Basic human requirements

▶ Earth's orbit

seasons

Image by MIT OCW.

Solar course

seasons

latitude and elevation's impact

Parameters in incoming radiation

▶ Earth's orbit

seasons

latitude and elevation's impact earth's inertia

a 16°F difference for the same solar elevation

Critical for solar protections

Image by MIT OCW.

- ▶ Earth's orbit
 - seasons
 - day

- ▶ Apparent movement of the sun
 - lococentric (local) referential

elevation
$$\eta$$

$$\longleftrightarrow$$
 latitude L
$$\Leftrightarrow$$
 azimuth ϕ declination δ solar time $\mathsf{H}^{\mathsf{solar}}$

$$\eta_{\text{noon}}$$
 = 90° - L + δ

Image by MIT OCW.

Image by MIT OCW.

- Apparent movement of the sun
 - lococentric (local) referential

Image by MIT OCW

- Apparent movement of the sun
 - lococentric (local) referential cylindrical projection

- ▶ Apparent movement of the sun
 - lococentric (local) referential cylindrical projection

- Apparent movement of the sun
 - lococentric (local) referential

- ▶ Apparent movement of the sun
 - lococentric (local) referential

- ▶ Apparent movement of the sun
 - lococentric (local) referential

- Apparent movement of the sun
 - lococentric (local) referential

- ▶ Apparent movement of the sun
 - lococentric (local) referential

cylindrical projection stereographic projection

Horizontal sun protections

Image by MIT OCW.

▶ Apparent movement of the sun

lococentric (local) referential Vertical sun protections

▶ Apparent movement of the sun

lococentric (local) referential
cylindrical projection
stereographic projection

Combined protection

Daylight

Daylight

- Atmospheric phenomena (global climate)
 - Wind flows and Coriolis force

- Atmospheric phenomena (global climate)
 - Wind flows and Coriolis force
 - Water

- Atmospheric phenomena (global climate)
 - Wind flows and Coriolis force
 - Water
 - Mountains

Image by MIT OCW.

- Atmospheric phenomena (global climate)
 - Wind flows and Coriolis force
 - Water
 - Mountains
 - Friction

- Atmospheric phenomena (global climate)
 - Wind flows and Coriolis force
 - Water
 - Mountains
 - Friction
 - Greenhouse effect

Human needs and outside environment

- ▶ Reading assignment from Textbook:
 - "Introduction to Architectural Science" by Szokolay: § 1.3
- ▶ Additional readings relevant to lecture topics:
 - "How Buildings Work" by Allen: Chap 1
 - "Heating Cooling Lighting" by Lechner: § 5.1 5.6 + § 6.1 6.13
 - "Sun Wind Light" by Brown & DeKay: § 1 6 in Chap 1A