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Daylighting/Lighting in LEED

Indoor Environmental Quality section:
credits for:

 (a) glazing factor (daylight factor) of 2%  
(b) Between 250 and 5000 lux under equinox

clear sky at 9AM and 3PM.

 view to the outside

Compliance via spreadsheet method.



MIT 4.430 Daylighting, Instructor C 
Reinhart 3

this formula?

How many of you have used

LEED 2.2 Glazing Factor Formula 

External obstructions are not considered. 

Credit 8.2 Views for 90% of Spaces Achieve 
direct line of sight to vision glazing for 
building occupants in 90% of all regularly 
occupied spaces. Examples for exceptions 
copy rooms, storage areas, mechanical, 
laundry and other low occupancy support 
areas. 

View to the Outside in LEED I 2
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View to the Outside in LEED II 

View to the Outside 

• Size and content matter 
• Information rich views with natural 

elements provide satisfaction and 
health benefits 
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Image by MIT OpenCourseWare.
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Daylighting/Lighting in LEED 

Sustainable Sites: 
Light Pollution Credit “eliminate light 
trespass from the building and site, improve 
night sky access and reduce development 
impact on nocturnal environments”. 

Occupant Behavior 
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blinds always down, slats at 45 o 

blinds always up 

USER BEHAVIOUR ?! 
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architecture: Meier-Weinbrenner-Single, Nürtingenarchitecture: Meier-Weinbrenner-Single, Nürtingen 

Monitoring User Behavior 

Paper: Reinhart C F, Voss K, Monitoring manual control of electric lighting and 
blinds. Lighting Research & Technology, 35:3 pp. 243-260, 2003. 
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HOBO data logger 

Illuminance 
Temperature 

occupancy 

Monitoring Setup in the Offices 

receiver 
2414.5 MHz 

data acquisition EIB system Blind setting 

video surveillance camera 

Monitoring Blind Usage 
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Example Picture 
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People are Consistent but Different
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Intermediate Switch-On Probability 
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 Blinds get lowered to avoid direct sunlight falling on the 
work plane. 
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stochastic process:
switch on probability 
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annual occupancy 
profiles 
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profiles 

Lightswitch 2002 

Lightswitch Algorithm 
(stochastic) 

el. lighting/blinds profile 

Model Overview 

Paper: Reinhart C F, Lightswitch 2002: A model for manual control of electric lighting 
and blinds", Solar Energy, 77:1 pp. 15-28, 2004 

Switch lights on 
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 with or without  occupancy 

sensor (Fig. 7-5) 
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Lightswitch - Manual Lighting Control 
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Lightswitch - Manual Blind Control 

Lightswitch - Manual Blind Control 

 Define work plane sensors that define where the occupants are usually located. 

 Associate sensors with shading groups. A shading group consists of a (set of) blinds 
that are opened and lowered at the same time. 

 Check when direct sunlight (>50Wm-2) is incident on a work plan sensor. 

 Close shading device if yes until occupant is away for more than an hour. 

work plane 
sensors 

window with 
blinds 

) )
 ) 

) )
 ) 

) )
  

) )
 ) 

) 
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Blind Use in New York City Classrooms 

 183 teacher surveys, 9 participating schools 

MDesS thesis, Jennifer Sze 2009 
Question 14: How often do you adjust the shading device(s)? 

DIVA Demo: Occupant Behavior 

5
%8%

31%

21%

18%

17%

Multiple times a day
Once or twice a week
Once or twice a month

Never
Other
N/A

Image by MIT OpenCourseWare.
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Modeling Occupant Behavior 

No BlindsNo Blinds With BlindsWith Blinds 

Detecting Glare 

14
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What is glare? 
 Glare is a subjective human sensation that describes ‘light within the 
field of vision that is brighter than the brightness to which the eyes are 
adapted’ (HarperCollins 2002). 

Illustration by ZStardust on Wikimedia Commons. 

Glare Indices 
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CIE Unified Glare Rating 

 A glare index is a numerical 
evaluation of high dynamic range 
images using a mathematical formula 
that has been derived from human 
subject studies. 

 Example indices include the unified 
glare rating (UGR) and the daylight 
glare index (DGI). All of these 
equations were derived from 
experiments with artificial glare 
sources none of them under real 
daylight conditions. 

The reason for this is that until 
recently it has been next to 
impossible to collect high dynamic 
range images of daylit scenes under 
continuously changing lighting levels. 

15
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 Weak correlation between DGI and CGI (cventional galre 
metrics) and occupant evaluations. 

Courtesy of Elsevier. Used with permission.

17

Daylight Glare Probability (DGP)

 DGP is a recently proposed discomfort glare index that was derived by
Wienold and Christoffersen from laboratory studies in daylit spaces using 72
test subjects in Denmark and Germany.

 Two identical, side-by-side test rooms were used. In Room 1 a CCD camera
based luminance mapping technology was installed at the exact position and
orientation as the head of the human subject in Room 2.

