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Q vs. q for distinguishable vs indistinguishable systems  
Derivation of Thermodynamic Properties from Q: 

 U, S, A, µ, P 
Examples 
 

• Partition Functions for independent and distinguishable particles 
We want to generalize for distinguishable and indistinguishable particles. Let’s make it easier on 
ourselves by considering only independent subsystems, i.e., the particles do not interact. Then the 
energy of the whole system, written as, 
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can be simplified because the 2nd term (εinteraction) is 0. 
This allows us to say: 
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Because the sums are independent of each other 
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Generalize for N independent and distinguishable particles: 
 

 NqQ =
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2. Indistinguishable particles (and independent) 
Now: no A and B labels! 

B
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ijE εε +=  where i=1,2,…t1, m = 1,2,…t2. 
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Now: cannot factor out of sum due to indistinguishability: can’t separate sums 
 
WHY? 

particle 1 ε1=10 

particle 2 ε1=167 
Can’t be distinguished from the situation where 

particle 1 ε1=167 

particle 2 ε1=10 
So overcounting is present. Divide by 2! 

!2

2qQ =  

In general, for N particles, divide by N! 

 
 
 

 

• Deriving Thermodynamic Properties using Q 
 

All thermodynamic quantities can be calculated from the partition function 
 
The Boltzmann factor and partition function are the two most important quantities for making 
statistical mechanical calculations.  If we have a model for a material for which we can calculate 
the partition function, we know everything there is to know about the thermodynamics of that 
model. 
 
Now we will relate our favorite thermodynamic properties to q, the partition function. This is our link 
between the microscopic and macroscopic descriptions. Using the convenient dummy variable β = 
1/kbT to simplify things. 
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Deriving Energy, U 
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Use trick 
 

��
−− −=

∂
∂=��

�

�
��
�

�

∂
∂ jj E

j
E eEeQ ββ

ββ  

 
so then 

��
�

�
��
�

�

∂
∂−=��

�

�
��
�

�

∂
∂−=

= �
=

−

ββ

β

QQ
Q

eE
Q

E
t

j

E
j

j

ln1

1
1

 

Substituting this into <E> 
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Deriving S: 
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Split Σ up 
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2nd term: 
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Combing both terms: 

 
 
 
 
 
 
 
We can do this for several other properties! 
 
Helmholtz Free Energy, A 
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Chemical potential, µµµµ 
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Pressure, P 
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Now have all the thermodynamic properties as a function of Q, the partition function. We can use 
these in a couple examples. 

• An Application Example: Visualizing the complex states of a DNA 
molecule 
Let’s consider the unwinding of a superhelix of DNA as an example of using the Gibbs free energy to 
describe the population of states. 
Closed superhelical DNA can be ‘unwound’ by treatment with DNAse, which ‘nicks’ the DNA.  The 
break in one chain allows the double helix to twist relative to its axis and relax the supercoiling in 
response to thermal fluctuations.  The DNA can be ‘healed’ by treatment with ligase to seal the nick.  
When nicked, the DNA will achieve an equilibrium where some of the DNA is completely unwound, 
some has one right-handed twist, some has one left-handed twist, some has two right-handed twists, 
and so on.  When the ligase is added to ‘freeze’ the fluctuating DNA by fixing the nick, the collection 
of DNA molecules is captured in an equilibrium distribution of different configurations.  We can use 
the connection between the probability of configurations and the free energy to predict this 
distribution. (Eisenberg and Crothers) 
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The ‘frozen’ collection of DNA molecules with different degrees of superhelicity can be separated by 
gel electrophoresis to allow analysis of the relative concentrations of each species: 

 

The gel electrophoresis chart shows a clear separation of unique DNA species, occurring at different 
concentrations as a function of their superhelicity. (The y-axis represents concentration, while the x-
axis represents distance along the gel.)  The peaks have been denoted with values of e, measuring 
the number of superhelical twists in the DNA present in each peak: ε = relaxed circular DNA, ε+1 = 
one left-handed superhelical twist, ε-1 = one right-handed superhelical twist, etc. 
How can we predict the relative concentrations observed above?  As with all statistical mechanics 
calculations, we start with a model: Here, we want a model for how the free energy varies with twist in 
the DNA superhelix. 
We will start from a very simple model for the twisting energy of the DNA coil (…and show that it 
correctly predicts the observed distribution of twists).  We are all familiar with the simple linear 
function known as Hooke’s law which describes the relationship between the restoring force on a 
spring and the displacement of the spring: F = -kx, where k is the spring constant.  Twisting DNA is 
not a simple spring, but can be thought of as a torsional spring- a coil with a restoring force when a 
torque is applied.  To remind you, a torque ( Τ) results when a force acts in a radial manner through 
an axis r: 

Τ = F × r  
Both the force F  and radius r  are vectors.  Analogous to the simple linear spring, a torsional spring 
feels a torque which is linear to the applied twist: 

θTspringtorsional k−=Τ _  
 

Here kT is a torsional spring constant and θ is the angle of the twist.  If we assume the spring can only 
undergo integral numbers of twists, then we could rewrite this as: 

Τtorsional_ spring = −kTθtwistτ  

Where θtwist is simply the angle for one twist of the spring, and τ is the total number of twists (θ = 

θtwistτ).  Just as the force on a linear spring is related to a change in potential energy F = −kx = −∂V
∂x

, 

we can relate the torque on our DNA torsional spring to a change in its free energy: 
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Τtorsional_ spring = −kTθtwistτ = −∂G
∂τ

∴∂G
∂τ

= kTθtwistτ = Bτ

G = B
2

τ 2

 

In the equation above, we combine the constants into one stiffness parameter B (B = kTθtwist) to 
simplify the expression.  We are using free energy rather than mechanical potential energy here 
because this molecular system (the twisting DNA coil) has internal degrees of freedom (e.g., bonds 
among the DNA strands) that could also be affected by supercoiling. 
 

If we ask what is the free energy of one particular DNA molecule i that has some number of twists τi, 
we have: 

Gi = Bτ i
2

2  

τ is the number of superhelical turns; negative for right-hand turns, positive for left-hand turns. 
 
Using our link between the free energy and the probability of observing a state with a particular 
energy we have for the twisting DNA: 
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To relate this to our measured quantity (concentration of species I, proportional to the peak in our gel 
electrophoresis experiment), we simply recognize: 

ci = coPi  

Where co is the total concentration of DNA.  The presence of the squared term in the exponent 
means this distribution has a Gaussian shape (the same result we discussed last lecture- except for 
this simple model, the entire probability distribution is Gaussian, not just near the peak of the 
distribution).  Fitting the measured concentration data with a Gaussian curve, we find the theory 
predicts the observed distribution of superhelices very well: 
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