Class 9.07 Fall 2004

Handout: Two Sample Hypothesis Testing And Inference For Difference In Means

Hypothesis Testing

I. Two independent samples from Normal distributions.

Suppose $X_1, ..., X_{n_1}$ is an independent sample from $Normal(\mu_1, \sigma_1^2)$ distribution. Independently of the first sample, suppose $Y_1, ..., Y_{n_2}$ is an independent sample from $Normal(\mu_2, \sigma_2^2)$ distribution (possibly different from the first one):

	Group1	Group2	Known?
Mean	μ_1	μ_2	Unknown
Variance	σ_1^2	σ_2^2	Either
Data	$X_1,, X_{n_1}$	$Y_1,, Y_{n_2}$	Known
Sample size	n_1	n_2	Known
Sample Mean	$m_1 = \bar{X}$	$m_2 = \bar{Y}$	Known
Standard Deviation	SD_1	SD_2	Known
Distribution	$Normal(\mu_1, \sigma_1^2)$	$Normal(\mu_2, \sigma_2^2)$	Assumed

Reasonable estimate for the difference of the population means $\mu_1 - \mu_2$ is

$$m_1 - m_2 = \bar{X} - \bar{Y}.$$

Note that

$$E(m_1 - m_2) = \mu_1 - \mu_2$$

and

$$SE(m_1-m_2) = \sqrt{Var(m_1-m_2)} = \sqrt{Var(m_1) + Var(m_2)} = \sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}.$$

for independent samples $X_1, ..., X_{n_1}$ and $Y_1, ..., Y_{n_2}$.

For testing

$$H_0: \mu_1 = \mu_2$$
 against
$$H_1:1)\mu_1 \neq \mu_2 \text{ or}$$

$$2)\mu_1 < \mu_2 \text{ or}$$

$$3)\mu_1 > \mu_2$$
 (1)

use

test statistics
$$d_{obt}^{\star} = \frac{m_1 - m_2}{SE(m_1 - m_2)}$$

which follows some distribution d^* .

Theorem. Under the above assumptions about the two samples $X_1, ..., X_{n_1}$ and $Y_1, ..., Y_{n_2}$, for testing test H_0 : $\mu_1 - \mu_2 = 0$ at α - significance level

VS

1)
$$H_1$$
: $\mu_1 - \mu_2 \neq 0$. Reject H_0 if $|d_{obt}^*| \geq d_{crit}^*(\alpha/2)$

2)
$$H_1$$
: $\mu_1 - \mu_2 < 0$. Reject H_0 if $d_{obt}^* \le -d_{crit}^*(\alpha)$

3)
$$H_1$$
: $\mu_1 - \mu_2 > 0$. Reject H_0 if $d_{obt}^* \ge d_{crit}^*(\alpha)$

Computation of $SE(m_1 - m_2)$ and choice of distribution d^* :

- 1. σ_1 and σ_2 are known $SE(m_1 m_2) = \sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}$ Test statistics $d_{obt}^* = z_{obt} = \frac{m_1 m_2}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$ follows standard Normal distribution z.
- 2. σ_1 and σ_2 are unknown, but n_1 and n_2 are large (≥ 30)

 In this case can omit Normality assumption. $SE(m_1-m_2) = \sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2} \approx \sqrt{SD_1^2/n_1 + SD_2^2/n_2}$ and test statistics $d_{obt}^* = z_{obt} = \frac{m_1-m_2}{\sqrt{SD_1^2/n_1 + SD_2^2/n_2}}$ approximately follows standard Normal distribution z.

3. σ_1 and σ_2 are unknown, and n_1 and n_2 are not large enough (≤ 30)

a)
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
 (unknown)
$$SE(m_1 - m_2) = \sqrt{\sigma^2(1/n_1 + 1/n_2)} \text{ with }$$
 pooled estimate of σ^2 : $\sigma_{pool}^2 = \frac{(n_1 - 1)SD_1^2 + (n_2 - 1)SD_2^2}{n_1 + n_2 - 2}$ and test Statistics $d_{obt}^* = t_{obt} = \frac{m_1 - m_2}{\sqrt{\sigma_{pooled}^2(1/n_1 + 1/n_2)}}$ follows t distribution with $df = n_1 + n_2 - 2$ degrees of freedom.

b)
$$\sigma_1^2 \neq \sigma_2^2$$
 are unknown $SE(m_1 - m_2) = \sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2} \approx \sqrt{SD_1^2/n_1 + SD_2^2/n_2}$ and test Statistics $d_{obt}^* = t_{obt} = \frac{m_1 - m_2}{\sqrt{SD_1^2/n_1 + SD_2^2/n_2}}$ follows t distribution with degrees of freedom: $df = \frac{(SD_1^2/n_1 + SD_2^2/n_2)^2}{\frac{(SD_1^2/n_1)^2}{n_1 - 1} + \frac{(SD_2^2/n_2)^2}{n_2 - 1}}$ (estimated by MATLAB) or alternatively $df \approx \min(n_1 - 1, n_2 - 1)$.

