- Sound components
  - reflected (reverberated) ρ
  - absorbed α
  - transmitted τ
- ▶ Transmission loss TL

TL = 10 Log(1/ $\tau$ ) = -10 Log  $\tau$ 



- Mass law (Berger's law)
  - theory: doubling of surface density  $\rho_S$  [kg/m²]  $\rightarrow$  6 dB i.e. TL  $\propto~20$  Log  $\rho_S$
  - practice: 5 dB i.e. TL  $\propto$  17 Log  $\rho_s$



- Mass law (Berger's law)
- Frequency law
  - doubling of frequency f [Hz] → 6 dB

i.e.  $TL \propto 20 \text{ Log f}$  100  $_{\text{E}}$ 



Frequency [Hz]

TL  $\approx$  20 Log (0.08 f  $\rho_{\rm S}$ )

#### ▶ For low and high frequencies:

- resonance
- coincidence



Images by MIT OCW.



- Sound paths
  - 1 direct air transmission
  - 2 reverberation
  - 3 lateral transmission of airborne sound
  - 4 re-emission of impact sound
  - 5 transmission "
- Weakest path



- Sound paths
- Weakest path



$$TL = TL_0 - 10log \left[ 1 + \frac{S'}{S} \left( 10^{\frac{\Delta TL}{10}} - 1 \right) \right]$$



#### Planning phase

- sensitivity to noise
- noise sources
- noise insulation requirements

#### Design phase

- acoustic criteria in positioning and orientation
- calm vs. noisy zones
- construction elements
- technical installations

→ e.g. cavities in walls, no connection between window layers

▶ Environmental noise



#### ▶ Environmental noise

- Anti-noise barriers
  - of "infinite" length



#### ▶ Environmental noise

- Anti-noise barriers
  - of "infinite" length
  - of finite length L





- ▶ Environmental noise
  - Anti-noise barriers
  - Acoustic urbanism





- ▶ Environmental noise
  - Anti-noise barriers
  - Acoustic urbanism





Structure-borne noise









▶ Structure-borne noise

▶ Structure-borne noise



#### Sound source in room



Image by MIT OCW.



#### ▶ Sound source in room

- $\blacksquare$   $|_{abs} = |_{inc} \cdot \alpha_s$
- $P_{abs} = I_{\perp} \cdot A = I_{\perp} \cdot \alpha_s \cdot S$
- \_stat



#### Sound absorbers

Porous



- ▶ Sound absorbers
  - Porous
  - Membrane



- ▶ Sound absorbers
  - Porous
  - Membrane
  - Cavity resonators



- Sound absorbers
  - Porous
  - Membrane
  - Cavity resonators



- Sound absorbers
  - Porous
  - Membrane
  - Cavity resonators
  - Perforated panels





#### Absorbent baffles





- ▶ Reading assignment from Textbook:
  - "Introduction to Architectural Science" by Szokolay: § 3.3
- ▶ Additional readings relevant to lecture topics:
  - "How Buildings Work" by Allen: p. 132 in Chap 14