- Announcements
- Lab Quiz (on M1D1 material)
- Pre-lab Lecture
 - Writing a Methods Section
 - Gel Electrophoresis
 - DNA purification
 - Today in Lab: M1D2

Announcements

- Christina will be back by Day 4, is currently contributing from home
- Discussion of orientation day quiz

Methods section tips

- Organizing sub-sections
 - Start with an overview sentence, then detailed steps
- Methods should be <u>concise</u> and complete
 - Space-wise, avoid tables/lists if a sentence suffices
 - Sentence-wise, avoid extra/confusing words
 - Content-wise, cover what's needed and <u>only</u> that which is needed to understand and <u>replicate</u> your experiments.
- Concentrations are more useful than volumes;
 or you can state amounts, plus total volume.

Methods section exercises

- Which is more readable: "To the Y were added the X" or "The X were added to the Y"?
- How can I more quickly express "1 g of protein in 45 mL of water and 5 mL of 10X buffer B"?
 - 2% protein in aqueous buffer B
- Which parts of a PCR are unique to a given experiment, versus standard protocol?
 - T_{anneal}; t_{extension} (1min/kbp plasmid); # cycles;
 composition; concentration of template, primers

DNA Electrophoresis (EP): Principle

Agarose gel

DNA

Agarose and DNA are both

Biological polymers → have molecular entanglements

Driving force for separation:

Electrostatic charge, mass

DNA moves - to + because of

Phosphate groups

Separation is according to: Size

Shorter

DNA moves faster because

Entanglements increase with size wt. % increases, pore size decreases

DNA EP: Visualization

Loading dye:

glycerol → sink into wells xylene cyanol → visual tracking dye

Ethidium bromide:

fluoresces under UV if bound to DNA

DNA EP: Analysis

DNA ladder: standards of known size (and concentration)

Relationship:

distance
$$\propto \frac{1}{\log(MW)}$$

more details in Mod 2

DNA EP: Clean-up and Safety

 Use nitrile gloves when handling DNA gels and all equipment used for gels.

 Gels and gel-contaminated papers are disposed of in solid chemical waste.

 Wear eye protection/face shields when cutting DNA bands out of a gel.

DNA extraction from agarose gel

why? isolated desired DNA, change buffer

1.<u>bind</u> DNA → high salt, low pH chaotropic salt disrupts H-bond DNA sticks to silica column

2.keep DNA <u>wash</u> else ethanol – precipitates DNA

Silica resin column

3.<u>elute</u> DNA → low salt, high pH → electrostatic repulsion –Si-O⁻ ⁻O-P-DNA

[qiagen.com] Note: initial mixture should look yellow, not blue

Today in Lab

- Set up gel: runs 60 min, we will photograph it.
 - Mark your area of the gel box with coloured tape.
 - Bring your USB key up front.
- Meanwhile, discussion w/Neal and Linda.
- Finally, DNA extraction from gel.
- FNT: methods section, read journal article.

MIT OpenCourseWare http://ocw.mit.edu

20.109 Laboratory Fundamentals in Biological Engineering Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.