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Topics


• Basic clustering methods 

– hierarchical 

– k­means 

– mixture models 

• Multi­variate gaussians 

• Principle Component Analysis




Simple mixture models


•	 Instead of representing clusters only in terms of their centroids, 

we can assume that each cluster corresponds to some distribution 

of examples such as Gaussian 

Two clusters, two Gaussian models N (µ1, σ2), N (µ2, σ2)• 

• The partial assignment of examples to clusters should be based 

on the probabilities that the models assign to the examples 



Simple mixture model clustering


(for cluster models with fixed covariance) 

• The procedure: 

1. Pick k arbitrary centroids 

2. Assign	 examples to clusters based on the relative likelihoods 

that the cluster models assign to the examples 

3. Adjust the centroids to the weighted means of the examples


4. Goto step 2 (until little change) 



Simple mixture models


• We can also adjust the covariance matrices in the Gaussian cluster


models


Ideas how?
• 

• In this case the clusters can become more elongated




Simple mixture models


• A generative model perspective:


We are fitting a generative model to the observed data via the 

maximum likelihood principle 



Simple mixture models


• A generative model perspective:


We are fitting a generative model to the observed data via the 

maximum likelihood principle 

X ∼ N (µ1, Σ1) X ∼ N (µk, Σk)




Statistical tests: example


•	 The alternative hypothesis H1 is more expressive in terms of ex­

plaining the observed data 

null hypothesis	 alternative hypothesis


•	 We need to find a way of testing whether this difference is sig­

nificant 



Test statistic


Likelihood ratio statistic • 
ˆ

T (X(1), . . . , X(n)) = 2 log 
P (X(1), . . . , X(n)|H1) 

(1)
ˆP (X(1), . . . , X(n)|H0) 

Larger values of T imply that the model corresponding to the


null hypothesis H0 is much less able to account for the observed


data


•	 To evaluate the P­value, we also need to know the sampling 

distribution for the test statistic 

In other words, we need to know how the test statistic T (X(1), . . . , X(n)) 

varies if the null hypothesis H0 is correct 



Test statistic cont’d


For the likelihood ratio statistic, the sampling distribution is χ2 • 
with degrees of freedom equal to the difference in the number of 

free parameters in the two hypotheses 

• Once we know the sampling distribution, we can compute the 

P­value 

p = P rob( T (X(1), . . . , X(n)) ≥ Tobs | H0 ) (2) 



Degrees of freedom


• How many degrees of freedom do we have in the two models?
� � �� � � �� 
X1 µ1 σ2 0 

H0 : 
X2 

∼ N
µ2 

, 
0
1 

σ2 � � �� � � 2 �� 
X1 µ1 Σ11 Σ12H1 : ,
X2 

∼ N
µ2 Σ21 Σ22 

H0 H1




Degrees of freedom


• How many degrees of freedom do we have in the two models?
� � �� � � �� 
X1 µ1 σ2 0 

H0 : 
X2 

∼ N
µ2 

, 
0
1 

σ2 � � �� � � 2 �� 
X1 µ1 Σ11 Σ12H1 : ,
X2 

∼ N
µ2 Σ21 Σ22 

H0 H1 

• The observed data overwhelmingly supports H1 



Significance of clusters


•	 For k­means each value of k implies a a different number of 

degrees of freedom 

–	 A gene cluster has a centroid


–	 A centroid contains n values, where n is the number of exper­

iments. 

–	 Thus in this case we have k × n degrees of freedom


•	 Random vector Xi models the expression of gene i over n exper­

iments. µClust(i) is the centroid of the cluster of gene i 

H0 : Xi ∼ N (µClust(i), Σ) �Range(Clust)� = (j − 1) (3) 

H1 : Xi ∼ N (µClust(i), Σ) �Range(Clust)� = j (4) 



Principle Component Analysis (PCA)


• How can we discover vector components that describe our data?


1. To discover hidden factors that explain the data 

2. Similar to cluster centroids 

3. To reduce the dimensionality of our data 



Multi­Variate Gaussian Review


Recall multi­variate Gaussians: • 

N (0, 1) (5)Zi ∼ 

X = AZ + µ (6) 

Σ = E[(X − µ)(X − µ)T ] (7) 

= E[(AZ)(AZ)T ] (8) 

= E[AZZTAT ] (9) 

= AE[ZZT ]AT (10) 

= AAT (11) 

A multivariate Gaussian model • 
1 1 

p(x|θ) = 
(2π)p/2|Σ|1/2 

exp{ − (x − µ)T Σ−1(x − µ) } (12)
2

X N (µ, Σ) (13)∼ 

where µ is the mean vector and Σ is the covariance matrix




vi 

Principle Component Analysis (PCA)


•	 Consider the variance of X projected onto vector v


V ar(vTX) = E[(vTX)2] − E[vTX]2 (14) 

= vTE[XXT ]v − vTE[X]E[XT ]v (15) 

= vT (E[XXT ] − E[X]E[XT ])v (16) 

= vT Σv (17) 

•	 We would like to pick vi to maximize the variance with the con­

straint vi
T vi = 1. Each vi will be orthogonal to all of the other 

The vi are called the eigenvectors of Σ and λ2 
i are the eigenvalues:• 

Σvi = λi 
2 vi (18) 
T vi

T Σvi = vi λ
2 
i vi (19) 
T vi

T Σvi = λi 
2 vi vi (20) 

vi
T Σvi = λ2 (21)i 



Principle Component Analysis (PCA)


•	 How do we find the eigenvectors vi? 

• We use singular value decomposition to decompose Σ into an


orthogonal rotation matrix U and a diagonal scaling matrix S:


Σ = USUT (22) 

ΣU = (USUT )U (23) 

= US (24) 

•	 The columns of U are the vi, and S is the diagonal matrix of 

eigenvalues λ2 
i 



Principle Component Analysis (PCA)


•	 How do we interpret eigenvectors and eigenvalues with respect 

to our orginal transform A? 

X = AZ + µ (25) 

A is:•


A = US1/2 (26) 

Σ = AAT (27) 

Σ = USUT (28) 

Thus, the transformation A scales by S1/2 and rotates by U in­• 
dependent Gaussians to make X 

N(0, 1) (29)Zi ∼ 

X = US1/2Z + µ (30) 



Example PCA Analysis


477 sporulation genes classified into seven patterns resovled by 

PCA 



Self­organizing maps


•	 We want to cluster the data while preserving certain predefined 

topographic (neighborhood) relations among the clusters 

• 

µ
l
 

First we have to specify the desired cluster topology or grid 

•	 Each grid point l has a cluster centroid µl associated with it 

(initially chosen at random)


We have to update the cluster centroids somehow while preserv­


ing the topographic organization of the data




Self­organizing maps cont’d


• For each training example xi 

1. find the cluster centroid	 µl closest to xi 

µl∗ = arg min d(xi, µl) (31) 
l∈grid 

2.	 move the centroid as well as nearby centroids in the grid to­

wards the training point 

µl ← µl + � Λ(l∗, l) (xi − µl) (32) 

where Λ(l∗, l) is a neighborhood function (decreases with in­

creasing distance in the original grid), e.g., 

Λ(l∗, l) = exp(−�rl∗ − rl�2/2) (33) 

where rl∗ and rl are the corresponding grid points. 