Paper: Wienold & Christoffersen, " Evaluation methods and development of a new glare prediction model for daylight
environments with the use of CCD cameras ", Energy & Buildings 2006.

Room 1: CCD CameraRoom 1: CCD Camera Room 2: Human SubjectRoom 2: Human Subject

Image-based Glare Source Detection using 
the Radiance evalglare Program

Paper: Wienold & Christoffersen, " Evaluation methods and development of a new glare prediction model for daylight
environments with the use of CCD cameras ", Energy & Buildings 2006.
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In Search of a Glare Metric… 

Paper: Wienold & Christoffersen, Evaluation methods and development of a new glare prediction model for daylight 
environments with the use of CCD cameras ", Energy & Buildings 2006. 

 Weak correlation between DGI and CGI (conventional glare 
metrics) and occupant evaluations. 

Courtesy of Elsevier. Used with permission.

In Search of a Glare Metric… 

 Vertical eye illuminance promising for the first term. 

17

Image by MIT OpenCourseWare.
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Final Daylight Glare Probability Metric 

Paper: Wienold & Christoffersen, Evaluation methods and development of a new glare 
prediction model for daylight environments with the use of CCD cameras , Energy & 
Buildings 2006. 

DGP allows users to go back and forth between 
simulation and reality through HDR photography 

HDR Image (Digital Camera) HDR Image (Radiance) 

evalglare program 

instantaneous daylight glare probability 
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DGP Comfort Ranges 

DGP < 35% imperceptible 

35% < DPP < 40% perceptible 

40% <DGP < 45% disturbing 

DGP > 45% intolerable 

Example DGP Calculation 

19
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DIVA Demo: DGP Point in Time Calculation 

Towards Annual Glare Calculations 

 Wienold developed a process through which the annual glare calculation is 
split into a regular Daysim illuminance calculation and an ab=0 contrast image. 

Paper: J Wienold, Dynamic Daylight Glare Evaluation , Building Simulation 2009, 
Glasgow Scotland. 

20

Generated visualizations for illuminance calculation
 

removed due to copyright restrictions.
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“ ”

Comparison of Simplified DGP and hour -by-
hour method 

Paper: J Wienold, Dynamic Daylight Glare Evaluation , Building Simulation 2009, 
Glasgow Scotland, 2009. 

Annual Glare Map 

21

Graph of vertical illuminance removed due to copyright restrictions.



DGP Comfort Ranges 

Paper: C F Reinhart, Simulation-based Daylight Performance Predictions", Book 
chapter in Building Performance Simulation for Design and Operation, Editors J Hensen 
and R Lamberts, Taylor & Francis, 2011. 

Expanded Blind Control Model: 
Close Blinds when DGP > 40% 

22
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The formula makes sense. How plausible are 
DGP results compared to other glare indices? 

Multidirectional Time-Lapse Simulation 

Design: Jeff 
Niema 

Paper 
J A Jakubiec, C F Reinhart, The Use of Glare Metrics in the Design of Daylit Spaces: Recommendations for Practice , submitted to Lighting 
Research and Technology 2011. 

The image shows a cylindrical 360o view of a work space in Gund Hall. The color 
coded lines at the bottom show the predictions of different glare indices (DGP, DGI, 
UGI, CGI and VCP) whether discomfort glare will be experienced in a particular 
direction at different times of the day (Green=Imperceptible Glare; 
Yellow=Perceptible Glare; Orange=Disturbing Glare; Red=Intolerable Glare). 

23
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Multidirectional Time-Lapse Simulation 

Design: Jeff 
Niema 

Paper 
J A Jakubiec, C F Reinhart, The Use of Glare Metrics in the Design of Daylit Spaces: Recommendations for Practice , 
submitted to Lighting Research and Technology 2011. 

 DGP yields most plausible results in these spaces. 

How to analyze for visual discomfort? 

Paper: J A Jakubiec, C F Reinhart, 2010, “The Use of Glare Metrics in the Design of Daylit 
Spaces: Recommendations for Practice", Lighting Research and Technology, 2011. 

24
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Multidirectional Time-Lapse Simulation 

Design: Jeff 
Niema 

Paper 
J A Jakubiec, C F Reinhart, The Use of Glare Metrics in the Design of Daylit Spaces: Recommendations for Practice , 
submitted to Lighting Research and Technology 2011. 

 DGP yields most plausible results in these spaces. 

Concept of the Adaptive Zone 

Design: Jeff 
Niema 

Paper 
J A Jakubiec, C F Reinhart, The Use of Glare Metrics in the Design of Daylit Spaces: Recommendations for Practice , 
submitted to Lighting Research and Technology 2011. 

Annual DG Calculation: Fixed view looking forwardAnnual DG Calculation: Fixed view looking forward 

Annual DG Calculation: +/ 45 degrees rotational freedomAnnual DG Calculation: +/ 45 degrees rotational freedom 

 The concept helps to quantify the benefits of flexible furniture settings etc. 

25
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Christoph Reinhart
Associate Professor email: creinhart@mit.edu

The Ultimate Adaptive Space 
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