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The Second Law   
 
▲ First Law  showed the equivalence of work and heat 
  for cyclic process ⇒ = −    q w  ∫ =+=∆ 0, dUwqU
Suggests engine can run in a cycle and convert heat into useful work.  
 
▲ Second Law   
   • Puts restrictions on useful conversion of q to w 

• Follows from observation of a directionality to natural 
or spontaneous processes 

• Provides a set of principles for 
-  determining the direction of spontaneous change 
-  determining equilibrium state of system 

 
 
 
Need a definition: 
 
 

Heat reservoir Definition: A very large system of uniform 
T, which does not change regardless of the 
amount of heat added or withdrawn.  

Also called a heat bath.  Real systems can come close to this 
idealization.  
 
Two classical statements of the Second Law: 
 Kelvin 
 Clausius 
and a Mathematical statement 
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I. Kelvin: It is impossible for any system to operate in a cycle that 
takes heat from a hot reservoir and converts it to work in the 
surroundings without at the same time transferring some heat to a 
colder reservoir. 
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II. Clausius: It is impossible for any system to operate in a cycle 
that takes heat from a cold reservoir and transfers it to a hot 
reservoir without at the same time converting some work into heat.   
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Alternative Clausius statement: All spontaneous processes are 

irreversible.   
(e.g. heat flows from hot to cold spontaneously and irreversibly) 
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Mathematical statement:   ∫
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Kelvin and Clausius statements ar
Mathematical statement is very a
 
Let’s Link them through analytica
 
The Carnot Cycle - a typic
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 1 → 2    isothermal expansion at T1 (hot) +∆ = 1 1wU q  
 2 → 3    adiabatic expansion (q = 0)  ∆ = ′1U w  
 3 → 4    isothermal expansion at T2 (cold) +∆ = 2 2wU q  
 4 → 1    adiabatic compression (q = 0)  ∆ = ′2U w  
 

 ( )− + + +
=

′ ′1 1 2 2

1

work output to surroundings
heat in at  (hot)

Efficiency = w w
T q

w w  

 
 1st Law ( )⇒ = ⇒ + = − + + +′ ′∫ 1 2 1 1 2 2    0    dU q q w ww w  
 
   +

∴ = =1 2

1 1

    Efficiency 1 + 2q q q
q q

 

 
 Kelvin: q2 < 0  →  Efficiency ≡ ε < 1  (< 100%) 
 

 -w = q1ε = work output 
 

Note: if the cycle were run in reverse, then q1 < 0, q2 > 0, w > 0.  
It’s a refrigerator! 
 
Carnot cycle for an ideal gas 
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this illustrates the link between heat engines to the 
mathematical statement of the second law 
this illustrates the link between heat engines to the 
mathematical statement of the second law 

  
Efficiency  Efficiency  ε = + = −2 2

1 1

1 1q T
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  → 100% as T2 → 0 K     

 
 

 
 
For a heat engine  (Kelvin):  q1 > 0, w < 0, T2 < T1
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Note:  In the limit  T2 → 0 K,  (-w) → q1, and ε → 100% conversion of 
heat into work. 3rd law will state that we can’t reach this limit! 
 

For a refrigerator  (Clausius):  q2 > 0, w > 0, T2 < T1
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Note:  In the limit  T2 → 0 K,  w → ∞.  This means it takes an infinite 
amount of work to extract heat from a reservoir at 0 K ⇒    0 K 
cannot be reached (3rd law).  
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• The efficiency of any reversible engine has to be the same as the 
Carnot cycle, this can be shown by running the reversible engine 
as a refrigerator, using the work output of a Carnot engine to 
drive it so that the total work out is zero, and showing that, if 
the efficiency of the reversible engine is higher, then the second 
law is broken. 

 
 Additionally: 
 
• We can approach arbitrarily closely to any cyclic process using a 

series of only adiabats and isotherms.  
 
∴ So, for any reversible cycle đ rev 0q

T
=∫  

 
• This is consistent with the mathematical statement of the second 

law, which defines Entropy, a function of state, with 
 

đ đ2rev
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Note: Entropy is a state function, but to calculate ∆S from q 

requires a reversible path.  
 
• An irreversible Carnot (or any other) cycle is less efficient than a 

reversible one.   
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** An irreversible isothermal expansion requires less heat   ** 
than a reversible one.  
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•  This leads to the Clausius inequality 
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• Important corollary: The entropy of an isolated system never 
decreases 

 
  (A): The system is isolated and  (A) irreversible

(B) reversible
1 2 irreversibly (spontaneously) changes  

from [1] to [2]    
 
(B): The system is brought into contact with a heat 

reservoir and reversibly brought back from [2] to [1] 
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This gives the direction of spontaneous change! 

 

For isolated systems  
0     Spontaneous, irreversible process
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    1      2  2 1S S S∆ = −   independent of path 

 
But!  surroundingsS∆ depends on whether the process is 

reversible or irreversible 
 

(a) Irreversible: Consider the universe as an isolated system 
     containing our initial system and its  

surroundings.  
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(b) Reversible:   
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∆ ≥universe 0S  for any change in state (> 0 if irreversible, = 0 if reversible) 
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