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Why Ω works for large N 

Derivation of the Boltzmann Distribution Law 

Partition Function 

• Why ΩΩΩΩ works for large N 
We have seen that a system will vary its degrees of freedom in order to maximize Ω and thus S. A 
system has a higher probability of being in a state due to it being more probable. This allows us to 
simply count states and see which one is more likely. 
 
The lattice model of mixing gases had only N=8 particles. Is this approach still justified when we look 
at a larger number of particles, like NA? It turns out the most probable state at low N becomes even 
more likely at very high N. 
Consider: coin flips 
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Then do for N = 10, 100, 1000 
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Ω becomes increasingly narrower as N↑. Compare numerically:  
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Even though the process is totally random: If the number of trials N is large enough, the composition 
of the outcomes becomes predictable with great precision. 
 
This allows us to better predict the most probable state! 
 

maximizing Ω = maximizing S 

• Derivation of the Boltzmann Distribution Law 
Microscopic definition of entropy: 
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Utilize Lagrange multipliers to solve this problem. We add the constraint to the equation we are 
trying to maximize with a multiplier, α . Then when we maximize the resulting equation the value of 
α is determined. i.e., solving the set of equations: 
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Plug in definition of S (pj): 
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Take the derivative: 
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Divide pi by 1 to get rid of α: 
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This says: Flattest probability distributions have highest S. This is something we already knew.  
Now, what happens when we impose a constraint on the system? i.e., you have a given temperature, 
and can sum up to a particular total energy. This is a more realistic problem to solve. 
 
Let’s put this into practice with an example. 
Simple model to illustrate: 4 bead polymer 

compact open

-ε0

compact opencompact open

-ε0

 
The polymer can assume multiple configurations. We’ll label one end atom so that it is distinguishable 
from the other atoms in the chain. The polymer is stabilized when in compact configuration by energy 
ε from open state. This is represented by the dashed line. This is a simple model utilized by those 
studying protein folding as it can represent the configurations of a protein in the folded and unfolded 
states. It represents a polypeptide chain that has only 4 amino acids, and a great simplification of real 
proteins in that the chain can assume only a small number of conformations: one compact and four 
open. 
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native denaturednative denatured  
 
One end bead is labeled so that it is distinguishable from other end. 
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a macrostate

1st excited 
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microstate: a possible configuration. “snapshot.” A measurement averages over several 
microstates 
macrostate: a collection of microstates with the same energy 

 

Define the E=0 state as the compact form, where the chain is stabilized by some energy ε relative to 
the open state due to the interaction between bead 1 and bead 4. 
 
Degree of freedom: physical conformation of the chain and the energy of each conformation, or 
microstate. 
 
What is the probability distribution that minimizes or maximizes a relevant thermodynamic quantity? 
What happens if we try do this in real laboratory conditions? (T,V,N) or (T,P,N) controlled. 
Let’s say we have (T,V,N) constant, making A what we want to minimize. 

TdSdUdA ==  

at equilibrium: 

0=dA  

Goal: Get dU and dS and solve for pj that makes dA = 0.  
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Differentiate with respect to pi 
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Energy levels do not depend on T. pj, or how they are populated, do.  
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use the constraint: 
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Which allows us to use the Lagrange Multiplier 
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Plug everything back into dA equation: 
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pj*= set of pj that satisfies dA=0 
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We’ll eliminate α from the equation by using 
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Rearranging the last expression 
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Plug this back into pj*: 

 

 

 

 

 

 

Boltzmann Distribution Law 
pj is the probability that the systems is in the Ej

th energy level 
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We have defined the denominator as Q, the partition function 
 

 
 
 
 
We arrived here by finding the probability distribution, or set of pj’s, that minimizes the free energy. 
What does it say?  
• When you are trying to maximize entropy, minimize energy: more particles like to have lower 
energies.  Particles populate relatively low Ej apiece 

• Probability distributions have an exponential form when you place constraints on them (not flat, 
like for the case of no constraints) 
 
Relative populations of two levels: 
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If j higher than i, then Ei-Ej<0 (negative) 
so exp (+) 

pi/pj >1, ∴ more in ith level. 
 
Note: Particles do not have a preference for the lower energies, there is just a greater number of 
ways to arrange the particles so that they distribute the E. 
 
For a given Etot, can arrange particles in several ways to achieve Etot. However, the Boltzmann 
Distribution Law says that the left hand situation is much more probable as it has the higher entropy. 
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• What is the partition function? 
In our derivation of the Boltzmann equation, the partition function, Q, came out.  

�
=

��
�

�
��
�

�
−≡

t

j

j

kT
E

Q
1

exp  

Q describes how the particles are partitioned throughout accessible states. It is a number. Note that 
Q is temperature dependent! 
In simpler terms: Q tells you the number of states that are effectively accessible to the system at a 
given temperature.  
Qualitatively: 
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Ej/kT factor: magnitude of Ej relative to kT is the relevant number. 

20.110J / 2.772J / 5.601J
Thermodynamics of Biomolecular Systems
Instructors: Linda G. Griffith, Kimberly Hamad-Schifferli, Moungi G. Bawendi, Robert W. Field



Lecture 14  5.60/20.110/2.772 

9 

Units of kT: [J] (energy) 
Let’s look at two limits: 

a) T� ∞ (hi temperature) OR Ej�0 (small energy spacing) 

then Ej/kT�0 
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this means: all states are accessible. Note that 

tQ →  

 

b)T � 0 (low temp) OR Ej � ∞ (big energy spacing) 

then Ej/kT � ∞ 
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this means: only ground state accessible. 

1→Q  

Now let’s do it again for our 4 bead polymer: 

E=0
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E=ε

 
We still need to account for one more thing: 
Degeneracy, g of upper the macrostate--there are four microstates. 
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l are the levels. gl=0 = 1, gl=1= 4 
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Q(T): 
At low T, Q=1 (lowest state accessible) 
At high T, Q=5 (all states accessible) 

 
and also pl (T).  
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This is a unfolding or a denaturation profile for a polymer or protein, etc. Experiments: Fix T, 
measure popen vs pcompact.  
 

• Why are we so interested in Q? We will re-derive thermodynamic properties in terms of Q. This is 
the link between the microscopic and macroscopic descriptions. 
 

Interesting side note: Calculate ∆S of unfolding using S=k ln Ω 
Sclosed = k ln 1 = 0 
Sopen = k ln 4 

∆S = + 
This says that the protein will want to unfold, based only on entropy. However, this model does not 
account for things like interaction with the water molecules around the protein, which order around the 
chain.  
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