with some terms which
are at most O(Ax), it is possible to obtain stability using Euler forward and at
the same time preserve consistency.

SLIDE 84
Explict Time stepping Schemes
A . Predictor/Corrector
o™t = (1 + 2z + 22)an
-1 0 SLIDE 85

zg = iC'sin ()

Explict Time stepping Schemes

A four stage multistage scheme of Runge-Kutta applied to our model ODE is
given by

W = u”+iAt)\ﬁ"

TR u”+%At)\ﬁ1

W = u”+%At)\a2
A"t = w4+ AP

This scheme is fourth order accurate and has a Tegion of absolute stability given
in the figure. It is slightly different from the standard j stage Runge-Kutta
method but gives identical results for linear problems. The attractive feature of
the form presented here is that it can be programmed quite efficiently because it
does not require to store the solution at all the stages. The value of the unknown
at the intermediate stages can be discarded as soon as the next stage has been
computed.

Py L ~2.83 4 Stage Runge-Kutta
™t = (14 2+ 2 + 2+ Z)an

~-279 0

zgp = 1C'sin(6)

> = C<2vV2~283

~-2.83
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Other explicit schemes can also be employed. A particularly popular choice is
the third order Adams-Bashford scheme which involves three time levels n—1,n
and n+ 1 (see [T] for details).

Adding Artificial Viscosity

@w, v U

dt " 2Az 24T Poag
—_—

Additional Term

2u =0

EF Time + p=1 = First Order Upwind
EF Time + p=C = Lax-Wendroff

We note that the additional term is to second order accuracy proportional to
Azxug, and therefore tends to zero when Ax — 0. Therefore, the addition of
this term does mot destroy the consistency of the original spatial discretization
(although it may drop the order of accuracy).

By proper choice of the parameter p we can recover some of the schemes we
have already seen. For instance if we use Euler forward to discretize in time
and take p = 1 we obtain the first order upwind scheme (which we have already
shown to be stable). This can be seen by noting that

2(aj —aj-1) = (dj41 — Uj-1) — (Gjp1 — 245 + G51),
or
O~ = Gyy — 02

Similarly by choosing p = C and discretizing in time using Euler forward we
can recover Laz-Wendroff method.

Adding Artificial Viscosity
For each Fourier mode 6,

dUp , ,. U . U ., _
7 +{1Am sin(6) _2'uA:c sin®(0/2)} Up =0

~ >

Additio;lral Term

29 = —2uC'sin?(9/2) — iC'sin()

First Order Upwind Scheme p =1
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z

c=075 _C=05 | ]

-2
c=025 T

Lax-Wendroff Scheme y = C

=0.75 =

VN co5 |
c=1
\/%
_Z\Q
14

C=0.25

14 Dissipation and Dispersion

14.1 Model Problem

ot dr  Ox? 0z3’
with u(z,0) = u°(z) and periodic boundary conditions.
Solution

z € (0,1)

k=00
u(z,t) = Z 0} e—im’o(k)t gizm(ka—w(k)t)

k=—o00

o(k) = kk?, w(k) = Uk — adn?k?

2
e tm okt represents Decay

o (k) dissipation relation

e2r(kz—w(k)t)  represents Propagation
w(k) dispersion relation

For the exact solution of uy + Uu, =0
o =0 no dissipation

w=kU, or w/k =U (constant) no dispersion
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14.2 Modified Equation

Recall that the modified equation a partial differential equation which is approx-
imated by the numerical scheme to a higher accuracy than the original (first
order wave) equation.

For the Upwind, Laz-Wendroff and Beam-Warming schemes seen earlier, the
modified equations (to third order) read

First Order Upwind

A Az?
up + Uuy = u m(l — gy — u 6:1: (1= C?*ugze
Lax-Wendroff Ag?
wp+ Uy = — 2 = (1= Otz
Beam-Warming
A 2
up + Uy = 2222 2 €)(1 = Chugs

e For the upwind scheme dissipation dominates over dispersion = Smooth
solutions

e For Lax-Wendroff and Beam-Warming dispersion is the leading error
effect = Oscillatory solutions (if not well resolved)

e Lax-Wendroff has a negative phase error
e Beam-Warming has (for C' < 1) a positive phase error
As we shall see in the next lectures it is possible to combine the Laz-Wendroff

and Beam-Warming into a scheme (Fromm’s scheme) which has average zero
phase error.

14.3 Examples

EXACT

08

Az =1/25
C=05 : ww
First Order Upwind
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EXACT EXACT
1

Az =1/25
C=0.5 y )
Lax-Wendroff (left) W @)

vS.
Beam-Warming (right)

14.4 Exact Discrete Relations

The modified equation approach provides a convenient way of obtaining approz-
imate dissipation and dispersion relations for our numerical schemes. It should
be noted however that these relations are only approximate. Ezact discrete re-
lations can be obtained from the amplification factor of the numerical scheme.

For the exact solution
IUg-H — ez27rkUAt ]U'g,

= WEx = kUIGU/QTFASE, and ogx =0

For the discrete solution . .
Ugtt = g(C,0) Uy

g(C’ 9) — e—i27rw(9)At—47r2g-(g)At
i.e. —i2mw(0)At — 4n20(0) At = log(g)

From this we can calculate w(8) and w(8).
= w(f), and o(6)
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