
  
9.16 Problem Set #2 
 
In this assignment you will build a simulation of the presynaptic terminal.   
 
The simulation can be broken down into three parts: simulation of the arriving action 
potential (based on the Hodgkin-Huxley equations from the last assignment); simulation 
of the calcium current influx; and, finally, simulation of the vesicle release dynamics. 

Part 1 – Simulation of the Action Potential 
For simplicity, you may assume that the calcium current does not change the shape of the 
action potential dramatically; hence, you can use the action potential waveform from the 
previous assignment as the starting point.  Look for the solution to the previous 
assignment posted on the web. 
 
You will need to take the voltage output from this simulation and feed it as an input to the 
next part of the assignment.  For all subsequent simulations assume a constant current of 
20 nA injected for 100 ms. Plot the resulting action potentials here. 

Part 2 – Simulation of the Calcium Current Influx 
 
Since the Ca2+ concentration inside the cell varies, you will need to use the Goldmann-
Hodgkin-Katz (GHK) equation to calculate the Ca2+ current: 
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To model the Ca2+ channel kinetics, you may adopt a simplified model (from Borst and 
Sakmann, J. Phys., 1998), which consolidates the effects of different calcium channels 
present in the terminal into a single activation parameter (c): 
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Simultaneously, you will need to solve for [Ca]in, which changes due to the influx of Ca2+  
ions into the terminal through the Ca2+ current.  The synaptic terminal can be modeled as 
a single compartment with a calcium buffer (B) and diffusion of free Ca2+ away from the 
release site (diffusion of the calcium buffer is a relatively slow process and can therefore 
be omitted from the model).  The dynamics of the Ca2+ buffering and diffusion can be 
summarized in the following kinetic scheme: 
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This corresponds to the following equations: 
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The relevant constants are: 
 
[Ca]out = 2000 µM; [BTot] = 500 µM; k1 = 0.01 ms-1; k2 = 0.1 ms-1; A = 100; D = 1 
 
a) Run the simulation and plot the calcium current influx in the same graph with the 
action potentials.  Observe that the peak calcium influx coincides with the repolarizing 
phase of the action potential.  Why? 
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Start the simulation with the following initial conditions: 
c = 0.017;  [Ca]in = 0.24;  [BCa] = 0 
 
b) Plot the free [Ca]in in the same graph with the buffered calcium [BCa].  Note that 
as the buffer saturates, the concentration of free Ca2+ increases.  Accumulation of free 
Ca2+ in the presynaptic terminal results in the enhancement of vesicle fusion, and causes a 
form of short-term synaptic plasticity called paired-pulse facilitation. (This will be 
explored further in Part 3). 
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c) Explore the effects of buffer concentration [BTot] on the extent of paired-pulse 
facilitation. 

Part 3- Simulation of the Vesicle Release 
 
In this part of the assignment, you will take the internal calcium concentration computed 
in Part 2, and use it to drive the vesicle release machinery. 
 
First, you will have to simulate the binding of Ca++ to a Ca++ sensor (CS) located on the 
docked vesicles.  For simplicity, you may assume that binding to the sensor is 
instantaneous, in which case the fraction of sensors binding 4 Ca++ molecules (remember 
that vesicle release obeys a 4th order Ca++ dependency) is given by the dose response 
relationship: 
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To model the vesicle population dynamics, you may assume a constant source of vesicles 
inside the cell, a rate constant α of vesicle docking, and a rate constant β of vesicle 
undocking.  The rate of fusion of docked vesicles depends on CS.  The setup for the 
problem is the following: 
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The corresponding model equation is: 
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Fusion Rate = RP ⋅ CS 
 
τ = 50;  (vesicle relaxation time constant) 
m = 800;  (mean number of vesicles in the readily releasable pool) 
β = 1/τ;  α = m/τ; 
 

a) Run the simulation with the initial condition RP0 = 800, and plot the size of 
the readily releasable vesicle pool as a function of time.  Observe that the 
vesicle pool depletes fast.  Explore the effects of the vesicle relaxation time 
constant on the extent of vesicle pool depletion. 
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b) Finally, combine the effects of internal calcium concentration and the vesicle 
pool size on the rate of vesicle release.  Plot the vesicle fusion rate as a 
function of time. 
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 Comment on what you see. 
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