If instead of testing (1), want to test

$$H_0: \mu_1 - \mu_2 = d$$
 against
$$H_1: \mu_1 - \mu_2 \neq d(< \text{ or } >)$$

use

test statistics
$$d_{obt}^* = \frac{m_1 - m_2 - d}{SE(m_1 - m_2)}$$

II. Proportions

For a random variable X drawn from a $Binomial(n_1, p_1)$ distribution, and an independent random variable Y drawn from a $Binomial(n_2, p_2)$ distribution, let $\bar{p_1} = X/n_1$ and $\bar{p_2} = Y/n_2$. For testing

$$H_0: p_1 = p_2$$
 against
 $H_1:1)p_1 \neq p_2 \text{ or}$
 $2)p_1 < p_2 \text{ or}$
 $3)p_1 > p_2$ (3)

use test statistics $d_{obt}^{\star} = \frac{\bar{p_1} - \bar{p_2}}{SE(\bar{p_1} - \bar{p_2})}$

Since for a Binomial(n,p) random variable X and $\bar{p} = X/n$, $Var(\bar{p}) = \frac{p(1-p)}{n}$,

$$SE(\bar{p_1} - \bar{p_2}) = \sqrt{Var(\bar{p_1} - \bar{p_2})} = \sqrt{Var(\bar{p_1}) + Var(\bar{p_2})} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

Then

test statistics
$$d_{obt}^* = z_{obt} = \frac{\bar{p}_1 - \bar{p}_2}{\sqrt{\frac{\bar{p}_1(1-\bar{p}_1)}{n_1} + \frac{\bar{p}_2(1-\bar{p}_2)}{n_2}}}$$

has approximately Normal z distribution if n_1p_1 , $n_1(1-p_1)$, n_2p_2 , and $n_2(1-p_2) \ge 10$.

III. Dependent samples (Paired data)

For paired measurements $(X_1, Y_1), ..., (X_n, Y_n)$ (eg., measurements "before" and "after") previous theory does not hold.

Sample $X_1, ..., X_n$ (an independent sample from $Normal(\mu_1, \sigma_1^2)$ distribution) is not independent of sample $Y_1, ..., Y_n$ (an independent sample from $Normal(\mu_2, \sigma_2^2)$ distribution), then

$$SE(m_1 - m_2) = \sqrt{Var(m_1 - m_2)} = \sqrt{Var(m_1) + Var(m_2) - Cov(m_1, m_2)} \neq \sqrt{Var(m_1) + Var(m_2)}$$

since $Cov(m_1, m_2) \neq 0$ for non-independent data!

In such case, testing (1) is equivalent to testing one-sample hypothesis for data $D1(=X_1-Y_1), \ldots, D_n(=X_n-Y_n)$:

$$H_0: \mu_D = 0$$
 against
$$H_1:1)\mu_D \neq 0 \text{ or}$$

$$2)\mu_D < 0 \text{ or}$$

$$3)\mu_D > 0.$$
 (4)

Confidence Intervals

For a test statistics
$$d_{obt}^* = \frac{m_1 - m_2}{SE(m_1 - m_2)}$$
 we reject H_0 if $|d_{obt}^*| \ge d_{crit}^*(\alpha/2)$. If $-d_{crit}^*(\alpha/2) < d_{obt}^* < d_{crit}^*(\alpha/2)$

we conclude that evidence against H_0 is not statistically significant at α - significance level.

Conficence interval for $\mu_1 - \mu_2$ is computed by inverting non-rejection region

$$-d_{crit}^*(\alpha/2) < \frac{m_1 - m_2}{SE(m_1 - m_2)} < d_{crit}^*(\alpha/2)$$
$$-d_{crit}^*(\alpha/2)SE(m_1 - m_2) < m_1 - m_2 < d_{crit}^*(\alpha/2)SE(m_1 - m_2)$$

with $(1 - \alpha)100\%$ confidence interval for $\mu_1 - \mu_2$:

$$((m_1 - m_2) - d_{crit}^*(\alpha/2)SE(m_1 - m_2); (m_1 - m_2) + d_{crit}^*(\alpha/2)SE(m_1 - m_2))$$